[go: up one dir, main page]

JPH0737963B2 - Eddy current flaw detection coil device - Google Patents

Eddy current flaw detection coil device

Info

Publication number
JPH0737963B2
JPH0737963B2 JP1254197A JP25419789A JPH0737963B2 JP H0737963 B2 JPH0737963 B2 JP H0737963B2 JP 1254197 A JP1254197 A JP 1254197A JP 25419789 A JP25419789 A JP 25419789A JP H0737963 B2 JPH0737963 B2 JP H0737963B2
Authority
JP
Japan
Prior art keywords
coil
inspection
flaw detection
eddy current
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1254197A
Other languages
Japanese (ja)
Other versions
JPH03115851A (en
Inventor
三男 吉田
重幸 新田
朗 佐伯
昭治 林部
勝美 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1254197A priority Critical patent/JPH0737963B2/en
Publication of JPH03115851A publication Critical patent/JPH03115851A/en
Publication of JPH0737963B2 publication Critical patent/JPH0737963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、渦流探傷用コイル装置に関し、特に、鉄鋼の
熱間圧延工程の中間および最終工程に使用する渦流探傷
用検査装置に適用するのに適したコイル装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection coil device, and is particularly suitable for being applied to an eddy current flaw detection inspection device used in the intermediate and final steps of a steel hot rolling process. And a coil device.

従来の技術 鋼材、特に棒鋼の熱間圧延加工製造工程において、外表
面傷を確実に検出するために熱間渦流探傷が用いられて
おり、冷間金属管用の従来技術にあっても、その大半が
被検査材と同心のボビンに電線を巻回した貫通コイルに
よる渦流探傷法が採用されている。このような渦流探傷
法においては、被検査材に存在する小さな傷を感度よく
検出するために、貫通励磁コイルと、複数の検査コイル
とを組み合わせることが行われており、例えば、特開昭
58−34357号公報には、その複数の検査コイルからの信
号処理の方法が開示されており、この従来の方法では、
円周上の隣接配設された検査コイル間および軸方向にず
れて配設された準隣接検査コイル相互間にて差動信号を
抽出するようにスキャンニングすべくマルチプレクサを
用いており、また、特開昭63−40850号公報には、これ
と同様の技術を応用した管内検査用渦流探傷装置が開示
されている。
Conventional technology Hot eddy current flaw detection is used to reliably detect external surface flaws in the hot rolling manufacturing process of steel materials, especially steel bars.Most of the conventional technology for cold metal pipes also uses it. Has adopted the eddy current flaw detection method using a through coil in which an electric wire is wound around a bobbin concentric with the material to be inspected. In such an eddy current flaw detection method, in order to detect a small flaw existing in a material to be inspected with high sensitivity, a combination of a through excitation coil and a plurality of inspection coils is performed.
JP-A-58-34357 discloses a method of signal processing from the plurality of inspection coils, and in this conventional method,
A multiplexer is used to perform scanning so as to extract a differential signal between the inspection coils arranged adjacent to each other on the circumference and between the quasi-adjacent inspection coils arranged shifted in the axial direction, and Japanese Unexamined Patent Publication No. 63-40850 discloses an eddy current flaw detector for in-pipe inspection to which a technique similar to this is applied.

発明が解決しようとする課題 ところで、渦流探傷において、より小さく、より浅い傷
を感度よく検出するためには、傷の大きさと検査コイル
の大きさとの比率を適当に設定する必要があり、より小
さな傷を検出しようとして検査コイルの大きさをより小
さくする場合には、次のような問題点がでてくる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By the way, in eddy current flaw detection, in order to detect a smaller and shallower flaw with high sensitivity, it is necessary to appropriately set the ratio between the flaw size and the inspection coil size. When the size of the inspection coil is made smaller in order to detect a flaw, the following problems arise.

(1) 検査コイルを配設するチャンネル数が増加する
ので、検査コイルの有効受感領域の重なりを考慮して被
検査材全周に亘って略均一の探傷感度を確保するための
工夫が必要となる。
(1) Since the number of channels for arranging the inspection coil increases, it is necessary to consider the overlap of the effective sensing areas of the inspection coil and devise to ensure a substantially uniform flaw detection sensitivity over the entire circumference of the inspected material. Becomes

(2) 検査コイルの小型化に伴って検査コイルのリフ
トオフ特性(すなわち、検査コイルの距離感度特性)を
改善する必要がある。
(2) It is necessary to improve the lift-off characteristic of the inspection coil (that is, the distance sensitivity characteristic of the inspection coil) as the inspection coil becomes smaller.

(3) 検査コイルの小型化と共に重要なことは、被検
査材と検査コイルとの距離変動に起因して発生する機械
的振動疑似妨害雑音信号を低減化して探傷精度を向上さ
せる必要がある。すなわち、小型化した検査コイルによ
って小さな傷に対するS/N比は向上するが、相対感度が
プローブの大きさに比例するという事実に徴して、相対
感度が低下するので電気信号を大きく拡大増幅すること
が常套手段であるが、熱間棒鋼等の渦流探傷にあって検
査コイルから被検査材までの機械的距離をできるだけ大
きく間隔をとることが圧延作業工程上、必須の条件であ
る。ところが、検査コイルから被検査材までの距離を大
きくとることは、探傷の仲介を行なう磁力線が減衰し探
傷感度不足を来すこととなる。これを補うためには電気
信号の拡大、増幅を行えばよいのであるが、前述したよ
うな被検査材の機械的振動が大きな妨害信号となって正
常な探傷が困難となってしまう。
(3) What is important with the miniaturization of the inspection coil is that it is necessary to reduce the mechanical vibration pseudo-interference noise signal generated due to the distance variation between the material to be inspected and the inspection coil to improve the flaw detection accuracy. That is, the S / N ratio for small scratches is improved by the miniaturized inspection coil, but the relative sensitivity is reduced due to the fact that the relative sensitivity is proportional to the size of the probe. However, it is an essential condition in the rolling process that the mechanical distance from the inspection coil to the material to be inspected should be as large as possible in the case of eddy current flaw detection of hot bar steel or the like. However, if the distance from the inspection coil to the material to be inspected is increased, the magnetic field lines that mediate flaw detection will be attenuated, resulting in insufficient flaw detection sensitivity. In order to compensate for this, it is sufficient to expand and amplify the electric signal, but the mechanical vibration of the material to be inspected as described above becomes a large interfering signal and normal flaw detection becomes difficult.

