[go: up one dir, main page]

JPH0733979B2 - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH0733979B2
JPH0733979B2 JP59162721A JP16272184A JPH0733979B2 JP H0733979 B2 JPH0733979 B2 JP H0733979B2 JP 59162721 A JP59162721 A JP 59162721A JP 16272184 A JP16272184 A JP 16272184A JP H0733979 B2 JPH0733979 B2 JP H0733979B2
Authority
JP
Japan
Prior art keywords
layer
temperature sensor
material layer
thermistor material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162721A
Other languages
Japanese (ja)
Other versions
JPS6140526A (en
Inventor
光照 木村
Original Assignee
光照 木村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光照 木村 filed Critical 光照 木村
Priority to JP59162721A priority Critical patent/JPH0733979B2/en
Publication of JPS6140526A publication Critical patent/JPS6140526A/en
Publication of JPH0733979B2 publication Critical patent/JPH0733979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、感温部を薄膜状の橋架部に設けたために熱容
量が小さくなり、微少熱量で昇温可能な高速応答の感温
部をもつサーミスタ形温度センサにおいて、感温部の熱
容量をできるだけ小さくさせると共に、高抵抗率で、大
きな光導電性を有するサーミスタ材料層も遮光すること
により、光導電性の影響を除去するように工夫した温度
センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a thermistor-type temperature sensor having a high-speed response temperature-sensing unit capable of increasing the temperature with a small amount of heat because the heat-sensing unit has a thin film-shaped bridge portion and has a small heat capacity. The present invention relates to a temperature sensor devised to remove the influence of photoconductivity by reducing the heat capacity of the temperature sensing part as much as possible and by shielding the thermistor material layer having high resistivity and large photoconductivity.

本出願人は、先に熱線風速計、ビラニー真空計、ガス検
出器などに応用できる局部加熱用小形の電熱器として本
発明と同様な橋架構造をもち、消費電力が小さく、高速
応答性の電熱器(たとえば、特願昭54-27559号(特公昭
62-2438号))を提案した。また、同様の橋架構造で、
橋架構造材料層にサーミスタ材料を用いた「光センサ」
を提案し、橋架部に電熱器とサーミスタ材料層及びガス
感応物質層を配した「ガス検出器」をも提案している。
The applicant of the present invention has a bridge structure similar to that of the present invention as a small electric heater for local heating that can be applied to a hot-wire anemometer, Villany vacuum gauge, gas detector, etc., and has low power consumption and high-speed response. Vessel (for example, Japanese Patent Application No. 54-27559)
No. 62-2438)) was proposed. Also, with a similar bridge structure,
"Optical sensor" using a thermistor material for the bridge structure material layer
And a "gas detector" in which an electric heater, a thermistor material layer and a gas sensitive material layer are arranged in the bridge.

本発明は、上述のような橋架構造の薄膜状橋架部にサー
ミスタ材料層を設け、このサーミスタ材料層を感温部と
する温度センサで、電熱部とも組み合わせることも可能
とし、橋架部の熱容量を特に小さくさせるために、橋架
部領域内にサーミスタ材料層の配置を限定し、かつ、ア
モルファスシリコンのような高抵抗率で大きな光導電性
を有するサーミスタ材料層も使用できるように電極とな
る上部および下部導電体層により、橋架部中央付近のサ
ーミスタ材料層をサンドイッチにし、これらの導電体層
の重なる領域の薄膜状のサーミスタ材料層の厚み方向の
比較的小さな抵抗のみを検出できるようにすると共に、
遮光して外来光の影響を除き、更に通電加熱や受光加熱
により、最も温度上昇する橋架部中央付近の温度を有効
に検出できるように改良した温度センサを提供すること
を目的としている。
The present invention provides a thermistor material layer in the thin-film bridge portion of the bridge structure as described above, a temperature sensor using this thermistor material layer as a temperature sensing portion, and it is also possible to combine it with an electric heating portion to reduce the heat capacity of the bridge portion. In order to make the size particularly small, the arrangement of the thermistor material layer in the bridge region is limited, and the thermistor material layer having high resistivity and large photoconductivity such as amorphous silicon can also be used as the upper part of the electrode and With the lower conductor layer, the thermistor material layer near the center of the bridge is sandwiched so that only a relatively small resistance in the thickness direction of the thin film thermistor material layer in the overlapping region of these conductor layers can be detected.
An object of the present invention is to provide a temperature sensor improved so as to effectively detect the temperature in the vicinity of the center of the bridge portion where the temperature rises most, by shielding the light to remove the influence of external light, and further by conducting heating and receiving light.

