JPH0734164A - Production of hydrogen occluding alloy - Google Patents
Production of hydrogen occluding alloyInfo
- Publication number
- JPH0734164A JPH0734164A JP5195264A JP19526493A JPH0734164A JP H0734164 A JPH0734164 A JP H0734164A JP 5195264 A JP5195264 A JP 5195264A JP 19526493 A JP19526493 A JP 19526493A JP H0734164 A JPH0734164 A JP H0734164A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- alloy
- occluding alloy
- hydrogen occluding
- hydrogen storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 42
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 42
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 28
- 239000000956 alloy Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 3
- 238000003860 storage Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 125000004429 atom Chemical group 0.000 abstract 1
- 239000000470 constituent Substances 0.000 abstract 1
- 229910052720 vanadium Inorganic materials 0.000 description 11
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 6
- 229910001068 laves phase Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910017706 MgZn Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ニッケル・水素アルカ
リ蓄電池の負極材料に用いられ、水素を吸蔵および放出
することのできる水素吸蔵合金の製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy which can be used as a negative electrode material of a nickel-hydrogen alkaline storage battery and can store and release hydrogen.
【0002】[0002]
【従来の技術】現在までに、ニッケル・水素アルカリ畜
電池の負極材料としての使用が検討された主な水素吸蔵
合金は、AB5型(希土類系)、AB/A2B型(チタン
系)およびAB2型(ラーベス相)の3種類に大別でき
る。そして、これら水素吸蔵合金を使用するに際して、
次のような条件が満足されなければならない。2. Description of the Related Art To date, the main hydrogen storage alloys that have been studied for use as negative electrode materials for nickel-hydrogen alkaline storage batteries are AB 5 type (rare earth type) and AB / A 2 B type (titanium type). And AB 2 type (Laves phase). And when using these hydrogen storage alloys,
The following conditions must be satisfied.
【0003】(1)耐酸化性が大きく、濃アルカリ電解
液中で化学的に安定であること。 (2)広い温度範囲で電気化学容量が大きいこと。 (3)触媒活性が高く、電極反応の可逆性がよいこと。 (4)水素の吸蔵・放出サイクルに伴う劣化が少ないこ
と。 (5)初期活性化が穏和な条件で、しかも少ない回数で
達成できること。(1) It has high oxidation resistance and is chemically stable in a concentrated alkaline electrolyte. (2) The electrochemical capacity is large in a wide temperature range. (3) High catalytic activity and good reversibility of electrode reaction. (4) Little deterioration due to hydrogen absorption / desorption cycle. (5) Initial activation can be achieved under mild conditions and with a small number of times.
【0004】近年、単位重量当りの容量が大きい合金の
開発を目標として、Ti2-xZrxV4-yNiy、Ti1-x
CrxV2-yNiy、ZrV0.4Ni1.6、ZrMnxVyC
rzNi2.1-x-y-zのようなバナジウム元素を含んだZr
系ラーベス相合金の研究および開発がなされている。In recent years, Ti 2-x Zr x V 4-y Ni y and Ti 1-x have been targeted with the goal of developing alloys having a large capacity per unit weight.
Cr x V 2-y Ni y , ZrV 0.4 Ni 1.6 , ZrMn x V y C
Zr containing vanadium element such as r z Ni 2.1-xyz
Studies and developments of Laves phase alloys have been made.
【0005】しかし、すでに提案されているZr系ラー
ベス相水素吸蔵合金は、バナジウム元素を含んでいる。
これはバナジウム成分に、水素吸蔵・放出量の増大およ
び平衡水素圧の適正化に寄与する作用があるからであ
る。しかし、この成分は水素吸蔵合金を製造および使用
するに際し、(1)有毒な元素である、(2)原料コス
トが高くなるという2点の課題がある。However, the previously proposed Zr-based Laves phase hydrogen storage alloy contains vanadium element.
This is because the vanadium component has a function of contributing to an increase in hydrogen storage / release amount and an optimization of the equilibrium hydrogen pressure. However, this component has two problems in the production and use of the hydrogen storage alloy: (1) it is a toxic element and (2) the raw material cost is high.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、これ
ら従来技術の課題を解消し、水素吸蔵特性を低下させる
ことなく、平衡水素圧の適正化に寄与し、かつ有毒性が
なく、さらに原料が低コストとなる水素吸蔵合金の製造
方法を提供することにある。The object of the present invention is to solve these problems of the prior art, contribute to the optimization of the equilibrium hydrogen pressure without deteriorating the hydrogen storage characteristics, and have no toxicity. An object of the present invention is to provide a method for producing a hydrogen storage alloy that uses low cost raw materials.