(4) 検査コイルの小型化は、検査コイルの受感磁力
線距離を縮小化するので、探傷感度低下を来すことは前
述したとおりであるが、検査コイルを赤熱した被検査材
である鋼材から保護するための遮熱と冷却のための機構
を工夫する必要がある。すなわち、小さい検査コイルを
用いた場合、検査コイル自身が小さいことに起因する空
間磁路長の短小化による感度低下と、更に加えて熱間材
探傷時に常套手段として遮熱防熱構造体としてのステン
レス筒体を併用する時に生ずる過電流損失による感度低
下と問題がある。
(4) As the size of the inspection coil is reduced, the magnetic field line distance of the inspection coil is shortened, so that the flaw detection sensitivity is deteriorated, as described above. It is necessary to devise a mechanism for heat shield and cooling for protection. That is, when a small inspection coil is used, the sensitivity is lowered due to the shortening of the space magnetic path length due to the small inspection coil itself, and in addition, stainless steel as a heat shield / heat shield structure is used as a conventional means during hot material flaw detection. There is a problem that sensitivity is lowered due to overcurrent loss that occurs when a cylinder is used together.

このように、渦流探傷における検査コイルを小型化する
に伴って考慮すべき問題点が種々あるにもかかわらず、
前述したような従来の渦流探傷用コイル装置において
は、これら問題点のすべてを十分に解決しうるような工
夫がなされているとは言えない。
As described above, although there are various problems to be considered in downsizing the inspection coil in eddy current flaw detection,
It cannot be said that the conventional eddy current flaw detection coil device as described above has been devised so as to sufficiently solve all of these problems.

本発明の目的は、前述したような従来の問題点を解決し
うる渦流探傷用コイル装置を提供することである。
An object of the present invention is to provide an eddy current flaw detection coil device which can solve the above-mentioned conventional problems.

課題を解決するための手段 本発明によれば、渦流探傷装置の被検査材を通すための
貫通孔の周りに装着される貫通励磁コイルと、該貫通励
磁コイルに内挿された検査コイル取付けボビンの円周に
配列された複数の検査コイルとを備える渦流探傷用コイ
ル装置において、前記貫通励磁コイルは、前記貫通孔の
軸方向の所定幅に亘って延長する主コイル部分と、前記
貫通励磁コイルの軸方向中央内壁部の垂直成分磁力線分
布低減領域を拡張するように前記コイル部分の両端部分
に巻回された付加コイルとを備え、前記複数の検査コイ
ルは、前記貫通励磁コイルから発生する励磁磁力線に不
感であるようにその貫通励磁コイルと直交交差するよう
にして、前記検査コイル取付けボビンの前記貫通亘の軸
方向において所定の距離離間した少なくとも2つの円周
に沿って2列に配設され、前記各列に配設した検査コイ
ルは、互いに隣接する検査コイル同志が差動接続されて
対とされて傷信号を出力するようにされ、前記2列の間
において各検査コイル対は、千鳥配列となるようにされ
る。
Means for Solving the Problems According to the present invention, a through excitation coil mounted around a through hole for passing a material to be inspected of an eddy current flaw detection device, and an inspection coil mounting bobbin inserted in the through excitation coil. In a coil device for eddy current flaw detection, comprising: a plurality of inspection coils arranged on the circumference of the through coil, the through excitation coil includes a main coil portion extending over a predetermined width in the axial direction of the through hole, and the through excitation coil. An additional coil wound around both end portions of the coil portion so as to expand a vertical component magnetic field line distribution reduction region of an axial center inner wall portion of the plurality of inspection coils, and the plurality of inspection coils are excited by the through excitation coil. At least two of which are separated by a predetermined distance in the axial direction of the inspection coil mounting bobbin so as to be orthogonal to the penetrating excitation coil so as to be insensitive to the lines of magnetic force. The inspection coils arranged in two rows along one circumference are arranged such that adjacent inspection coils are differentially connected to each other to form a pair and output a flaw signal. Between the two rows, each test coil pair is arranged in a staggered arrangement.

実施例 次に、添付図面に基づいて、本発明の実施例について本
発明をより詳細に説明する。
EXAMPLES Next, the present invention will be described in more detail with reference to the accompanying drawings with reference to the examples of the present invention.

第1図は、本発明の一実施例としての渦流探傷用コイル
装置を適用した熱間渦流探傷検出端を略示する部分破断
側面図であり、第2図は、その熱間渦流探傷用検出端の
正面図である。これら第1図および第2図に略示される
ように、この熱間渦流探傷検出端は、探傷すべき被検査
材を矢印Pの方向から通すための貫通孔11を有した側板
10を備えており、側板10には、冷却水を噴流させるため
の噴流装置20が取り付けられている。この噴流装置20
は、給水管21を介して給水口22に接続されていて、給水
口22を通して給水される冷却水を側板10の貫通孔11の内
周面に沿って噴出させて水膜を形成させることにより、
後述する貫通励磁コイルおよび検査コイルの遮熱冷却を
行なうものである。
FIG. 1 is a partially cutaway side view schematically showing a hot eddy current flaw detection end to which an eddy current flaw detection coil device according to an embodiment of the present invention is applied, and FIG. 2 is the hot eddy current flaw detection detection. It is a front view of an end. As schematically shown in FIGS. 1 and 2, the hot eddy current flaw detection end has a side plate having a through hole 11 for passing a material to be inspected from the direction of arrow P.
The side plate 10 is provided with a jet device 20 for jetting cooling water. This jet device 20
Is connected to the water supply port 22 through the water supply pipe 21, and the cooling water supplied through the water supply port 22 is ejected along the inner peripheral surface of the through hole 11 of the side plate 10 to form a water film. ,
The heat shield cooling of the through excitation coil and the inspection coil described later is performed.

また、側板10内の貫通孔11の周りには、励磁フレーム30
と、検査コイル取付けボピン40と、励磁コイルボビン60
とが取り付けられている。検出コイル取付けボビン40に
は、複数の検査コイル51および52が配設されており、励
磁コイルボビン60には、貫通励磁コイルを構成する主コ
イル部分70と、付加コイル部分71および72とが巻回され
ており、さらに、その貫通励磁コイルの周りに磁気シー
ルド部材73が施されている。
Further, around the through hole 11 in the side plate 10, the excitation frame 30
, Inspection coil mounting bobbin 40, excitation coil bobbin 60
And are attached. The detection coil mounting bobbin 40 is provided with a plurality of inspection coils 51 and 52, and the exciting coil bobbin 60 is wound with a main coil portion 70 and additional coil portions 71 and 72 that form a through exciting coil. Further, a magnetic shield member 73 is provided around the through excitation coil.