以下、図面を参照しながら詳細に説明する。第1図は、
本発明による温度センサを、たとえば、ピラニー真空ゲ
ージに好適な構造にした一実施例を説明するための平面
図、第2図は、第1図のx−x線における横断面図で、
図中、1は、ポリイミド板、2は、ポリイミド板1に接
着剤11により張り付けた銅箔である。3は、第一絶縁層
で、たとえば、0.2μm厚程度の窒化けい素膜(Si3N
4膜)であり、プラズマCVD技術とホトリソグラフィー技
術により、容易に作製できる。4a,4bは、例えばクロム
(Cr)とアルミニウム(Al)の二重層の金属導体からな
り電極となる導電体層である。橋架部の領域内に残るよ
うにホトリソグラフィー技術によりパターン形成された
高抵抗率で大きな光導電性を有するサーミスタ材料層5
である約0.5μm厚のアモルファスシリコン(以下、a
−Siとよぶ)層を橋架部中央付近において両導電体層4
a,4bで挟んだ構造であるので、両導電体層4a,4bから取
り出したリード線9a,9bからみた電気抵抗は、上部導電
体層4bと下部導電体層4aの重なり合う領域のa−Si層の
上下厚み方向の電気抵抗とみなすことができ、高抵抗率
のa−Si層でありながら比較的小さな抵抗値となり、測
定しやすくなる。この重なり合う領域が感温部となり、
大きな光導電性を有するa−Si層には上部導電体層4bを
配してあるので、外来光から遮光され、大きな光導電性
の影響を除くことができる。大きな光導電性を有するサ
ーミスタ材料層5であるa−Si層は、プラズマCVD技術
で容易に作製でき、それぞれクロム(Cr)とアルミニウ
ム(Al)の二重層の金属導体から成る導電体層4a,4bと
オーム性接触が得られやすいように、両電極側をリン
(P)などをドープして低抵抗化した方がよい。尚、サ
ーミスタ材料としては、B定数が大きい方が望ましく、
実験によればPをドープしないa−Si材料の方が、高抵
抗率で大きな光導電性を有するがB定数が大きいので、
Pをドープするのは、a−Si層のうち、導電体層4a,4b
側のほんの薄い層(たとえば、それぞれ50nm厚程度の
層)とすればよい。
Hereinafter, a detailed description will be given with reference to the drawings. Figure 1 shows
A plan view for explaining an embodiment in which the temperature sensor according to the present invention has a structure suitable for a Pirani vacuum gauge, for example, and FIG. 2 is a cross-sectional view taken along line xx of FIG.
In the figure, 1 is a polyimide plate, and 2 is a copper foil attached to the polyimide plate 1 with an adhesive 11. 3 is a first insulating layer, for example, a silicon nitride film (Si 3 N) having a thickness of about 0.2 μm.
4 film) and can be easily manufactured by plasma CVD technology and photolithography technology. Reference numerals 4a and 4b are conductor layers made of, for example, a double layer metal conductor of chromium (Cr) and aluminum (Al) and serving as electrodes. Thermistor material layer 5 having high resistivity and large photoconductivity, which is patterned by photolithography so as to remain in the region of the bridge portion.
About 0.5 μm thick amorphous silicon (hereinafter a
-Si) layer is located near the center of the bridge.
Since the structure is sandwiched between a and 4b, the electric resistance seen from the lead wires 9a and 9b taken out from both conductor layers 4a and 4b is a-Si in the region where the upper conductor layer 4b and the lower conductor layer 4a overlap. It can be regarded as the electric resistance in the thickness direction of the layer, and the resistance value is comparatively small even though it is a high resistivity a-Si layer, which facilitates measurement. This overlapping area becomes the temperature sensitive part,
Since the upper conductor layer 4b is disposed on the a-Si layer having a large photoconductivity, it is shielded from external light and the influence of a large photoconductivity can be eliminated. The a-Si layer, which is the thermistor material layer 5 having a large photoconductivity, can be easily produced by the plasma CVD technique, and is a conductor layer 4a composed of a double-layer metal conductor of chromium (Cr) and aluminum (Al), In order to easily obtain ohmic contact with 4b, it is preferable to dope phosphorus (P) or the like on both electrodes to reduce the resistance. As the thermistor material, it is desirable that the B constant is large,
According to the experiment, the a-Si material not doped with P has a higher resistivity and a larger photoconductivity, but has a larger B constant.
Of the a-Si layers, P is doped with the conductor layers 4a and 4b.
It may be a very thin layer on the side (for example, each layer having a thickness of about 50 nm).