【0007】[0007]
【課題を解決するための手段】本発明の上記目的は、バ
ナジウム元素を含んだZr系ラーベス相合金のバナジウ
ムに代えて、アルミニウム等の元素を用いることによっ
て達成される。The above object of the present invention is achieved by using an element such as aluminum in place of vanadium of a Zr type Laves phase alloy containing vanadium element.
【0008】すなわち、本発明は、原子モル比組成が下
記示性式: ZrMnaAbCrcNid (但し、式中、AはPd、Pt、Zn、Al、Au、
W、Mo、Agの中から選ばれるいずれか1種の元素を
示し、かつ0.5≦a≦0.8、0.1≦b≦0.4、
0≦c≦0.2、1.0≦d≦1.2、2.0≦a+b
+c+d≦2.2の関係を有する)で示される水素吸蔵
合金の製造方法において、前記A成分の添加量を変化さ
せることにより、該合金の平衡水素圧を制御することを
特徴とする水素吸蔵合金の製造方法にある。Namely, the present invention has an atomic molar ratio composition following rational formula: ZrMn a A b Cr c Ni d ( In the formula, A is Pd, Pt, Zn, Al, Au,
Represents any one element selected from W, Mo and Ag, and 0.5 ≦ a ≦ 0.8, 0.1 ≦ b ≦ 0.4,
0 ≦ c ≦ 0.2, 1.0 ≦ d ≦ 1.2, 2.0 ≦ a + b
+ C + d ≦ 2.2), the equilibrium hydrogen pressure of the alloy is controlled by changing the amount of the component A added. In the manufacturing method.
【0009】このように、本発明は、水素吸蔵合金であ
るZrMnxVyCrzNi2.1-x-y-zのバナジウム元素に
代えてアルミニウム等を用いるものである。[0009] Thus, the present invention is to use aluminum in place of the vanadium element of ZrMn x V y Cr z Ni 2.1 -xyz is a hydrogen storage alloy.
【0010】本発明において対象とするラーベス相化合
物合金は、図1に示すようなMgZn2型(C14)の
結晶構造を有する。この構造においてB副格子を占めう
る元素として、Ni、Cr、Mn、Co、Fe、Cu、
V、Znのような遷移金属元素と、Al、Pd、Pt、
Au、W、Moが考えられる。これらの元素のうちバナ
ジウム元素の代替可能な元素としてバナジウム元素より
も原子半径の大きい、Zn、Al、Pd、Pt、Au、
W、Moである。これらの元素(A成分)を添加し、そ
の添加量を変化させることにより、水素吸蔵合金の平衡
水素圧を制御することができる。これらの元素の添加量
は、水素吸蔵合金中のこれらの元素がモル比で0.1〜
0.3となるようにすることが望ましい。そうした場
合、他の元素を添加した場合に発生する平衡水素圧の増
大という問題はなく、バナジウム添加した場合と同程度
の平衡水素圧と水素吸蔵量が得られる。これはZn、A
l、Pd、Pt、Au、W、MoはVを添加した場合よ
りもB副格子の体積を増大させる作用があるために、全
体の単位胞体積も増大し、平衡水素圧の増大が妨げられ
たからである。The Laves phase compound alloy targeted by the present invention has a MgZn 2 type (C14) crystal structure as shown in FIG. Elements that can occupy the B sublattice in this structure include Ni, Cr, Mn, Co, Fe, Cu,
Transition metal elements such as V and Zn, Al, Pd, Pt,
Au, W and Mo are considered. Among these elements, Zn, Al, Pd, Pt, Au, which has a larger atomic radius than vanadium element, as an element that can substitute for vanadium element,
W and Mo. The equilibrium hydrogen pressure of the hydrogen storage alloy can be controlled by adding these elements (component A) and changing the addition amount. The addition amount of these elements is such that these elements in the hydrogen storage alloy have a molar ratio of 0.1 to 0.1.
It is desirable to set it to 0.3. In such a case, there is no problem of increase in equilibrium hydrogen pressure generated when other elements are added, and equilibrium hydrogen pressure and hydrogen storage amount similar to those when vanadium is added can be obtained. This is Zn, A
Since l, Pd, Pt, Au, W, and Mo have the effect of increasing the volume of the B sublattice more than when V is added, the total unit cell volume also increases, and the increase in equilibrium hydrogen pressure is hindered. This is because the.