側板10の上部には、電源接続線および傷信号導出線等を
含むプラントチューブ110を取り付ける端子カバー100が
取り付けられ、この端子カバー100は、励磁フレーム30
に対して端子板カラー90を介して固定された端子板80を
カバーしている。端子板80には、貫通励磁コイル70、7
1、72を付勢するための電源接続用端子や検査コイル5
1、52等から傷信号を導出するための傷信号出導出用力
端子が設けられている。
On the upper part of the side plate 10, a terminal cover 100 for attaching the plant tube 110 including a power supply connection line, a flaw signal lead-out line, etc. is attached, and the terminal cover 100 is attached to the excitation frame 30.
The terminal plate 80 fixed via the terminal plate collar 90 is covered. The terminal plate 80 has a through excitation coil 70, 7
Power connection terminal and test coil 5 for energizing 1, 72
A scratch signal output / deriving force terminal for deriving a scratch signal from 1, 52 or the like is provided.

なお、第1図において、参照番号120および121は、Oリ
ングを示し、参照番号122は、パッキンを示している。
In FIG. 1, reference numerals 120 and 121 indicate O-rings, and reference numeral 122 indicates packing.

次に、第3図は、前述したように主コイル部分70および
付加コイル部分71および72からなる貫通励磁コイルを巻
回し且つ外周に磁気シールド73を施した励磁ボビン60の
みを取り出して斜視図にて示している。この第3図によ
く示されるように、貫通励磁コイルの両端から電源接続
用のリード線74および75が引き出されており、これらリ
ード線74および75は、端子板80に設けられた対応する端
子に接続されるものである。
Next, FIG. 3 is a perspective view showing only the exciting bobbin 60 in which the through exciting coil including the main coil portion 70 and the additional coil portions 71 and 72 is wound and the outer periphery is provided with the magnetic shield 73, as described above. Is shown. As well shown in FIG. 3, lead wires 74 and 75 for connecting to a power source are drawn out from both ends of the through excitation coil, and these lead wires 74 and 75 are corresponding terminals provided on the terminal board 80. Is connected to.

第4図は、検査コイル取付けボビン40のみを斜視図にて
示している。この第4図によく示されるように、検査コ
イル取付けボビン40には、中間部に円周溝が形成されて
おり、この円周溝の底部には、軸方向に、例えば、11mm
離間した2つの円周にそって、例えば、12゜のピッチに
てそれぞれ30個の検査コイル挿着溝41および42が形成さ
れている。また、この検査コイル取付けボビン40の円周
溝の両側には、検査コイル(傷信号)導出リードを引き
出すためのリード線引出し溝43および44が形成されてい
る。
FIG. 4 shows only the inspection coil mounting bobbin 40 in a perspective view. As well shown in FIG. 4, the inspection coil mounting bobbin 40 has a circumferential groove formed in the middle portion thereof, and the bottom portion of the circumferential groove is, for example, 11 mm in the axial direction.
For example, 30 inspection coil insertion grooves 41 and 42 are formed along the two spaced apart circles at a pitch of 12 °, for example. Further, lead wire drawing grooves 43 and 44 for drawing out the inspection coil (scratch signal) leading lead are formed on both sides of the circumferential groove of the inspection coil mounting bobbin 40.

第5図は、検査コイル51および52の1つを示す斜視図で
あり、この第5図に示す検査コイルは、プリントコイル
であり、コイルの巻回部を構成する印刷導体部53と、出
力端子部54および55とを基板56上に設けてなるものであ
る。
FIG. 5 is a perspective view showing one of the inspection coils 51 and 52. The inspection coil shown in FIG. 5 is a printed coil, and a printed conductor portion 53 that constitutes a winding portion of the coil and an output. The terminals 54 and 55 are provided on the substrate 56.

第6図は、第4図の検査コイルボビン40の検査コイル取
付け溝41および42にそれぞれ第5図の検査コイル51およ
び52を挿着した状態を部分的に斜視図にて示している。
第6図においては、各検査コイル51および52の間の接続
線および出力導出用リード線を示していないが、これら
線線は、各検査コイルの出力端子部の間で接続されて、
検査コイル取付けボビン40の各対応するリード線引出し
溝43および44を通して引き出されて、端子板80の対応す
る端子にそれぞれ接続されるものであることは容易に理
解できよう。
FIG. 6 is a partial perspective view showing a state in which the inspection coils 51 and 52 of FIG. 5 are inserted into the inspection coil mounting grooves 41 and 42 of the inspection coil bobbin 40 of FIG. 4, respectively.
Although FIG. 6 does not show the connecting line between the inspection coils 51 and 52 and the output lead wire, these line wires are connected between the output terminal portions of the inspection coils,
It will be easily understood that the test coil mounting bobbin 40 is drawn out through the corresponding lead wire lead-out grooves 43 and 44 and connected to the corresponding terminals of the terminal plate 80, respectively.

このようにして検査コイル51および52を配設した検査コ
イル取付けボビン40を励磁コイルボビン60内に挿着する
とき、各検査コイル51および52は、貫通励磁コイル70、
71、72から発生する励磁磁力線に不感であるようにその
貫通励磁コイルと直交交差するようになっている。
When the inspection coil mounting bobbin 40 in which the inspection coils 51 and 52 are arranged in this way is inserted into the exciting coil bobbin 60, the inspection coils 51 and 52 are the through exciting coils 70,
The magnetic field lines 71 and 72 are insensitive to the exciting magnetic field lines so that they intersect at right angles with the through exciting coil.

