JPH073375B2 - Distributed pressure sensor - Google Patents
Distributed pressure sensorInfo
- Publication number
- JPH073375B2 JPH073375B2 JP1302020A JP30202089A JPH073375B2 JP H073375 B2 JPH073375 B2 JP H073375B2 JP 1302020 A JP1302020 A JP 1302020A JP 30202089 A JP30202089 A JP 30202089A JP H073375 B2 JPH073375 B2 JP H073375B2
- Authority
- JP
- Japan
- Prior art keywords
- load
- circuit board
- printed circuit
- flexible printed
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Landscapes
- Pressure Sensors (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Manipulator (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分布型圧覚センサんに関し、詳しくは、ロボッ
トハンド等に装着して、装着面に対して垂直方向に加わ
る力の分布を検出することが可能な分布型圧覚センサに
関する。Description: TECHNICAL FIELD The present invention relates to a distributed pressure sensor, and more specifically, it is mounted on a robot hand or the like to detect a distribution of force applied in a direction perpendicular to a mounting surface. A distributed pressure sensor that can perform
従来の分布型圧覚センサは、検出素子に導電性を有する
ゴムまたはプラスチックを用いたものが提案されてい
る。第3図はその1例を示し、互いに直角方向に細し導
電性のゴム条8、および9を2層に組み合わせて構成し
たものである。このような圧覚センサにおいては、ゴム
条の配列面に対して垂直方向の力が加わると、ゴム条8
と9との接触部分の面積が増加し抵抗が減少する。そこ
で、第4図に示したように電圧端子10に例えば5Vの電圧
を1000Ωの抵抗11を介して印加し、出力点12の電圧をと
り出して測定することにより、加えられた力の大きさを
知ることができる。As a conventional distributed pressure sensor, a sensor using conductive rubber or plastic as a detection element has been proposed. FIG. 3 shows an example thereof, which is constituted by combining conductive rubber strips 8 and 9 which are thinned in the direction perpendicular to each other in two layers. In such a pressure sensor, when a force in the direction perpendicular to the rubber strip arrangement surface is applied, the rubber strip 8
The area of contact with 9 and 9 increases and the resistance decreases. Therefore, as shown in FIG. 4, by applying a voltage of, for example, 5 V to the voltage terminal 10 through the resistance 11 of 1000 Ω, and extracting and measuring the voltage at the output point 12, the magnitude of the applied force can be measured. You can know.
また、第5図は分布型圧覚センサの他の例でホール素子
13を磁石14に対向させて設け、受圧面16に垂直方向の力
が加わったときに、ホール素子13をばね15に抗して変位
させ、磁束の変化を検出することにより加えられた力の
大きさを知るものである。第6図は更に他の例を示し、
不図示の、半導体ストレンゲージが一方の面上に形成さ
れ、受圧部2Aを有する荷重検出素子2が弾性床3上にア
レイ状に配置されていて、更に荷重検出素子2からの信
号を取り出すための配線を有するフレキシブルプリント
回路基板4の電極がはんだバンプ等の端子接続部5を介
して荷重検出素子2に接続されることにより、対象物6
から受圧部2Aに垂直荷重が加えられると、該荷重検出素
子2が弾性床3と共に変形して、半導体ストレンゲージ
の抵抗値が変化するのを検出することにより力の大きさ
が検出される。FIG. 5 shows another example of the distributed pressure sensor, which is a Hall element.
13 is provided to face the magnet 14, and when a force in the vertical direction is applied to the pressure receiving surface 16, the Hall element 13 is displaced against the spring 15 to detect the change in the magnetic flux. It is to know the size. FIG. 6 shows still another example,
A semiconductor strain gauge (not shown) is formed on one surface, and the load detecting elements 2 having the pressure receiving portion 2A are arranged in an array on the elastic floor 3 in order to further extract a signal from the load detecting element 2. By connecting the electrodes of the flexible printed circuit board 4 having the wiring of 5 to the load detecting element 2 through the terminal connecting portions 5 such as solder bumps, the object 6
When a vertical load is applied to the pressure receiving portion 2A, the load detecting element 2 is deformed together with the elastic floor 3, and the resistance value of the semiconductor strain gauge is detected to detect the magnitude of the force.