【0011】[0011]
【実施例】以下、実施例等に基づき本発明を具体的に説
明する。EXAMPLES The present invention will be specifically described below based on Examples and the like.
【0012】実施例1〜8および比較例3 表1に示される組成式になるように各原料金属を計量
し、30gの原料を5組調合した。この原料を容量18
KWのアーク溶解炉を用いて溶解した。アーク溶解炉内
をまず0.01Torrまでロータリポンプで真空引き
した後、Arガスを炉内圧が1気圧になるまで導入す
る。そして、アーク電流を原料金属に当て溶解、混合し
水冷銅盤上で冷却し、ボタン状インゴットとした。この
インゴットを裏返し、同様の溶解、混合を7回繰り返し
た。溶解が終了したインゴットを炉内より取り出しTa
箔で包み、電気炉を用いてArガス雰囲気中、900℃
で1日間焼鈍し組成の均質化を行なった。 Examples 1 to 8 and Comparative Example 3 Each raw material metal was weighed so as to have the composition formula shown in Table 1, and 5 sets of 30 g of raw materials were prepared. This raw material has a capacity of 18
It was melted using a KW arc melting furnace. First, the inside of the arc melting furnace is evacuated to 0.01 Torr by a rotary pump, and then Ar gas is introduced until the pressure inside the furnace reaches 1 atm. Then, an arc current was applied to the raw material metal to melt it, mix it, and cool it on a water-cooled copper plate to obtain a button-shaped ingot. This ingot was turned inside out, and the same melting and mixing were repeated 7 times. Take out the melted ingot from the furnace Ta
Wrapped in foil and 900 ° C in Ar gas atmosphere using electric furnace
It was annealed for 1 day to homogenize the composition.
【0013】焼鈍終了後の合金インゴットはステンレス
製乳鉢中で約2mm角以下になるまで粗粉砕し、PCT
特性(水素吸蔵特性)測定用の試料とした。PCT特性
の測定方法は一般にジーペルト法と呼ばれている方法を
用いて行なった。試料重量20gを計量し試料ホルダー
に入れ、試料温度を45℃に保ち導入水素ガス圧を0.
1Torrから25KTorrまで変化させて測定し
た。結果を表1に示す。After the annealing, the alloy ingot is roughly crushed in a stainless mortar to a size of about 2 mm square or less and then PCT
The sample was used for measuring characteristics (hydrogen storage characteristics). The PCT characteristics were measured by using a method generally called the Siepert method. A sample weight of 20 g was weighed and placed in a sample holder, the sample temperature was kept at 45 ° C, and the introduced hydrogen gas pressure was adjusted to 0.
The measurement was performed while changing from 1 Torr to 25 KTorr. The results are shown in Table 1.
【0014】[0014]
【表1】 [Table 1]
【0015】表1のように、従来のバナジウムを添加し
た水素吸蔵合金の代表的な組成としてはZrMn0.6V
0.2Cr0.1Ni1.2(比較例1)であるが、この合金組
成中のVをAl等に代え組成モル比を0.1〜0.3ま
で変化させることにより(実施例1〜4)、合金の平衡
水素圧を0.37〜3.7気圧までの範囲内で任意に設
定することが可能となった。また、このことは電池材料
として使用する場合に要求される、試料温度45℃で平
衡水素圧が約1気圧という条件を充分に満足する。As shown in Table 1, a typical composition of a conventional hydrogen storage alloy containing vanadium is ZrMn 0.6 V.
0.2 Cr 0.1 Ni 1.2 (Comparative Example 1), but by changing V in this alloy composition to Al or the like and changing the composition molar ratio to 0.1 to 0.3 (Examples 1 to 4), the alloy It has become possible to arbitrarily set the equilibrium hydrogen pressure within the range of 0.37 to 3.7 atm. Further, this sufficiently satisfies the condition that the equilibrium hydrogen pressure is about 1 atm at the sample temperature of 45 ° C., which is required when used as a battery material.
【0016】[0016]
【発明の効果】以上説明したように、本発明の製造方法
によって、水素吸蔵特性を低下させることなく、平衡水
素圧を任意に設定でき、かつ無毒性で、低コストの水素
吸蔵合金が得られる。この水素吸蔵合金は、平衡水素圧
を任意に変えることが可能であることから、電池材料の
みならずヒートポンプの用途にも使用が可能となる。As described above, according to the production method of the present invention, a hydrogen storage alloy can be obtained which is capable of arbitrarily setting the equilibrium hydrogen pressure without deteriorating the hydrogen storage characteristics, is nontoxic, and is low in cost. . Since this hydrogen storage alloy can change the equilibrium hydrogen pressure arbitrarily, it can be used not only for battery materials but also for heat pump applications.