本発明では、被検査材全周に亘って略均一な探傷感度を
確保し、被検査材の外表面のどの個所に傷が点在してい
ても漏れなけ検出することができるようにするために、
小さな検査コイルを多数個配設し、各検査コイル相互の
指向性組合せ状態にて略均一の検出力を確保するように
千鳥配列接続とした。すなわち、同一円周上に被検査材
を取り巻くように30個の検査コイル51を等間隔にて配列
した第1の円環状検査コイル群と、検査コイル取付けボ
ビン40の軸方向にて前記円周から1ピッチずらした位置
(前述した例では、11mm離れた位置)の同一円周上に30
個の検査コイル52を等間隔にて配列した第2の円環状検
査コイル群とを設けた。そして、第7図に模式的に部分
的に示すように、第1の円環状検査コイル群を奇数番号
チャンネルAとし、第2の円環状検査コイル群を偶数番
号チャンネルBとし、奇数番号チャンネルAにおいて
は、奇数コイル番号の検査コイル51−1とそれに隣接す
る検査コイル51−2とを差動接続して傷信号を出力する
検査コイル対とし、すなわち、コイル番号1の検査コイ
ル51とコイル番号2の検査コイル51とを差動隣接し、コ
イル番号3の検査コイル51とコイル番号4の検査コイル
51とを差動接続し、コイル番号5の検査コイル51とコイ
ル番号6の検査コイル51とを差動接続し、コイル番号7
の検査コイル51とコイル番号8の検査コイル51とを差動
接続し、以下同様に隣接する検査コイル51を差動接続の
対とした。一方、偶数番号チャンネルBにおいては、偶
数のコイル番号の検査コイル52とそれに隣接する検査コ
イル52とを差動接続して傷信号を出力する検査コイル対
とし、すなわち、コイル番号2の検査コイル52−2とコ
イル番号3の検査コイル52−3とを差動接続し、コイル
番号4の検査コイル52−4とコイル番号5の検査コイル
52−5とを差動接続し、コイル番号6の検査コイル52と
コイル番号7の検査コイル52とを差動接続し、コイル番
号8の検査コイル52とコイル番号9の検査コイル52とを
差動接続し、以下同様に隣接する検査コイル52を差動接
続の対とした。
In the present invention, in order to ensure substantially uniform flaw detection sensitivity over the entire circumference of the material to be inspected, and to be able to detect leaks regardless of where on the outer surface of the material to be inspected scratches are scattered. To
A large number of small inspection coils are arranged, and the inspection coils are connected in a staggered arrangement so as to ensure a substantially uniform detection force in the directivity combination state of the inspection coils. That is, a first annular inspection coil group in which 30 inspection coils 51 are arranged at equal intervals so as to surround the material to be inspected on the same circle, and the circle around the circle in the axial direction of the inspection coil mounting bobbin 40. 30 on the same circumference at a position shifted by 1 pitch from the position (11 mm apart in the above example)
A second annular inspection coil group in which individual inspection coils 52 are arranged at equal intervals is provided. Then, as schematically and partially shown in FIG. 7, the first annular inspection coil group is an odd-numbered channel A, the second annular inspection coil group is an even-numbered channel B, and the odd-numbered channel A is In the above, a test coil pair that outputs a flaw signal by differentially connecting the test coil 51-1 having an odd coil number and the test coil 51-2 adjacent thereto is used, that is, the test coil 51 having the coil number 1 and the coil number. The test coil 51 of No. 2 and the test coil of No. 4 are differentially adjacent to each other
51 is differentially connected, and the inspection coil 51 having the coil number 5 and the inspection coil 51 having the coil number 6 are differentially connected, and the coil number 7 is connected.
The inspection coil 51 and the inspection coil 51 of the coil number 8 are differentially connected, and the adjacent adjacent inspection coils 51 are differentially connected. On the other hand, in the even-numbered channel B, the inspection coil 52 having an even coil number and the adjacent inspection coil 52 are differentially connected to form a pair of inspection coils for outputting a flaw signal, that is, the inspection coil 52 of the coil number 2. -2 and the inspection coil 52-3 of the coil number 3 are differentially connected, and the inspection coil 52-4 of the coil number 4 and the inspection coil of the coil number 5 are connected.
52-5 is differentially connected, the inspection coil 52 of the coil number 6 and the inspection coil 52 of the coil number 7 are differentially connected, and the inspection coil 52 of the coil number 8 and the inspection coil 52 of the coil number 9 are connected to each other. Then, the adjacent inspection coils 52 are made into a differentially connected pair.

次に、本発明者は、このような小さな検査コイル51およ
び52を多数個配列する場合、検査コイルの大きさをどの
程度の寸法にすれば良いかについて検討するために、種
々な大きさの傷に対して種々な大きさの検査コイルを用
いて傷信号を求める実験を繰り返し行った。その結果を
第8図のグラフに示す。第8図のグラフにおいて横軸
は、用いた検査コイルの大きさ1を、検出した傷の長さ
でLで正規化した値をとっており、縦軸にS/N比をとっ
ている。また、この第8図に示す結果は、検査コイルを
差動接続し、傷を横切って探傷してみた場合のものであ
る。この第8図のグラフから判るように、S/N比のよい
探傷結果を得るためには、1/L<2とするのが好まし
く、すなわち、検査コイルの大きさは、探傷すべき傷の
最大長さの2倍より小さくするのが好ましい。
Next, the present inventor, in the case of arranging a large number of such small inspection coils 51 and 52, examines how large the inspection coil should be in order to obtain various sizes. An experiment for obtaining a scratch signal by using test coils of various sizes for a scratch was repeated. The results are shown in the graph of FIG. In the graph of FIG. 8, the abscissa axis represents a value obtained by normalizing the size 1 of the used inspection coil by the length of the detected flaw with L, and the ordinate axis represents the S / N ratio. The results shown in FIG. 8 are obtained by differentially connecting the inspection coils and performing flaw detection across the flaw. As can be seen from the graph of FIG. 8, in order to obtain a flaw detection result with a good S / N ratio, it is preferable to set 1 / L <2, that is, the size of the inspection coil depends on the flaw to be flaw-detected. It is preferably less than twice the maximum length.

また、本発明者は、検査コイルの小型化に伴って検査コ
イルのリフトオフ特性、すなわち、検査コイルと被検査
材との距離が変化したときの感度の変化率が少なくなる
ような検査コイルの配列態様について検討するため、パ
ンケーキ型プローブを検査対象面と平行に位置させた場
合と、垂直に位置させた場合とについて、プローブと被
検査材との距離(リフト・オフ)を変えたときの信号の
減衰の程度を調べみた。その結果、垂直に位置させた場
合は、相対感度は悪いが、リフトオフに伴う減衰が少な
いことが判った。
Further, the present inventor has found that the lift-off characteristics of the inspection coil, that is, the arrangement of the inspection coils such that the rate of change in sensitivity when the distance between the inspection coil and the material to be inspected changes as the inspection coil becomes smaller. In order to study the mode, when the distance between the probe and the inspected material (lift-off) is changed in the case where the pancake type probe is positioned parallel to the inspection target surface and the case where it is positioned vertically. I examined the degree of signal attenuation. As a result, it was found that when it was positioned vertically, the relative sensitivity was poor, but the attenuation due to lift-off was small.