しかしながら、従来の技術による第1例の分布型圧覚セ
ンサでは、加えられた力に比例して接触部分の面積が変
化するとは限らず、接触部分の抵抗値変化が力に比例せ
ずセンサ出力が非線形になること、および電源端子、グ
ランド端子、出力端子をそれぞれのゴム条に接続しなけ
ればならないために、力の分布を高密度に検出しようと
すると配線数が多くなってしまう等の欠点がある。However, in the distributed pressure sensor of the first example according to the conventional technique, the area of the contact portion does not always change in proportion to the applied force, and the change in the resistance value of the contact portion is not proportional to the force and the sensor output is Since it becomes non-linear and it is necessary to connect the power supply terminal, the ground terminal, and the output terminal to each rubber strip, there are drawbacks such as an increase in the number of wires when trying to detect the force distribution with high density. is there.
また、従来の技術による第2例の分布型圧覚センサで
は、加えられた力に応じてホール素子13を変位させるメ
カニズムが複雑になるため、センサの分布密度を高める
ことができず、更にまた上述の第1例と同様に配線数が
多くなる等の欠点がある。Further, in the distributed pressure sensor of the second example according to the conventional technique, the mechanism for displacing the Hall element 13 in accordance with the applied force becomes complicated, so that the distribution density of the sensor cannot be increased, and further, As in the first example, there is a drawback that the number of wires increases.
更にまた、従来技術による第3例の分布型圧覚センサで
は、上述の第1,2の例における、センサ出力の非線形、
複雑なメカニズム、および配線数が多い等の課題につい
ては解決しているものの、第7図に示すように荷重検出
素子2の受圧部2Aから外れた点で対象物6が接触する
と、フレキシブルプリント回路基板4上に対象物6が接
触してしまい、第8図に示すようにフレキシブルプリン
ト回路基板4が変形し荷重検出素子2と回路基板4との
端子接続部5に応力がかかってしまう。Furthermore, in the distributed pressure sensor of the third example according to the prior art, the sensor output nonlinearity in the above first and second examples,
Although the complicated mechanism and the problems such as the large number of wirings have been solved, when the object 6 comes into contact with the load detecting element 2 at a point outside the pressure receiving portion 2A as shown in FIG. The object 6 comes into contact with the board 4, the flexible printed circuit board 4 is deformed as shown in FIG. 8, and stress is applied to the terminal connection portion 5 between the load detection element 2 and the circuit board 4.
また、通常のフレキシブルプリント回路基板4では、第
9図に示すようにその上面に端子接続部5が層状に構成
されていて端子接続部5の剛性が比較的高いために、第
10図に示すように受圧部2Aに荷重が直接加えられると荷
重検出素子2が第11図のように変形することによって、
荷重検出素子2とフレキシブルプリント回路基板4とを
接続している端子接続部5に集中的に応力がかかってし
まい端子接続部5に対する電気的接続にかかわる信頼性
を低下させる原因となる。また、荷重検出素子2と弾性
床3との位置決めは、位置合わせするための基準がない
ので多量のセンサを製造する場合に位置合わせのための
治具が必要になり、コスト増を招くという点も問題であ
った。Further, in the ordinary flexible printed circuit board 4, the terminal connecting portion 5 is formed in a layer on the upper surface thereof as shown in FIG. 9, and the rigidity of the terminal connecting portion 5 is relatively high.
When a load is directly applied to the pressure receiving portion 2A as shown in FIG. 10, the load detecting element 2 is deformed as shown in FIG.
The terminal connection portion 5 connecting the load detection element 2 and the flexible printed circuit board 4 is intensively stressed, which causes a decrease in reliability of electrical connection to the terminal connection portion 5. Further, since there is no standard for positioning the load detecting element 2 and the elastic floor 3, a jig for positioning is required when manufacturing a large number of sensors, which leads to an increase in cost. Was also a problem.