本実施例は、ピラニー真空ゲージへの応用例であるの
で、橋架部には、電流を通じることにより発熱する発熱
体層6,6a,6b,6cを第一絶縁層3の下に密着し、かつ、銅
箔2から電気的に分離するための第二絶縁層7の上に形
成してある。発熱体層6,6a,6b,6cは、たとえば、白金
(Pt)のスパッタ膜やモリブデンシリサイドなどの金属
シリサイドなどのCVD膜の0.3μm厚程度の膜厚で形成で
きる。6,6a,6b,6cは、一体層であるが、発熱体層6のう
ち、リード線10a,10bを取り出す領域に対応させて、左
右の電極部を6a,6bとし、発熱する橋架部領域を6cとし
ている。発熱体層6として、金属シリサイドを使用した
ときは、リード線10a,10bの引き出しのため、左右電極
部6a,6bには、Al蒸着膜厚などを形成させる必要があ
る。8a,8bは、銅箔2をエッチにより除去した溝であ
り、8cは溝8a,8bの形成の際、エッチ時間を長くし、サ
イドエッチを積極的に利用して、上部の多層薄膜構造の
橋架部を残し、銅を除去し貫通させた空洞部である。こ
の溝8a,8bと空洞部8cの作製は、リード線9a,9b;10a,10b
の引き出し前にホトリソグラフィー技術を用いて容易に
形成できる。
Since this embodiment is an application example to a Pirani vacuum gauge, heating elements layers 6, 6a, 6b, 6c that generate heat by passing an electric current are adhered to the bridge portion under the first insulating layer 3, In addition, it is formed on the second insulating layer 7 for electrically separating from the copper foil 2. The heating element layers 6, 6a, 6b, 6c can be formed with a film thickness of about 0.3 μm, for example, a sputtering film of platinum (Pt) or a CVD film of metal silicide such as molybdenum silicide. 6,6a, 6b, 6c are integrated layers, but in the heating element layer 6, the left and right electrode portions are set to 6a, 6b corresponding to the areas where the lead wires 10a, 10b are taken out, and the bridge portion area that generates heat is generated. Is 6c. When metal silicide is used as the heating element layer 6, the lead wires 10a and 10b are drawn out, so that the left and right electrode portions 6a and 6b need to be formed with an Al vapor deposition film thickness or the like. Reference numerals 8a and 8b are grooves obtained by removing the copper foil 2 by etching, and reference numeral 8c is a method of lengthening the etching time when forming the grooves 8a and 8b, and positively utilizing side etching so that the upper multi-layer thin film structure is formed. It is a hollow part with copper removed, leaving the bridge. Fabrication of the grooves 8a, 8b and the cavity 8c is performed by using the lead wires 9a, 9b; 10a, 10b.
Can be easily formed by using the photolithography technique before drawing.