【図1】 MgZn2型(C14)の結晶構造を示す模
式図。FIG. 1 is a schematic view showing a crystal structure of MgZn 2 type (C14).
Claims (1)
W、Mo、Agの中から選ばれるいずれか1種の元素を
示し、かつ0.5≦a≦0.8、0.1≦b≦0.4、
0≦c≦0.2、1.0≦d≦1.2、2.0≦a+b
+c+d≦2.2の関係を有する)で示される水素吸蔵
合金の製造方法において、 前記A成分の添加量を変化させることにより、該合金の
平衡水素圧を制御することを特徴とする水素吸蔵合金の
製造方法。1. A atomic molar ratio composition following rational formula: ZrMn a A b Cr c Ni d ( In the formula, A is Pd, Pt, Zn, Al, Au,
Represents any one element selected from W, Mo and Ag, and 0.5 ≦ a ≦ 0.8, 0.1 ≦ b ≦ 0.4,
0 ≦ c ≦ 0.2, 1.0 ≦ d ≦ 1.2, 2.0 ≦ a + b
+ C + d ≦ 2.2), the hydrogen storage alloy is characterized by controlling the equilibrium hydrogen pressure of the alloy by changing the addition amount of the A component. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5195264A JPH0734164A (en) | 1993-07-13 | 1993-07-13 | Production of hydrogen occluding alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5195264A JPH0734164A (en) | 1993-07-13 | 1993-07-13 | Production of hydrogen occluding alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0734164A true JPH0734164A (en) | 1995-02-03 |
Family
ID=16338260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5195264A Pending JPH0734164A (en) | 1993-07-13 | 1993-07-13 | Production of hydrogen occluding alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0734164A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3154992U (en) * | 2009-02-25 | 2009-11-05 | 株式会社Sakae | Flag and flag support rod |
-
1993
- 1993-07-13 JP JP5195264A patent/JPH0734164A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3154992U (en) * | 2009-02-25 | 2009-11-05 | 株式会社Sakae | Flag and flag support rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0293660B1 (en) | Hydrogen storage electrodes | |
EP0765531A1 (en) | ELECTROCHEMICAL HYDROGEN STORAGE ALLOYS AND BATTERIES FABRICATED FROM Mg CONTAINING BASE ALLOYS | |
EP0609609B1 (en) | Method for manufacturing a hydrogen-absorbing alloy for a negative electrode | |
JP3828922B2 (en) | Low Co hydrogen storage alloy | |
JPH11106859A (en) | Hydrogen storage alloy excellent in plateau flatness | |
JPH11310844A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPH0821379B2 (en) | Hydrogen storage electrode | |
US5277998A (en) | Hydrogen-absorbing alloy electrode | |
JP2895848B2 (en) | Method for producing hydrogen storage alloy electrode for alkaline storage battery | |
WO1990007585A1 (en) | Method of producing hydrogen-occlusion alloy and electrode using the alloy | |
JPS6191863A (en) | Sealed alkaline storage battery | |
US6083327A (en) | Hydrogen occluding alloy | |
US5922146A (en) | Hydrogen-absorbing alloy of ultra high capacity for electrode of secondary battery | |
KR100187919B1 (en) | Hydrogen Absorption Alloy | |
JPH0734164A (en) | Production of hydrogen occluding alloy | |
Sakai et al. | Metal hydride thin film electrodes prepared by rf sputtering | |
CN1271734C (en) | Metal negative electrode material for nickel-hydrogen battery and preparing process | |
US5268143A (en) | Method of producing hydrogen-storing alloy from a zirconium-tin starting material | |
JP2896433B2 (en) | Magnesium hydrogen storage alloy | |
JPH0949034A (en) | Method for producing hydrogen storage alloy | |
JP3470987B2 (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
US5968450A (en) | Scandium containing hydrogen absorption alloy and hydrogen absorption electrode | |
JPH10298681A (en) | Hydrogen storage alloy | |
EP0566055B1 (en) | A hydrogen storage alloy electrode | |
US5460898A (en) | Hydridable material for the negative electrode of a nickel-hydride storage cell, and a method of preparing the material |