本発明の目的は、上述したような問題点の解決を図り、
荷重検出素子に加えられる荷重に対し、端子接続部にか
かる応力を極力分散させることのできる分布型圧覚セン
サを提供することにある。An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a distributed pressure sensor that can disperse the stress applied to the terminal connection portion as much as possible with respect to the load applied to the load detection element.
かかる目的を達成するために、本発明は、弾性床上に、
荷重検出用の半導体ストレンゲージおよびこの半導体ス
トレンゲージからの信号取出し用端子接続部が形成され
た複数の荷重検出素子をマトリックス状に配設し、端子
接続部に接続される回路を具えたフレキシブルプリント
回路基板が複数の荷重検出素子上に所定の間隔を保って
設けられると共に、荷重検出素子の受圧部をフレキシブ
ルプリント回路基板から上部に突出させ、受圧部を介し
て荷重検出素子に加えられた荷重の検出が可能な分布型
圧覚センサにおいて、弾性床上の荷重検出素子間にフレ
キシブルプリント回路基板を支持可能なスペーサ部材を
設けると共に、フレキシブルプリント回路基板を個々の
端子接続部ごとに上下に撓み易い形態に形成したことを
特徴とするものである。In order to achieve such an object, the present invention, on an elastic floor,
A flexible print with a semiconductor strain gauge for load detection and a plurality of load detection elements each having a terminal connection portion for signal extraction from the semiconductor strain gauge arranged in a matrix and having a circuit connected to the terminal connection portion The circuit board is provided on a plurality of load detecting elements with a predetermined interval, and the pressure receiving portion of the load detecting element is projected upward from the flexible printed circuit board, and the load applied to the load detecting element via the pressure receiving portion. In a distributed pressure sensor capable of detecting a load, a spacer member capable of supporting a flexible printed circuit board is provided between load detection elements on an elastic floor, and the flexible printed circuit board is easily bent up and down for each terminal connection portion. It is characterized in that it is formed.
本発明によれば、弾性床上の荷重検出素子間に配設した
フレキシブルプリント回路基板支持用のスペーサ部材、
すなわち支持部材によりフレキシブルプリント回路基板
を支持して、その過度の変形を抑制することができると
共に、フレキシブルプリント回路基板の端子接続部に関
連する部分をそれぞれ上下に撓み易いような形態に形成
したことによって、荷重検出素子が仮に荷重によって変
形しても個々の端子接続部自体がそれにつれて回路基板
と共に柔軟に変位することで、接続部が引き外されたり
するのを防止することができて、圧覚センサとしての信
頼性を高めることができる。According to the present invention, a spacer member for supporting a flexible printed circuit board disposed between load detection elements on an elastic floor,
That is, the flexible printed circuit board is supported by the support member, and excessive deformation thereof can be suppressed, and the portions of the flexible printed circuit board related to the terminal connection portions are formed in a shape that is easily bent up and down. By this, even if the load detection element is deformed by the load, the individual terminal connecting parts themselves are flexibly displaced together with the circuit board, so that the connecting parts can be prevented from being pulled off, and the pressure sensing The reliability as a sensor can be improved.
以下に、図面に基づいて本発明の実施例を詳細かつ具体
的に説明する。Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.
第1図および第2図は本発明の一実施例を示す。これら
の図において、10は弾性床3上の荷重検出素子2の間に
それぞれ配設したスペーサ部材であり、その高さを第1
図に示すように端子接続部5の上面とほぼ合わせるよう
にして形成する。なお、このようなスペーサ部材10は弾
性床3と一体に同質材料で形成してもよい。1 and 2 show an embodiment of the present invention. In these figures, 10 is a spacer member disposed between the load detecting elements 2 on the elastic floor 3, and its height is set to
As shown in the figure, it is formed so as to be substantially aligned with the upper surface of the terminal connecting portion 5. It should be noted that such a spacer member 10 may be formed integrally with the elastic floor 3 by using the same material.