さらにまた、本発明者は、検査コイルの小型化と共に重
要な距離変動に伴って発生する機械的振動疑似妨害雑音
信号低減化のため、この雑音信号発生要因の根本的解決
策を検討してみた。検査コイルと被検査材との相対的距
離変動で発生する妨害雑音信号発生要因としては種々考
えられるが、次の2つの点を考慮することにより、雑音
信号の発生を実質的に抑えることができると考えた。す
なわち、 (A) 距離変動に伴って生ずる交番磁界が雑音信号発
生の要因であり、妨害発生は、検査コイルを横切る磁力
線の変化が少なくなるように検査コイルを配置すればよ
いこと。
Furthermore, the present inventor has examined a fundamental solution to this noise signal generation factor in order to reduce the size of the inspection coil and to reduce the mechanical vibration pseudo-interference noise signal that occurs with important distance variation. . There are various conceivable factors for generating an interfering noise signal generated due to a relative distance change between the inspection coil and the material to be inspected, but the noise signal can be substantially suppressed by considering the following two points. I thought. That is, (A) The alternating magnetic field generated due to the distance variation is a factor of noise signal generation, and the occurrence of interference may be achieved by arranging the inspection coil so that the change of the magnetic field line across the inspection coil is reduced.

(B) 妨害雑音信号に加担するその他の磁力線分布を
できるだけ排除すること。
(B) Eliminate other magnetic field distributions that contribute to the interference noise signal as much as possible.

先ず、前記(A)項については、検査コイルの受感軸と
磁力線の方向とを略直交するようにすることにより解決
した。すなわち、探傷試験コイルの中の励磁コイルによ
って発生した磁力線は、コイルの内筒軸方向に進行した
のち、コイル外周を大きく迂回して磁路を形成する。検
査コイルの受感軸は、励磁磁力線と直交せしめ、通常状
態時の一定励磁磁力線に不感とすることにし、これは、
前述した実施例の如く、励磁コイル内周に沿って環状を
なす仮空円環状輪に複数の検査コイルの受感軸を串差し
状に配設することによって達成されうる。
First, the above item (A) was solved by making the sensitive axis of the inspection coil and the direction of the magnetic force lines substantially orthogonal. That is, the magnetic force lines generated by the exciting coil in the flaw detection test coil travel in the axial direction of the inner cylinder of the coil and then largely detour around the outer circumference of the coil to form a magnetic path. The sensitive axis of the inspection coil is made orthogonal to the magnetic field lines of excitation, and is made insensitive to the constant magnetic field lines of excitation in the normal state.
As in the above-described embodiment, this can be achieved by arranging the sensing shafts of the plurality of inspection coils in a skewer-like shape on the provisional empty circular ring that is annular along the inner circumference of the exciting coil.

また、前記(B)項については、励磁コイルの磁力線分
布の垂直成分を低減化するための積極的な手段を講じ
た。この点詳述するに、例えば、熱間棒鋼製造設備にあ
っては、正常且つ順調な圧延作業を遂行するために、一
般的に、圧延用ロールと次の段の圧延用ロールとの間隔
を極力狭く配設する。また、圧延最終スタンド(ロー
ル)直後にあっては、ラッパ状案内を随所に設けてい
る。かかるレイアウトにあっては、圧延用ロールスタン
ド間又はロールスタンドと他のラッパ状案内器具との中
間からミスロールと称して、棒鋼が圧延設備外に蛇行卵
乱走することが最も恐れられている。このような状況下
にあって、非破壊検査装置等を圧延設備内に装着する場
合、トンネル穴状の探傷試験コイルの穴(内)径は、圧
延される鋼材外径に比べて可能な限り大きく、軸長は極
力短くすることが強いられている。したがって、渦流探
傷用コイル装置においも、貫通励磁コイルの内径は、出
来るだけ大きく、軸長は、出来るだけ短くする必要があ
る。
Regarding the item (B), a positive measure is taken to reduce the vertical component of the magnetic force line distribution of the exciting coil. To describe this point in detail, for example, in a hot-rolled steel manufacturing facility, in order to perform a normal and smooth rolling operation, in general, the distance between the rolling roll and the rolling roll of the next stage is set to a certain value. Install as narrowly as possible. Immediately after the final rolling stand (roll), trumpet-shaped guides are provided everywhere. In such a layout, it is most feared that the steel bar runs meandering eggs outside the rolling facility, which is called a "miss roll" between the rolling roll stands or between the roll stands and another trumpet-shaped guide device. Under such circumstances, when installing non-destructive inspection equipment in rolling equipment, the hole (inner) diameter of the tunnel-hole-shaped flaw test coil should be as large as possible compared to the outer diameter of the rolled steel material. It is large, and it is compelled to shorten the axial length as much as possible. Therefore, also in the coil device for eddy current flaw detection, it is necessary to make the inner diameter of the through excitation coil as large as possible and the axial length as short as possible.

そこで、円筒状に長い巻線の励磁コイルを備えた探傷試
験コイル内の励磁磁力線分布の一般的な特性を調べてみ
たところ、第9図および第10図に示すようなものである
ことがわかった。第9図および第10図に示す特性は、単
純なソレノイド空芯励磁コイルの磁束分布を示すもの
で、第9図は、横軸にコイルの長さ方向の距離をとり、
縦軸に励磁磁力線の水平成分の大きさをとったものであ
り、第10図は、横軸にコイルの長さ方向の距離をとり、
縦軸に励磁磁力線の垂直成分の大きさをとったものであ
る。ここで、第10図の励磁磁力線の垂直成分の分布特性
から明らかなように、検査コイルは、垂直成分の小さい
領域である励磁コイルの中間部に設けるのがよいである
が、励磁コイルの内径をできるだけ大きくし、軸長をで
きるだけ短くちようとする場合には、励磁コイルの中間
部における励磁磁力線の垂直成分の低減領域がそれだけ
狭くなってしまい、検査コイルの配設位置に制約が生じ
てしまうことがわかった。本発明者は、励磁コイルの内
径を大きくし軸長を短くしても、励磁コイルの中間部に
垂直成分の低減した領域が検査コイルを配置するに十分
に得られるような方法を検討するなかで、第11図に略示
するように主コイル部分70の両端の外周に付加コイル部
分71および72を巻回してなるような貫通励磁コイルの構
成がその要求に十分応えられるものであることを見出し
た。
Therefore, when we examined the general characteristics of the magnetic field distribution of the magnetic field in the flaw test coil equipped with the cylindrical long-winding excitation coil, we found that it was as shown in FIGS. 9 and 10. It was The characteristics shown in FIG. 9 and FIG. 10 show the magnetic flux distribution of a simple solenoid air-core excitation coil. In FIG. 9, the horizontal axis indicates the distance in the coil length direction,
The vertical axis is the magnitude of the horizontal component of the exciting magnetic force line, and in FIG. 10, the horizontal axis is the distance in the longitudinal direction of the coil,
The vertical axis represents the magnitude of the vertical component of the exciting magnetic force line. Here, as is clear from the distribution characteristic of the vertical component of the exciting magnetic force line in FIG. 10, the inspection coil is preferably provided in the middle portion of the exciting coil, which is an area where the vertical component is small. If you try to make the axis as large as possible and make the axial length as short as possible, the reduction area of the vertical component of the magnetic field lines of the excitation in the middle part of the excitation coil will be narrowed by that much, and there will be restrictions on the placement position of the inspection coil. I found out that The present inventor considers a method in which even if the inner diameter of the exciting coil is increased and the axial length is shortened, a region in which the vertical component is reduced is sufficiently obtained in the middle portion of the exciting coil to arrange the inspection coil. Therefore, as shown in FIG. 11, it is necessary that the structure of the feedthrough excitation coil in which the additional coil portions 71 and 72 are wound around the outer periphery of the both ends of the main coil portion 70 can sufficiently meet the demand. I found it.

すなわち、第11図において、参照符号WTは、主ホイル部
分70の巻幅(mm)を示し、参照番号W0は、励磁磁力線分
布の垂直成分低減化のために主コイル部分70の両端側に
積層して巻回した付加コイル部分71および72の巻幅(m
m)を示し、参照番号Dφは、励磁コイルの平均径(m
m)を示している。第11図のような構成の貫通励磁コイ
ルの種々な寸法のものを作製して、W0.1φv/D値を求め
てみた。ここで、W0.1φv/Dは、励磁コイル両端面部の
磁力線の内、垂直成分の最大値を1としたとき、その1/
10の強さとなるV字状特性の領域(mm)を励磁コイルの
平均径Dで除した値を示している。その結果を、第12図
に励磁している。第12図に示すグラフは、横軸にW0/WT
の値をとり、縦軸にW0.1φv/Dの値をとったものであ
る。そして、曲線Aは、WT/D=1.85の場合の特性を示
し、曲線Bは、WT/D=0.81の場合の特性を示している。
この第12図の曲線から分かるように、単純ソレノイドの
励磁コイルの場合に比較して、付加コイル部分を設けた
励磁コイルの場合の方が、コイル内壁に於ける垂直成分
を大幅に低減することができ、例えば、曲線Bに示すよ
うに、W0.1φ/Dを15%から65%へと上げることがで
き、すなわち、垂直成分低減領域を約4倍に拡張するこ
とができる。
That is, in FIG. 11, reference numeral W T indicates a winding width (mm) of the main foil portion 70, and reference numeral W 0 indicates both end sides of the main coil portion 70 in order to reduce the vertical component of the exciting magnetic force line distribution. Winding width (m
m), and the reference number Dφ is the average diameter of the exciting coil (m
m) is shown. Various values of through excitation coils having various configurations as shown in FIG. 11 were produced, and W 0.1 φv / D value was obtained. Here, W 0.1 φv / D is 1 / of the maximum value of the vertical component of the magnetic force lines on both end faces of the exciting coil, where 1 /
A value obtained by dividing a region (mm) having a V-shaped characteristic having a strength of 10 by the average diameter D of the exciting coil is shown. The results are shown in Fig. 12. The graph shown in Fig. 12 shows W 0 / W T on the horizontal axis.
Is taken and the vertical axis is the value of W 0.1 φv / D. The curve A shows the characteristics when W T /D=1.85, and the curve B shows the characteristics when W T /D=0.81.
As can be seen from the curve in Fig. 12, the vertical component on the inner wall of the coil can be significantly reduced in the case of the exciting coil provided with the additional coil portion, compared with the case of the simple solenoid exciting coil. For example, as shown by the curve B, W 0.1 φ / D can be increased from 15% to 65%, that is, the vertical component reduction region can be expanded by about 4 times.

このような本発明による付加コイルの効果を確認するた
めに、従来の如く付加コイルのない単純なソレノイドコ
イルを励磁コイルとして用いた探傷装置と、それと同じ
ソレノイドコイルに前述したような付加コイルを設けた
コイルを励磁コイルとして用いた同様の探傷装置とで同
じ傷について探傷を行ってみた。第14図のグラフは、従
来の付加コイルのない場合の探傷結果である位相特性を
示しており、第13図は、本発明によって付加コイルを設
けた場合の探傷結果である位相特性を示している。これ
らグラフにおいて、上部の2つの曲線は、2つの種類の
異なる傷に対してそれぞれ得られた傷信号を示してお
り、下部の2つの曲線は、その2つの種類の異なる傷に
対してそれぞれ得られたガク(ノイズ)信号を示してい
る。これらグラフから明らかなように、従来の励磁コイ
ルを用いた場合には、そのS/N比は、約5.9であったのに
対して、本発明による付加コイルを設けた励磁コイルの
場合には、そのS/N比は、約11.8と2倍の改善が確認さ
れた。
In order to confirm the effect of the additional coil according to the present invention as described above, a flaw detection apparatus using a simple solenoid coil without an additional coil as an exciting coil as in the prior art, and the same additional solenoid coil as described above are provided. The same flaw was inspected with the same flaw detector using the coil as an exciting coil. The graph of FIG. 14 shows a phase characteristic which is a flaw detection result when there is no conventional additional coil, and FIG. 13 shows a phase characteristic which is a flaw detection result when an additional coil is provided according to the present invention. There is. In these graphs, the upper two curves show the wound signals obtained for the two different types of wounds, respectively, and the lower two curves show the wound signals obtained for the two different types of wounds, respectively. 7 shows a captured noise (noise) signal. As is clear from these graphs, in the case of using the conventional exciting coil, the S / N ratio was about 5.9, whereas in the case of the exciting coil provided with the additional coil according to the present invention, , Its S / N ratio was confirmed to be about 11.8, which is a two-fold improvement.

なお、第1図に示した実施例において、励磁コイルの外
周に磁気シールド73を設けたのは、このような磁気シー
ルドを設けることによって励磁磁気回路を形成させるこ
とにより、大電力励磁実施時における探傷試験コイルの
外周筐体のヒステリシス損失を未然に防止して、発熱を
抑制すると共に検査コイルの周辺温度上昇に伴うドリフ
トを低減させるためである。
In the embodiment shown in FIG. 1, the magnetic shield 73 is provided on the outer periphery of the exciting coil because the exciting magnetic circuit is formed by providing such a magnetic shield, which is used when high power excitation is performed. This is because the hysteresis loss of the outer peripheral case of the flaw detection test coil is prevented in advance, heat generation is suppressed, and the drift due to the rise in the ambient temperature of the inspection coil is reduced.