以上のように本発明をピラニー真空ゲージとして実施し
た場合、橋架部の熱容量が小さくでき、かつ、薄膜状で
あるので、真空中のガスとの接触面積が、従来のPt線な
どに比し非常に大きくとれるため高速・高感度となるこ
と、a−Siのように抵抗率が大きくB定数の大きなサー
ミスタ材料で、かつ大きな光導電性を有していても、金
属などの上部導電体層で遮光すると共に、下部導電体層
とで感温部となるサーミスタ材料層5をサンドイッチに
しているので、温度によるサーミスタ抵抗の変化のみを
検出できるなどの利点がある。
As described above, when the present invention is carried out as a Pirani vacuum gauge, since the heat capacity of the bridge can be made small and the film is in a thin film shape, the contact area with the gas in vacuum is much higher than that of conventional Pt wires. It is a thermistor material with a large resistivity and a large B constant, such as a-Si, and it has a large photoconductivity, but it can be used as an upper conductor layer such as metal even if it has a large photoconductivity. Since the thermistor material layer 5 serving as a temperature sensitive portion is sandwiched between the thermistor material layer 5 and the lower conductor layer while shielding the light, there is an advantage that only a change in the thermistor resistance due to temperature can be detected.

本発明を赤外線などの光センサとして実施する場合は、
第1図及び第2図における通電により発熱させる発熱体
層6、第二絶縁層7およびリード線10a,10bを除去し、
光の吸収層としての金黒などの層を橋架部の中央付近の
上部導電体層4b上に配した構造にすればよい。赤外線な
どの光がこの光吸収層で熱に変わり、受光部となる橋架
部に形成された薄膜状の微少熱容量のサーミスタ材料層
5を加熱させるので、高速・高感度の熱形の光センサが
実現できること、また、この感温部となるサーミスタ材
料層5がa−Siのように抵抗率が大きくB定数の大きな
サーミスタ材料で、かつ大きな光導電性を有していて
も、外来光である赤外線などの光を金黒などの光吸収層
で吸収するので、外来光を光導電性の大きなサーミスタ
材料層5に到達しないようにすることができる。さら
に、たとえ金黒などの光吸収層が薄いなどのため充分吸
収しきれない光があったとしても上部導電体層4bで遮光
されるので、受光によるサーミスタ材料層5の温度変化
に伴う抵抗変化のみを検出できるなどの利点がある。
When the present invention is implemented as an optical sensor such as infrared rays,
The heating element layer 6, which causes heat to be generated by energization in FIGS. 1 and 2, the second insulating layer 7, and the lead wires 10a, 10b are removed,
A structure such as gold black as a light absorbing layer may be arranged on the upper conductor layer 4b near the center of the bridge portion. Light such as infrared rays is converted into heat in this light absorption layer, and heats the thin film thermistor material layer 5 having a small heat capacity formed in the bridge portion that serves as a light receiving portion, so that a high-speed and high-sensitivity thermal sensor can be used. Even if the thermistor material layer 5 serving as the temperature sensing portion is a thermistor material having a large resistivity and a large B constant, such as a-Si, and has a large photoconductivity, it is external light. Since light such as infrared rays is absorbed by the light absorbing layer such as gold black, it is possible to prevent external light from reaching the thermistor material layer 5 having high photoconductivity. Furthermore, even if there is light that cannot be fully absorbed because the light absorption layer such as gold black is thin, it is shielded by the upper conductor layer 4b, so the resistance change due to the temperature change of the thermistor material layer 5 due to light reception. It has the advantage of being able to detect only.

以上の説明から明らかなように、本発明によると橋架部
の熱容量を極めて小さくでき、大きなB定数を持つが大
きな光導電性を有したサーミスタ材料層を感温部として
用いても、サーミスタ材料層の電極として用いる上部導
電体層や光吸収層を設けることで遮光されるので、光導
電性の影響を除くことができると共に、薄いサーミスタ
材料層の厚み方向の抵抗を測定することになるため、高
抵抗率のサーミスタ材料層でも比較的小さな抵抗値とし
て扱うことができる。このようにして光導電性の影響を
除いた高感度で高速応答性のある温度センサが提供でき
る。
As is clear from the above description, according to the present invention, the heat capacity of the bridge portion can be made extremely small, and even if the thermistor material layer having a large B constant but a large photoconductivity is used as the temperature sensing portion, the thermistor material layer can be used. Since it is shielded by providing an upper conductor layer or a light absorption layer used as an electrode of, it is possible to remove the effect of photoconductivity, and to measure the resistance in the thickness direction of the thin thermistor material layer, Even a high-resistivity thermistor material layer can be treated as a relatively small resistance value. In this way, it is possible to provide a temperature sensor with high sensitivity and high-speed response, which is free from the influence of photoconductivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による温度センサを、ピラニー真空ゲ
ージへの応用を考えて実施した一実施例を説明するため
の平面図、第2図は、第1図のx−x線における断面図
である。 1……ポリイミド板、2……銅箔、3……第一絶縁層、
4a,4b……導電体層、5……サーミスタ材料層、6,6a,6
b,6c……発熱体層6、7……第二絶縁層、8a,8b……
溝、8c……空洞部、9a,9b;10a,10b……リード線、11…
…接着剤
FIG. 1 is a plan view for explaining an embodiment in which the temperature sensor according to the present invention is implemented in consideration of application to a Pirani vacuum gauge, and FIG. 2 is a sectional view taken along line xx of FIG. Is. 1 ... Polyimide plate, 2 ... Copper foil, 3 ... First insulating layer,
4a, 4b ... Conductor layer, 5 ... Thermistor material layer, 6, 6a, 6
b, 6c …… Heating element layers 6, 7 …… Second insulating layer, 8a, 8b ……
Groove, 8c ... cavity, 9a, 9b; 10a, 10b ... lead wire, 11 ...
…adhesive

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】橋架部に感温部を設けた橋架構造の温度セ
ンサにおいて、空洞を橋架する薄膜状の橋架構造材料層
のうち、少なくとも一層を第一絶縁層3で形成し、該第
一絶縁層3の橋架部領域内に光導電性を有する感温材料
であるサーミスタ材料層5を配し、該サーミスタ材料層
5を上部導電体層4bと下部導電体層4aとで橋架部中央付
近において、挟むように重ね合わせ、該重ね合わせ領域
におけるサーミスタ材料層5の厚み方向の電気抵抗を検
出するようにすると共に、該重ね合わせ領域におけるサ
ーミスタ材料層5に外来光が到達しないように上部導電
体層4bに遮光層を備えたことを特徴とする温度センサ。
1. A temperature sensor having a bridge structure in which a temperature sensing part is provided in the bridge part, wherein at least one layer of a thin film bridge structure material layer bridging a cavity is formed of a first insulating layer 3, A thermistor material layer 5, which is a temperature-sensitive material having photoconductivity, is arranged in the bridge portion area of the insulating layer 3, and the thermistor material layer 5 is composed of the upper conductor layer 4b and the lower conductor layer 4a near the center of the bridge portion. In order to prevent external light from reaching the thermistor material layer 5 in the overlapping region, the upper conductive layer is made to detect the electric resistance in the thickness direction of the thermistor material layer 5 in the overlapping region. A temperature sensor having a light-shielding layer on the body layer 4b.
【請求項2】上部導電体層4b自体を遮光層とした特許請
求の範囲第1項記載の温度センサ。
2. The temperature sensor according to claim 1, wherein the upper conductor layer 4b itself is a light-shielding layer.
【請求項3】上部導電体層4b上に設けた光吸収層を遮光
層とした特許請求の範囲第1項記載の温度センサ。
3. The temperature sensor according to claim 1, wherein the light absorption layer provided on the upper conductor layer 4b is a light shielding layer.
【請求項4】空洞を橋架する薄膜状の橋架構造材料層の
うち、一層を発熱体層6とし、該発熱体層6に電流を通
じることにより、橋架部を発熱させるようにした特許請
求の範囲第1項、第2項又は第3項記載の温度センサ。
4. A thin-film bridge structure material layer bridging a cavity is formed with one layer as a heating element layer 6, and an electric current is passed through the heating element layer 6 to heat the bridging portion. The temperature sensor according to the first, second or third range.
JP59162721A 1984-07-31 1984-07-31 Temperature sensor Expired - Lifetime JPH0733979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59162721A JPH0733979B2 (en) 1984-07-31 1984-07-31 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59162721A JPH0733979B2 (en) 1984-07-31 1984-07-31 Temperature sensor

Publications (2)

Publication Number Publication Date
JPS6140526A JPS6140526A (en) 1986-02-26
JPH0733979B2 true JPH0733979B2 (en) 1995-04-12

Family

ID=15760013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59162721A Expired - Lifetime JPH0733979B2 (en) 1984-07-31 1984-07-31 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH0733979B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267629A (en) * 1986-05-16 1987-11-20 Japan Atom Energy Res Inst Thermometer for measuring cryogenic temperatures in high magnetic field regions
JPS63277581A (en) * 1987-05-08 1988-11-15 Onoda:Kk Water-proofing treatment of light-weight aerated concrete
JPH0637046B2 (en) * 1988-08-23 1994-05-18 大建工業株式会社 Method for producing inorganic decorative board having uneven pattern
JP2856753B2 (en) * 1989-02-07 1999-02-10 光照 木村 Infrared sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119381A (en) * 1979-03-08 1980-09-13 Mitsuteru Kimura Electric heater
JPS5629130A (en) * 1979-08-16 1981-03-23 Matsushita Electric Ind Co Ltd Temperature sensor
JPS6032722Y2 (en) * 1980-01-23 1985-09-30 株式会社日立製作所 thick film thermistor
DE3138535A1 (en) * 1981-09-28 1983-04-07 Siemens AG, 1000 Berlin und 8000 München TEMPERATURE SENSOR WITH A SEMICONDUCTOR BODY

Also Published As

Publication number Publication date
JPS6140526A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
JP4137196B2 (en) Infrared detector and manufacturing method thereof
JP5000204B2 (en) Heat sensing
RU2383875C2 (en) Bolometric detector, device for infrared radiation detection, using such detector, and method for detector manufacturing
JP2856180B2 (en) Thermal type infrared detecting element and manufacturing method thereof
AU603918B2 (en) Mass air flow sensors
JPH10274561A (en) Thermal infrared detector
RU2386934C2 (en) Method for manufacturing of device for detection of heat radiation comprising active microbolometre and passive microbolometre
JP3859479B2 (en) Bolometer type infrared detector
JPH0733979B2 (en) Temperature sensor
JP3083901B2 (en) Atmosphere sensor
EP3557203B1 (en) Light detector
JPH06103218B2 (en) Optical sensor
JP3775830B2 (en) Infrared detector
KR100785738B1 (en) bolometer
JPH08297052A (en) Bolometer type infrared sensor and image sensor
TW201826511A (en) Light detector
JPH0868700A (en) Sensor circuit and infrared detection element
JP3136649B2 (en) Combined infrared detector
JP2000002585A (en) Thermal infrared detecting element
JP2856753B2 (en) Infrared sensor
JP2793615B2 (en) Infrared sensor
JP5633195B2 (en) Thermal detection device
JP2753905B2 (en) Pyroelectric element
JP2001183202A (en) Flow sensor and its manufacturing method
JP2772776B2 (en) Thermopile