またここで、フレキシブルプリント回路基板4は、第2
図に示すように、その荷重検出素子2と接続される端子
接続部5が個々に独立するよう基板自体が荷重検出素子
2の周囲部近傍でプリント回路に沿って例えば筋状に分
割した状態に形成されており、このように構成すること
によって、仮りに、荷重検出素子2自体、あるいはフレ
キシブルプリント回路基板4が荷重のために変形して
も、受圧部2Aの中間ではスペーサ部材10がフレキシブル
プリント回路基板4の変形を抑制すると共に、端子接続
部5の近傍では、フレキシブルプリント回路基板4自体
が順応して撓み、応力集中が生じないので、端子接続部
5の接続状態が損われるようなことがない。Further, here, the flexible printed circuit board 4 is
As shown in the figure, the board itself is divided along the printed circuit in the vicinity of the periphery of the load detecting element 2 so that the terminal connecting portions 5 connected to the load detecting element 2 are independent of each other. With this configuration, even if the load detection element 2 itself or the flexible printed circuit board 4 is deformed due to the load, the spacer member 10 is flexible printed in the middle of the pressure receiving portion 2A. In addition to suppressing the deformation of the circuit board 4, the flexible printed circuit board 4 itself flexes and flexes in the vicinity of the terminal connection portion 5 so that stress concentration does not occur, so that the connection state of the terminal connection portion 5 is impaired. There is no.
以上説明してきたように、本発明によれば、弾性床上に
マトリックス状に配設された荷重検出素子に対し、弾性
床上の荷重検出素子間にフレキシブルプリント回路基板
を支持可能なスペーサ部材を設けると共に、このフレキ
シブルプリント回路基板を荷重検出素子との端子接続部
ごとに上下に撓み易いような形態に形成したので、荷重
によって荷重検出素子自体、あるいはフレキシブルプリ
ント回路基板が変形する場合でも複数の端子接続部に集
中的に応力がかかるのを緩和することができ、更にはス
ペーサ部材を設けたことによって、弾性床上に荷重検出
素子を配列させる場合の位置決めが容易となった。As described above, according to the present invention, for the load detecting elements arranged in a matrix on the elastic floor, the spacer member capable of supporting the flexible printed circuit board is provided between the load detecting elements on the elastic floor. Since this flexible printed circuit board is formed in such a shape that it can be easily bent up and down for each terminal connection portion with the load detection element, even if the load detection element itself or the flexible printed circuit board is deformed by the load, multiple terminal connections can be made. It is possible to relieve the concentrated stress applied to the portion, and further, by providing the spacer member, the positioning when arranging the load detection elements on the elastic floor becomes easy.
第1図は本発明の一実施例の構成を示す断面図、 第2図は第1図のB−B′線断面図、 第3図は従来技術による第1例の構成図、 第4図は第3図に示す例の動作の説明図、 第5図は従来技術による第2例の側面図、 第6図は従来技術による第3例の構成を示す断面図、 第7図は第6図の部分拡大による荷重検出動作の説明
図、 第8図は第7図の動作により変形する動作の説明図、 第9図は第8図のA−A′線断面図、 第10図は第6図の部分拡大による他の動作の説明図、 第11図は第10図の動作により発生する変形動作の説明図
である。 2……荷重検出素子、2A……受圧部、3……弾性床、4
……フレキシブルプリント回路基板、5……端子接続
部、10……スペーサ部材。FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line BB ′ of FIG. 1, FIG. 3 is a structural view of the first example according to the prior art, and FIG. Is an explanatory view of the operation of the example shown in FIG. 3, FIG. 5 is a side view of the second example according to the prior art, FIG. 6 is a sectional view showing the configuration of the third example according to the prior art, and FIG. FIG. 8 is an explanatory view of a load detecting operation by partially enlarging the drawing, FIG. 8 is an explanatory view of an operation deformed by the operation of FIG. 7, FIG. 9 is a sectional view taken along the line AA ′ of FIG. 8, and FIG. FIG. 6 is an explanatory view of another operation by partially enlarging FIG. 6, and FIG. 11 is an explanatory view of a deforming operation generated by the operation of FIG. 2 ... Load detection element, 2A ... Pressure receiving part, 3 ... Elastic floor, 4
...... Flexible printed circuit board, 5 ...... Terminal connection part, 10 ...... Spacer member.