発明の効果 本発明による渦流探傷用コイル装置は、前述したような
構成であるので、検査コイルを小型化しても被検査材の
全周に亘って均一の探傷感度を確保でき、しかも、検査
コイルのリフトオフ特性も改善され、励磁コイルの内径
を大きくし軸方向の長さを短縮しても、機械的振動疑似
妨害雑音信号を低減化して探傷精度を向上させることが
できる等の格別な効果を得ることができる。
EFFECTS OF THE INVENTION Since the coil device for eddy current flaw detection according to the present invention has the above-described configuration, even if the inspection coil is downsized, uniform flaw detection sensitivity can be secured over the entire circumference of the material to be inspected, and the inspection coil Lift-off characteristics are improved, and even if the inner diameter of the exciting coil is increased and the axial length is shortened, mechanical vibration pseudo-interference noise signals can be reduced and flaw detection accuracy can be improved. Obtainable.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例としての渦流探傷用コイル
装置を適用した熱間渦流深傷用検出端を略示する部分破
断側面図、第2図は、その熱間渦流探傷用検出端の正面
図、第3図は、第1図の熱間渦流探傷用検出端における
渦流探傷用コイル装置の励磁コイルの部分を示す斜視
図、第4図は、第1図の熱間渦流探傷用検出端における
検査コイル取付けボビンのみを示す斜視図、第5図は、
第1図の熱間渦流探傷用検出端における検査コイルの1
つを示す斜視図、第6図は、第4図の検査コイルボビン
の検査コイル取付け溝にそれぞれ第5図の検査コイルを
挿着した状態を示す部分斜視図、第7図は、第1図の熱
間渦流探傷用検出端における渦流探傷用コイル装置の検
査コイルの差動接続の態様を例示するための概略図、第
8図は、検査コイルの大きさと傷の大きさと得られる傷
信号のS/N比との関係を例示するグラフを示す図、第9
図は、単純なソレノイド空芯励磁コイルによる励磁磁束
の水平成分の分布を例示する図、第10図は、単純なソレ
ノイド空芯励磁コイルによる励磁磁束の垂直成分の分布
を例示する図、第11図は、本発明による励磁コイルの基
本的構造を略示する図、第12図は、第11図に示したよう
な構成の励磁コイルによる励磁磁力線分布の垂直成分低
減化を例示するためのグラフを示す図、第13図は、本発
明による渦流探傷用コイル装置を用いた場合の傷信号の
S/N比を例示するためのグラフを示す図、第14図は、従
来の渦流探傷用コイル装置を用いた場合の傷信号のS/N
比を例示するためのグラフを示す図である。 10……側板、11……貫通孔、 20……噴流装置、21……給水管、 22……給水口、30……励磁フレーム、 40……検査コイル取付けボビン、 41、42……検査コイル挿着溝、 43、44……リード線引出し溝、 51、52……検査コイル、 53……印刷導体部、 54、55……出力端子部、 56……基板、 60……励磁コイルボビン60、 70……主コイル部分、 71、72……付加コイル部分、 73……磁気シールド部材、 74、75……リード線。
FIG. 1 is a partially cutaway side view schematically showing a detection end for hot eddy current deep flaw to which a coil device for eddy current flaw detection as an embodiment of the present invention is applied, and FIG. 2 is a detection view for hot eddy current flaw detection. FIG. 3 is a front view of the end, FIG. 3 is a perspective view showing an exciting coil portion of the coil device for eddy current flaw detection at the detection end for hot eddy current flaw detection in FIG. 1, and FIG. 4 is a hot eddy current flaw detection in FIG. 5 is a perspective view showing only the inspection coil mounting bobbin at the detection end for use in
1 of the inspection coil at the detection end for hot eddy current flaw detection in FIG.
6 is a partial perspective view showing a state in which the inspection coil of FIG. 5 is inserted into the inspection coil mounting groove of the inspection coil bobbin of FIG. 4, and FIG. 7 is a partial perspective view of FIG. FIG. 8 is a schematic view for illustrating the mode of differential connection of the inspection coils of the eddy current flaw detection coil device at the hot eddy current flaw detection end, FIG. 8 shows the size of the inspection coil, the flaw size, and the obtained flaw signal S The figure which shows the graph which illustrates the relationship with / N ratio, 9th
FIG. 10 is a diagram illustrating a distribution of horizontal components of exciting magnetic flux by a simple solenoid air-core exciting coil. FIG. 10 is a diagram illustrating distribution of vertical components of exciting magnetic flux by a simple solenoid air-core exciting coil. FIG. 12 is a diagram schematically showing the basic structure of an exciting coil according to the present invention, and FIG. 12 is a graph for illustrating the reduction of the vertical component of the exciting magnetic field line distribution by the exciting coil having the configuration shown in FIG. FIG. 13 is a diagram showing a flaw signal when the coil device for eddy current flaw detection according to the present invention is used.
FIG. 14 shows a graph for illustrating the S / N ratio, and FIG. 14 shows the S / N of the scratch signal when the conventional eddy current flaw detection coil device is used.
It is a figure which shows the graph for illustrating a ratio. 10 ... Side plate, 11 ... Through hole, 20 ... Jet device, 21 ... Water supply pipe, 22 ... Water supply port, 30 ... Excitation frame, 40 ... Inspection coil mounting bobbin, 41, 42 ... Inspection coil Insertion groove, 43,44 …… Lead wire drawing groove, 51,52 …… Inspection coil, 53 …… Printed conductor section, 54,55 …… Output terminal section, 56 …… Board, 60 …… Excitation coil bobbin 60, 70 …… Main coil part, 71,72 …… Additional coil part, 73 …… Magnetic shield member, 74,75 …… Lead wire.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐伯 朗 東京都板橋区桜川1丁目5番7号 原電子 測器株式会社内 (72)発明者 林部 昭治 東京都板橋区桜川1丁目5番7号 原電子 測器株式会社内 (72)発明者 田口 勝美 東京都板橋区桜川1丁目5番7号 原電子 測器株式会社内 (56)参考文献 特開 昭58−34357(JP,A) 特開 昭63−40850(JP,A) 特開 昭62−123352(JP,A) 実開 昭62−167161(JP,U) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Akira Saeki 1-5-7 Sakuragawa, Itabashi-ku, Tokyo Hara Denshi Sokki Co., Ltd. (72) Inventor Shoji Hayashibe 1-5-7 Sakuragawa, Itabashi-ku, Tokyo Hara Denshi Sokki Co., Ltd. (72) Inventor Katsumi Taguchi 1-5-7 Sakuragawa, Itabashi-ku, Tokyo Hara Denki Sokki Co., Ltd. (56) Reference JP-A-58-34357 (JP, A) Kai 63-40850 (JP, A) JP 62-123352 (JP, A) Actually developed 62-167161 (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】渦流探傷装置の被検査材を通すための貫通
孔の周りに装着される貫通励磁コイルと、該貫通励磁コ
イルに内挿された検査コイル取付けボビンの円周に配列
された複数の検査コイルとを備える渦流探傷用コイル装
置において、前記貫通励磁コイルは、前記貫通孔の軸方
向の所定幅に亘って延長する主コイル部分と、前記貫通
励磁コイルの軸方向中央内壁部の垂直成分磁力線分布低
減領域を拡張するように前記主コイル部分の両端部分に
巻回された付加コイル部分とを備えており、前記複数の
検査コイルは、前記貫通励磁コイルから発生する励磁磁
力線に不感であるようにその貫通励磁コイルと直交交差
するようにして、前記検査コイル取付けボビンの前記貫
通孔の軸方向において所定の距離離間した少なくとも2
つの円周に沿って2列に配設されており、前記各列に配
設した検査コイルは、互いに隣接する検査コイル同志が
差動接続されて対とされて傷信号を出力するようにされ
ており、前記2列の間において各検査コイル対は、千鳥
配列となるようにされたことを特徴とする渦流探傷用コ
イル装置。
1. A through excitation coil mounted around a through hole for passing a material to be inspected of an eddy current flaw detection device, and a plurality of arrangements on the circumference of an inspection coil mounting bobbin inserted in the through excitation coil. In the coil device for eddy current flaw detection, the through excitation coil has a main coil portion extending over a predetermined width in the axial direction of the through hole, and a vertical center inner wall portion of the through excitation coil. And an additional coil portion wound around both ends of the main coil portion so as to extend the component magnetic field line distribution reduction region, and the plurality of inspection coils are insensitive to the exciting magnetic field lines generated from the through exciting coil. As described above, at least two of them are separated by a predetermined distance in the axial direction of the through hole of the inspection coil mounting bobbin so as to intersect the through excitation coil at right angles.
The inspection coils arranged in two rows along one circumference are arranged such that adjacent inspection coils are differentially connected to each other to form a pair and output a flaw signal. The coil device for eddy current flaw detection is characterized in that the inspection coil pairs are arranged in a staggered arrangement between the two rows.
【請求項2】前記検査コイルの大きさは、探傷すべき傷
の最大長さの2倍より小さい請求項(1)記載の渦流探
傷用コイル装置。
2. The coil device for eddy current flaw detection according to claim 1, wherein the size of the inspection coil is smaller than twice the maximum length of the flaw to be flaw-detected.
【請求項3】前記検査コイルは、プリントコイルである
請求項(1)または(2)記載の渦流探傷用コイル装
置。
3. The coil device for eddy current flaw detection according to claim 1, wherein the inspection coil is a printed coil.
JP1254197A 1989-09-29 1989-09-29 Eddy current flaw detection coil device Expired - Lifetime JPH0737963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254197A JPH0737963B2 (en) 1989-09-29 1989-09-29 Eddy current flaw detection coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254197A JPH0737963B2 (en) 1989-09-29 1989-09-29 Eddy current flaw detection coil device

Publications (2)

Publication Number Publication Date
JPH03115851A JPH03115851A (en) 1991-05-16
JPH0737963B2 true JPH0737963B2 (en) 1995-04-26

Family

ID=17261596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254197A Expired - Lifetime JPH0737963B2 (en) 1989-09-29 1989-09-29 Eddy current flaw detection coil device

Country Status (1)

Country Link
JP (1) JPH0737963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194635A1 (en) * 2014-06-19 2015-12-23 コニカミノルタ株式会社 Non-destructive inspection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577684Y2 (en) * 1992-10-28 1998-07-30 原電子測器株式会社 Eddy current flaw detection coil device
KR100442642B1 (en) * 1999-12-29 2004-08-02 주식회사 포스코 Eddy current sensor for inspection a wire surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194635A1 (en) * 2014-06-19 2015-12-23 コニカミノルタ株式会社 Non-destructive inspection device

Also Published As

Publication number Publication date
JPH03115851A (en) 1991-05-16

Similar Documents

Publication Publication Date Title
US5068608A (en) Multiple coil eddy current probe system and method for determining the length of a discontinuity
EP1153289B1 (en) Eddy current testing with compact configuration
JP2009074943A (en) Eddy current flaw detection method, eddy current flaw detection apparatus, and eddy current flaw detection probe
JP2007263946A (en) Sensor and method for eddy current flaw detection
KR101720831B1 (en) Through-coil arrangement, test apparatus with through-coil arrangement and testing method
US7295004B2 (en) Eddy current probe and method of manufacture thereof
EP2098860B1 (en) Eddy current testing method
KR101941354B1 (en) Array eddy current probe with isolated transmit/receive part and eddy current inspection method using thereof
JPH0737963B2 (en) Eddy current flaw detection coil device
CA2316614C (en) Tri-tip probe
TW420808B (en) Eddy current probe for non-destructive testing of the wall of a tube and method of processing signals from the probe
KR101977921B1 (en) A nondestructive testing apparatus including spiral direction current induction means
JP2577684Y2 (en) Eddy current flaw detection coil device
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
EP0186964A1 (en) Eddy current probes for detecting faults in structures and methods of detecting such faults
JP3165804U (en) Eddy current testing probe for tube end inspection
WO2020111526A1 (en) Probe for nondestructive inspection apparatus using intersecting gradient-type induced currents, and method for manufacturing induction coil for nondestructive inspection apparatus
JP5158644B2 (en) Eddy current flaw detection system
Sim et al. Nondestructive inspection of control rods in nuclear power plants using an encircling-type magnetic camera
JP3130129B2 (en) Eddy current flaw detector
JPH07311180A (en) Eddy current flaw detection coil
JP2010032352A (en) Eddy current flaw detecting method and eddy current flaw detector
JP7227794B2 (en) Eddy current probe, flaw detection method
JPH10239283A (en) Eddy current flaw-detecting probe
JP3426748B2 (en) Eddy current detection test method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040921

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050221

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9