Claims (1)
ゲージおよび該半導体ストレンゲージからの信号取出し
用端子接続部が形成された複数の荷重検出素子をマトリ
ックス状に配設し、前記端子接続部に接続される回路を
具えたフレキシブルプリント回路基板が前記複数の荷重
検出素子上に所定の間隔を保って設けられると共に、前
記荷重検出素子の受圧部を前記フレキシブルプリント回
路基板から上部に突出させ、前記受圧部を介して前記荷
重検出素子に加えられた荷重の検出が可能な分布型圧覚
センサにおいて、 前記弾性床上の前記荷重検出素子間に前記フレキシブル
プリント回路基板を支持可能なスペーサ部材を設けると
共に、前記フレキシブルプリント回路基板を個々の前記
端子接続部ごとに上下に撓み易い形態に形成したことを
特徴とする分布型圧覚センサ。1. A plurality of load detecting elements, each having a semiconductor strain gauge for detecting a load and a terminal connecting portion for extracting a signal from the semiconductor strain gauge, are arranged in a matrix on an elastic floor, and the terminal connecting portion is arranged. A flexible printed circuit board having a circuit connected to is provided at a predetermined interval on the plurality of load detecting elements, the pressure receiving portion of the load detecting element is projected upward from the flexible printed circuit board, A distributed pressure sensor capable of detecting a load applied to the load detection element via the pressure receiving section, wherein a spacer member capable of supporting the flexible printed circuit board is provided between the load detection elements on the elastic floor. , The flexible printed circuit board is formed in a form that is easily bent up and down for each of the terminal connection parts. Characteristic distributed pressure sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1302020A JPH073375B2 (en) | 1989-11-22 | 1989-11-22 | Distributed pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1302020A JPH073375B2 (en) | 1989-11-22 | 1989-11-22 | Distributed pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03163323A JPH03163323A (en) | 1991-07-15 |
JPH073375B2 true JPH073375B2 (en) | 1995-01-18 |
Family
ID=17903932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1302020A Expired - Lifetime JPH073375B2 (en) | 1989-11-22 | 1989-11-22 | Distributed pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH073375B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007010383A (en) * | 2005-06-29 | 2007-01-18 | Institute Of Physical & Chemical Research | Flexible tactile sensor and its manufacturing method |
JP5078064B2 (en) * | 2007-01-29 | 2012-11-21 | 学校法人東京電機大学 | Tactile sensor, deterioration detection method, and surface regeneration method |
-
1989
- 1989-11-22 JP JP1302020A patent/JPH073375B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03163323A (en) | 1991-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7739922B2 (en) | Triaxial force sensor and triaxial force detection method | |
EP1189045B1 (en) | Load sensor equipped with platelike strain-generating member having strain elements | |
CN208847381U (en) | Micro-electro-mechanical transducer | |
US6886415B1 (en) | Tactile sensor and gripping robot using the same | |
JP2008039760A (en) | Pressure sensor | |
US5835977A (en) | Force transducer with co-planar strain gauges | |
US5499541A (en) | Piezoelectric force sensor | |
JP4141575B2 (en) | Pointing device | |
JPH073375B2 (en) | Distributed pressure sensor | |
JPH0646171B2 (en) | Pressure sensor | |
JP2583615B2 (en) | Touch sensor | |
US5665914A (en) | Semiconductor acceleration sensor and its fabrication method | |
JPS63155674A (en) | Distributed type sensor for sense of contact force | |
KR0145092B1 (en) | Pointing Device Transducers Using Thick Film Resistor Strain Sensors | |
JP4230241B2 (en) | Touch sensor, gripping robot | |
JPS6389282A (en) | Tactile sensor | |
JPH04329328A (en) | Contact pressure sensor and its measurement method | |
JP4399545B2 (en) | Tactile sensor and multi-point tactile sensor | |
JP2013065738A (en) | Magnetic sensor | |
JPS5935788Y2 (en) | Detector of pressure distribution | |
JP2960510B2 (en) | Flexure element structure of semiconductor 3-axis force sensor | |
JPH01312437A (en) | Wound type contact force sensor | |
JP2628931B2 (en) | Pressure sensor | |
JP3284251B2 (en) | Capacitive force sensor | |
JPH0523140U (en) | Acceleration sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |