[go: up one dir, main page]

JPH07337045A - Ultrasonic motor drive - Google Patents

Ultrasonic motor drive

Info

Publication number
JPH07337045A
JPH07337045A JP6145307A JP14530794A JPH07337045A JP H07337045 A JPH07337045 A JP H07337045A JP 6145307 A JP6145307 A JP 6145307A JP 14530794 A JP14530794 A JP 14530794A JP H07337045 A JPH07337045 A JP H07337045A
Authority
JP
Japan
Prior art keywords
vibration
driven
ultrasonic
driver
vibration mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6145307A
Other languages
Japanese (ja)
Inventor
Tomoki Funakubo
朋樹 舟窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP6145307A priority Critical patent/JPH07337045A/en
Publication of JPH07337045A publication Critical patent/JPH07337045A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To stabilize the operation of an ultrasonic motor while increasing the speed and thrust thereof by driving the motor through an ultrasonic elliptical oscillation where a vector in the direction for approaching a driven body and a speed vector having a component only in the drive direction of the driven body make an acute angle. CONSTITUTION:A body driven by a driver 15 is driven through an ultrasonic elliptical oscillation where a vector in the longitudinal direction of an ultrasonic elliptical oscillation excited in the vicinity of the driver 15 for a resilient body 11 and directed in the direction approaching the driven body makes an acute angle with a speed vector in the tangential direction of the ultrasonic elliptical oscillation having a component only in the drive diving direction of the driven body. The ultrasonic elliptical oscillation 15 generated by combining two oscillations and the phase difference deltatheta between the oscillations of first and second oscillation modes is set as follows; 0<deltatheta<+pi/2 or +pi<deltatheta<+3pi/2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波モータ駆動装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor driving device.

【0002】[0002]

【従来の技術】近年、電磁型モータに変わる新しいモー
タとして超音波モータが注目されている。この超音波モ
ータは、従来の電磁型モータに比べて以下の様な利点を
有している。 (1)ギヤなしで低速高推力が得られる。 (2)保持力が大きい。 (3)ストロークが長く、高分解能である。 (4)静粛性にとんでいる。 (5)磁気的ノイズを発生せず、また、ノイズの影響も
受けない。
2. Description of the Related Art In recent years, ultrasonic motors have been attracting attention as new motors replacing electromagnetic motors. This ultrasonic motor has the following advantages over conventional electromagnetic motors. (1) Low speed and high thrust can be obtained without gears. (2) Large holding power. (3) The stroke is long and the resolution is high. (4) It is extremely quiet. (5) Magnetic noise is not generated and is not affected by noise.

【0003】従来の超音波リニアモータとしては、先に
本出願人が提案した特願平4−321096号公報記載
の発明がある。以下、上記発明に基づき従来の超音波リ
ニアモータについて説明する。まず、超音波楕円振動子
の構成について説明する。図10において、60は超音
波振動子である。基本弾性体61の上部に、2次の共振
屈曲振動のほぼ腹に対応する部分に二個の積層型圧電素
子63を配置する。そして保持用弾性部材62により、
基本弾性体61上に固定する。図示しないが基本弾性体
61には3か所にネジのタップがきってあって、保持用
弾性部材62はビスにより基本弾性体61に固定され
る。この時、積層型圧電素子63は保持用弾性部材62
によりつき当てで保持される。また、積層型圧電素子6
3の保持用弾性部材62と接触する部分はエポキシ系の
接着剤で固定され、保持用弾性部材62と基本弾性体6
1の接触する部分もエポキシ系の接着剤により接合され
る。
As a conventional ultrasonic linear motor, there is an invention described in Japanese Patent Application No. 4-321096 previously proposed by the present applicant. Hereinafter, a conventional ultrasonic linear motor will be described based on the above invention. First, the configuration of the ultrasonic elliptical transducer will be described. In FIG. 10, reference numeral 60 is an ultrasonic transducer. On the upper part of the basic elastic body 61, two laminated piezoelectric elements 63 are arranged at a portion substantially corresponding to the antinode of the secondary resonant bending vibration. Then, by the elastic member 62 for holding,
It is fixed on the basic elastic body 61. Although not shown, the basic elastic body 61 has tapped screws at three positions, and the holding elastic member 62 is fixed to the basic elastic body 61 with screws. At this time, the laminated piezoelectric element 63 has the holding elastic member 62.
It is held by being hit by. In addition, the laminated piezoelectric element 6
The portion of the holding elastic member 62 that contacts the holding elastic member 62 is fixed with an epoxy adhesive, and the holding elastic member 62 and the basic elastic body 6 are
The contacting portions of 1 are also joined by an epoxy adhesive.

【0004】基本弾性体61の積層型圧電素子63が配
置されている面に対して反対側の面(被駆動体と接触す
る側の面)の両端部には摺動部材65がエポキシ系の接
着剤を用いて接合されている。摺動部材65はポリイミ
ドに充填材としてカーボンファイバーとマイカとを混入
したものである(カーボンファイバー20重量%,マイ
カ30重量%)。
Sliding members 65 are made of epoxy and are provided at both ends of the surface of the basic elastic body 61 opposite to the surface on which the laminated piezoelectric element 63 is arranged (the surface on the side in contact with the driven body). It is joined using an adhesive. The sliding member 65 is made of polyimide mixed with carbon fiber and mica as a filler (20% by weight of carbon fiber and 30% by weight of mica).

【0005】次に、超音波振動子60の動作について説
明する。超音波振動子60の寸法を適当にとることで1
次の共振縦振動、及び2次の共振屈曲振動がほぼ同一周
波数で励起出来る。図10に於いて左側の積層型圧電素
子63から取り出されている電気端子をA,G(以下、
A相と呼ぶ)とし、右側の積層型圧電素子63から取り
出されている電気端子をB,G(以下、B相と呼ぶ)と
する。
Next, the operation of the ultrasonic transducer 60 will be described. 1 by appropriately sizing the ultrasonic transducer 60
The next resonance longitudinal vibration and the second resonance bending vibration can be excited at almost the same frequency. In FIG. 10, electric terminals taken out from the laminated piezoelectric element 63 on the left side are represented by A, G (hereinafter,
Electrical phase taken out from the laminated piezoelectric element 63 on the right side is referred to as B and G (hereinafter referred to as B phase).

【0006】まず、A相およびB相に30Vの直流電圧
を印加する。こうすることで、積層型圧電素子63にほ
ぼ70Nの圧縮力(与圧)をかけることが出来る。そこ
で、A相に周波数Frで振幅10Vp−pの交番電圧を
印加し、B相に同一周波数・同振幅で同位相の交番電圧
を印加すると一次の共振縦振動が励起出来る。次に、A
相に周波数Frで振幅10Vp−pの交番電圧を印加
し、B相に同一周波数・同振幅で逆位相の交番電圧を印
加すると二次の共振屈曲振動が励起出来る。さらに、A
相およびB相に周波数Frで振幅10Vp−pの交番電
圧を印加し、その位相差を90度又は−90度にすると
摺動部65の位置に於いて、時計廻り又は反時計廻りの
超音波楕円振動が励起できる。
First, a DC voltage of 30 V is applied to the A phase and the B phase. By doing so, a compressive force (pressurization) of approximately 70 N can be applied to the laminated piezoelectric element 63. Therefore, if an alternating voltage having an amplitude of 10 Vp-p with a frequency Fr is applied to the A phase and an alternating voltage having the same frequency and the same amplitude and the same phase is applied to the B phase, the primary resonant longitudinal vibration can be excited. Next, A
When an alternating voltage having an amplitude of 10 Vp-p is applied to the phase at the frequency Fr and an alternating voltage having the same frequency and the same amplitude and an opposite phase is applied to the B phase, the secondary resonance bending vibration can be excited. Furthermore, A
When an alternating voltage having an amplitude of 10 Vp-p with a frequency Fr is applied to the phase B and the phase B and the phase difference is set to 90 degrees or -90 degrees, a clockwise or counterclockwise ultrasonic wave is generated at the position of the sliding portion 65. Elliptical vibration can be excited.

【0007】次に、超音波リニアモータの構成について
説明する。図11において、超音波振動子60は図示し
ないシリコンゴム(厚み1mm)を介してアルミニウム
材からなる振動子保持部材74により保持されている。
振動子保持部材74はコの字形状であり、連結棒75と
は図示しない薄肉のフランジ部(厚み0.2mm,長さ
2mm)を介して連結されている。さらに、連結棒75
はバネ受け部76に連結されている。一方、レール71
は、焼入れ処理されたステンレス材440cからなり、
表面硬度はビッカース硬度で900、表面は4000番
の研磨紙で研磨されていて、リニアガイド固定部72と
は図示しないビスにより連結されている。
Next, the structure of the ultrasonic linear motor will be described. In FIG. 11, the ultrasonic vibrator 60 is held by a vibrator holding member 74 made of an aluminum material via a silicon rubber (thickness 1 mm) not shown.
The vibrator holding member 74 is U-shaped and is connected to the connecting rod 75 via a thin flange portion (thickness 0.2 mm, length 2 mm) not shown. Furthermore, connecting rod 75
Is connected to the spring receiving portion 76. On the other hand, rail 71
Is made of a hardened stainless steel material 440c,
The surface hardness is 900 by Vickers hardness, and the surface is polished with No. 4000 polishing paper, and is connected to the linear guide fixing portion 72 by a screw (not shown).

【0008】リニアガイド移動部73には枠80が固定
されており上枠81とも一体的に連結されている。上枠
81には中央部にタップがきってありボルト79が取付
けられ、ボルト79には図に示すようにバネ押さえ78
が取付けられている。バネ77の長さを調整することに
より超音波振動子60とレール71との接触圧を調整す
ることが出来るようになっている。
A frame 80 is fixed to the linear guide moving portion 73 and is also integrally connected to the upper frame 81. The upper frame 81 is tapped at the center and a bolt 79 is attached to the upper frame 81. A spring retainer 78 is attached to the bolt 79 as shown in the figure.
Is installed. By adjusting the length of the spring 77, the contact pressure between the ultrasonic transducer 60 and the rail 71 can be adjusted.

【0009】次に、超音波リニアモータの動作について
説明する。先に示したように超音波振動子60のA相と
B相に周波数Fr,振幅10Vp−p,位相差+90度
又は−90度の交番電圧を印加する。すると、超音波振
動子60の摺動部には、超音波楕円振動が形成されるの
で、レール71に対して超音波振動子60は右方向又は
左方向に駆動される。
Next, the operation of the ultrasonic linear motor will be described. As described above, an alternating voltage having a frequency Fr, an amplitude of 10 Vp-p, and a phase difference of +90 degrees or -90 degrees is applied to the A phase and the B phase of the ultrasonic transducer 60. Then, since the ultrasonic elliptical vibration is formed on the sliding portion of the ultrasonic transducer 60, the ultrasonic transducer 60 is driven rightward or leftward with respect to the rail 71.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記従
来技術の超音波リニアモータにおいては、以下のような
問題点が明らかになった。本超音波モータの場合には、
超音波振動子に、縦振動の共振周波数と屈曲振動の共振
周波数とをほぼ一致させ、超音波楕円振動を発生させ
る。しかし、必ずしも動作が安定していなかった。すな
わち、縦振動の共振周波数と屈曲振動の共振周波数とを
厳密に一致させた場合でも動作が不安定であったり、縦
振動の共振周波数と屈曲振動の共振周波数とがほんのわ
ずかずれている場合でも、良好に動作するものや、ほと
んど動作しないものがあり、その原因について明らかに
されていなかった。
However, the following problems have been clarified in the above-described conventional ultrasonic linear motor. In the case of this ultrasonic motor,
The resonance frequency of the longitudinal vibration and the resonance frequency of the bending vibration are made to substantially match with each other in the ultrasonic vibrator to generate the ultrasonic elliptical vibration. However, the operation was not always stable. That is, even when the resonance frequency of the longitudinal vibration and the resonance frequency of the bending vibration are exactly matched, the operation is unstable, or even when the resonance frequency of the longitudinal vibration and the resonance frequency of the bending vibration are slightly different from each other. There were some that worked well and some that didn't, and the cause was unclear.

【0011】請求項1〜3に係る発明の目的は、上記問
題点を明らかにするとともに、速度や推力が大きく、安
定的に動作する超音波モータ駆動装置を提供することに
ある。
An object of the present invention according to claims 1 to 3 is to clarify the above-mentioned problems and to provide an ultrasonic motor drive device which has a large speed and thrust and operates stably.

【0012】[0012]

【課題を解決するための手段および作用】請求項1に係
る本発明の超音波モータ駆動装置は、少なくとも二つ以
上の電気機械変換素子,弾性体および駆動子からなり、
二つの振動モードを合成して超音波惰円振動を発生する
超音波振動子と、駆動子により駆動される被駆動体と、
電気機械変換素子に交番電圧を印加するための電源手段
とを有する超音波モータ駆動装置において、弾性体の駆
動子近傍に励起する超音波楕円振動の長軸方向のベクト
ルであって被駆動体に接近していく方向に向かう向きの
ベクトルと、該超音波楕円振動の接線方向の速度ベクト
ルであって被駆動体が駆動される方向および向きのみの
成分を有する速度ベクトルとのなす角が、鋭角となるご
とく形成された超音波楕円振動により駆動されることを
特徴としている。
An ultrasonic motor driving device of the present invention according to claim 1 comprises at least two or more electromechanical conversion elements, an elastic body and a driver,
An ultrasonic transducer that combines two vibration modes to generate ultrasonic inertial vibration, and a driven body driven by a driver,
In an ultrasonic motor drive device having a power supply means for applying an alternating voltage to an electromechanical conversion element, a vector in the long axis direction of ultrasonic elliptical vibration excited near a driver of an elastic body, which is a vector to be driven. The angle formed by the vector in the approaching direction and the velocity vector in the tangential direction of the ultrasonic elliptical vibration, which has a component only in the direction and direction in which the driven body is driven, is an acute angle. It is characterized by being driven by the ultrasonic elliptical vibration formed as follows.

【0013】請求項2に係る本発明の超音波モータ駆動
装置は、少なくとも二つ以上の電気機械変換素子,弾性
体および駆動子からなり、二つの振動モードを合成して
超音波楕円振動を発生する超音波振動子と、駆動子によ
り駆動される被駆動体と、電気機械変換素子に交番電圧
を印加するための電源手段とを有する超音波モータ駆動
装置において、二つの振動モードのうちの第一の振動モ
ードは弾性体の駆動子近傍に、被駆動体の駆動される方
向の振動であり被駆動体の駆動される向きを正とする振
動を励起し、二つの振動モードのうちの第二の振動モー
ドは弾性体の駆動子近傍に、被駆動体の駆動される方向
と直角方向の振動であり被駆動体に向かう向きを正とす
る振動を励起し、第一の振動モードの振動の位相に対す
る第二の振動モードの振動の位相の差δθが、 0<δθ<+π/2、または+π<δθ<+3π/2 となるごとく形成された超音波楕円振動により駆動され
ることを特徴としている。
An ultrasonic motor drive device according to a second aspect of the present invention comprises at least two or more electromechanical conversion elements, an elastic body and a driver, and combines two vibration modes to generate ultrasonic elliptical vibration. Of the two vibration modes, in an ultrasonic motor drive device having an ultrasonic vibrator for driving, a driven body driven by a driver, and a power supply means for applying an alternating voltage to the electromechanical conversion element. One vibration mode is vibration in the driving direction of the driven body in the vicinity of the driver of the elastic body and excites vibration with the driven direction of the driven body being positive. The second vibration mode is a vibration in the direction perpendicular to the driven direction of the driven body in the vicinity of the driver of the elastic body, which excites vibration with the positive direction toward the driven body, and the vibration of the first vibration mode is generated. The second vibration mode for the phase of Phase difference .delta..theta of vibration has a 0 <δθ <+ π / 2 or + π <δθ <+ 3π / 2, characterized in that it is driven by the ultrasonic elliptical vibration formed as made.

【0014】請求項3に係る本発明の超音波モータ駆動
装置は、少なくとも二つ以上の電気機械変換素子,弾性
体および駆動子からなり、二つの振動モードを合成して
超音波楕円振動を発生する超音波振動子と、駆動子によ
り駆動される被駆動体と、電気機械変換素子に交番電圧
を印加するための電源手段とを有する超音波モータ駆動
装置において、二つの振動モードのうちの第一の振動モ
ードは弾性体の駆動子近傍に、被駆動体の駆動される方
向の振動であり被駆動体の駆動される向きを正とする振
動を励起し、二つの振動モードのうちの第二の振動モー
ドは弾性体の駆動子近傍に、被駆動体の駆動される方向
と直角方向の振動であり被駆動体に向かう向きを正とす
る振動を励起し、第一の振動モードの共振周波数が第二
の振動モードの共振周波数より高く設定され、第一の振
動モードの共振周波数以下で第二の振動モードの共振周
波数以上の周波数範囲に於いて第一の振動モードの交番
電圧に対する振動の位相差δαと第二の振動モードの交
番電圧に対する振動の位相差δβが、 0<(δα−δβ)<+π/2 となるごとく形成された超音波振動子からなり、二つ以
上の電気機械変換素子には位相が±π/2異なる交番電
圧が印加され、第一の振動モードの共振周波数以下で第
二の振動モードの共振周波数以上の周波数により駆動さ
れることを特徴としている。
An ultrasonic motor drive device according to a third aspect of the present invention comprises at least two or more electromechanical conversion elements, an elastic body and a driver element, and combines two vibration modes to generate ultrasonic elliptical vibration. Of the two vibration modes, in an ultrasonic motor drive device having an ultrasonic vibrator for driving, a driven body driven by a driver, and a power supply means for applying an alternating voltage to the electromechanical conversion element. One vibration mode is vibration in the driving direction of the driven body in the vicinity of the driver of the elastic body and excites vibration with the driven direction of the driven body being positive. The second vibration mode is a vibration in the vicinity of the driver of the elastic body in a direction perpendicular to the direction in which the driven body is driven, and excites a vibration having a positive direction toward the driven body, causing resonance of the first vibration mode. The frequency is the same as that of the second vibration mode. The phase difference δα of the vibration with respect to the alternating voltage of the first vibration mode and the second vibration in the frequency range that is set higher than the frequency and is lower than the resonance frequency of the first vibration mode and higher than the resonance frequency of the second vibration mode. The phase difference δβ of vibration with respect to the alternating voltage of the mode is composed of an ultrasonic transducer formed so that 0 <(δα-δβ) <+ π / 2, and the phase is ± π for two or more electromechanical conversion elements. / 2 different alternating voltage is applied, and it is characterized by being driven at a frequency lower than the resonance frequency of the first vibration mode and higher than the resonance frequency of the second vibration mode.

【0015】請求項1の作用は、弾性体の駆動子近傍に
励起する超音波楕円振動の長軸方向のベクトルであって
被駆動体に接近していく方向に向かう向きのベクトル
と、該超音波楕円振動の接線方向の速度ベクトルであっ
て被駆動体が駆動される方向および向きのみの成分を有
する速度ベクトルとのなす角が、鋭角となる如く超音波
楕円振動が形成されたことにより、速度や推力が大き
く、安定動作をする超音波モータ駆動装置が得られる。
The action of claim 1 is a vector in the long axis direction of the ultrasonic elliptical vibration excited near the driver of the elastic body, and a vector in the direction of approaching the driven body, Since the ultrasonic elliptical vibration is formed such that the angle formed by the velocity vector in the tangential direction of the acoustic wave elliptical vibration and the velocity vector having only the direction and direction components in which the driven body is driven is an acute angle, It is possible to obtain an ultrasonic motor drive device that has a large speed and thrust and operates stably.

【0016】請求項2の作用は、二つの振動モードのう
ちの第一の振動モードは弾性体の駆動子近傍に、被駆動
体の駆動される方向の振動であり被駆動体の駆動される
向きを正とする振動を励起し、二つの振動モードのうち
の第二の振動モードは弾性体の駆動子近傍に、被駆動体
の駆動される方向と直角方向の振動であり被駆動体に向
かう向きを正とする振動を励起し、第一の振動モードの
振動の位相に対する第二の振動モードの振動の位相の差
δθが、 0<δθ<+π/2、または+π<δθ<+3π/2 となるごとく駆動することで、請求項1に述べた様な形
状の超音波楕円振動が形成され、速度や推力が大きく、
安定動作をする超音波モータ駆動装置が得られる。
According to a second aspect of the present invention, the first vibration mode of the two vibration modes is vibration in the driving direction of the driven body near the driver of the elastic body, and the driven body is driven. The vibration of which the direction is positive is excited, and the second vibration mode of the two vibration modes is the vibration in the vicinity of the driver of the elastic body in the direction perpendicular to the driven direction of the driven body and Exciting vibration having a positive direction, the phase difference δθ of the vibration of the second vibration mode with respect to the phase of the vibration of the first vibration mode is 0 <δθ <+ π / 2, or + π <δθ <+ 3π / By driving as described above, the ultrasonic elliptical vibration having the shape described in claim 1 is formed, and the velocity and thrust are large,
An ultrasonic motor driving device that operates stably can be obtained.

【0017】請求項3の作用は、二つの振動モードのう
ちの第一の振動モードは弾性体の駆動子近傍に、被駆動
体の駆動される方向の振動であり、被駆動体の駆動され
る向きを正とする振動を励起し、二つの振動モードのう
ちの第二の振動モードは弾性体の駆動子近傍に、被駆動
体の駆動される方向と直角方向の振動であり被駆動体に
向かう向きを正とする振動を励起し、第一の振動モード
の共振周波数が第二の振動モードの共振周波数より高く
設定され、第一の振動モードの共振周波数以上の周波数
範囲に於いて第一の振動モードの交番電圧に対する振動
の位相差δαと第二の振動モードの交番電圧に対する振
動の位相差δβが、 0<(δα−δβ)<+π/2 となる如く形成された超音波振動子からなり、二つ以上
の電気機械変換素子には位相が±π/2異なる交番電圧
が印加され、第一の振動モードの共振周波数以下で第二
の振動モードの共振周波数以上の周波数により駆動した
ことで、請求項1および2にて述べた様な超音波楕円振
動が形成できるので、速度や推力が大きく、安定動作を
する超音波モータ駆動装置が得られる。
According to the third aspect of the invention, the first vibration mode of the two vibration modes is vibration in the driving direction of the driven body near the driver of the elastic body, and the driven body is driven. The second vibration mode of the two vibration modes is the vibration in the direction perpendicular to the driven direction of the driven body and the driven body. To the positive direction, the resonance frequency of the first vibration mode is set higher than the resonance frequency of the second vibration mode, and the resonance frequency of the first vibration mode is higher than the resonance frequency of the first vibration mode. Ultrasonic vibration formed so that the phase difference δα of the vibration with respect to the alternating voltage of the first vibration mode and the phase difference δβ of the vibration with respect to the alternating voltage of the second vibration mode are 0 <(δα-δβ) <+ π / 2 It is composed of a child and has a position of two or more Is applied by applying an alternating voltage different by ± π / 2, and is driven at a frequency lower than the resonance frequency of the first vibration mode and higher than the resonance frequency of the second vibration mode. Since ultrasonic elliptical vibration can be formed, an ultrasonic motor driving device that has a large speed and thrust and operates stably can be obtained.

【0018】[0018]

【実施例】図1〜図9は本実施例を示し、図1は超音波
振動子の斜視図、図2a,bは超音波振動子の作用の説
明図、図3は超音波リニアモータの正面図、図4aは駆
動子の正面図、図4bは駆動子の背面図、図4cは駆動
子の側面図、図5〜図8は超音波振動子の作用の説明
図、図9はグラフである。
1 to 9 show the present embodiment, FIG. 1 is a perspective view of an ultrasonic oscillator, FIGS. 2a and 2b are explanatory views of the action of the ultrasonic oscillator, and FIG. 3 is an ultrasonic linear motor. Front view, FIG. 4a is a front view of the driver, FIG. 4b is a rear view of the driver, FIG. 4c is a side view of the driver, FIGS. 5 to 8 are explanatory views of the action of the ultrasonic transducer, and FIG. 9 is a graph. Is.

【0019】図1に示す様に、超音波振動子10の基本
弾性体11は黄銅材で形成され、凸の字型に形成されて
いる。その寸法は凸部分を除き、幅30mm,奥行4m
mである。高さについては(寸法H)、6mm〜9mm
の範囲のものを試作した。凸部分の寸法は、幅4mm,
高さ2.5mm,奥行4mmである。基本弾性体11の
幅方向の中心部でかつ底面から6mmの位置には圧入に
よってφ2のステンレス材からなるピン16が打ち込ま
れている。電気機械変換素子であるところの積層型圧電
素子12は電極処理された圧電素子を数十枚から数百枚
積層したものであって、本実施例においてはトーキン
(株)の積層型圧電素子NLA−2×3×9を用いた。
その寸法は2mm×3.1mm×9mmである。積層型
圧電素子12の両端部以外の部分は図1には示さないが
エポキシ系樹脂により被覆されている(被覆厚:約0.
5mm)。
As shown in FIG. 1, the basic elastic body 11 of the ultrasonic transducer 10 is made of brass material and has a convex shape. The dimensions are 30 mm in width and 4 m in depth, excluding the convex portion.
m. About height (dimension H), 6mm-9mm
Prototypes in the range of The size of the convex part is 4 mm in width,
The height is 2.5 mm and the depth is 4 mm. A pin 16 made of a stainless steel material having a diameter of φ2 is driven by press fitting at the center of the basic elastic body 11 in the width direction and at a position 6 mm from the bottom surface. The multi-layer piezoelectric element 12, which is an electromechanical conversion element, is a stack of several tens to several hundreds of electrode-processed piezoelectric elements. In this embodiment, the multi-layer piezoelectric element NLA of Tokin Corp. -2x3x9 was used.
Its dimensions are 2 mm x 3.1 mm x 9 mm. Although not shown in FIG. 1, portions other than both ends of the laminated piezoelectric element 12 are coated with an epoxy resin (coating thickness: about 0.
5 mm).

【0020】次に、超音波振動子10の組立方法につい
て説明する。図1に示すように、基本弾性体11の凸部
の両側に積層型圧電素子12を配置する。そして、保持
用弾性部材13(幅4mm,高さ2.5mm,奥行4m
m)により基本弾性体11上に固定する。図示しない
が、基本弾性体11には2か所にネジのタップがきって
あって、図1に示す様に、保持用弾性部材13は2本の
ビス14およびエポキシ系の接着剤により基本弾性体1
1に固定される。この時、積層型圧電素子12は基本弾
性体11の凸部と保持用弾性部材13との間で圧縮力を
かけた状態で保持固定される。
Next, a method of assembling the ultrasonic transducer 10 will be described. As shown in FIG. 1, the laminated piezoelectric elements 12 are arranged on both sides of the convex portion of the basic elastic body 11. Then, the elastic member for holding 13 (width 4 mm, height 2.5 mm, depth 4 m
It is fixed on the basic elastic body 11 by m). Although not shown, the basic elastic body 11 has tapped screws at two places, and as shown in FIG. 1, the holding elastic member 13 has a basic elasticity by two screws 14 and an epoxy adhesive. Body 1
It is fixed at 1. At this time, the laminated piezoelectric element 12 is held and fixed in a state in which a compressive force is applied between the convex portion of the basic elastic body 11 and the holding elastic member 13.

【0021】積層型圧電素子12の両端部と、基本弾性
体11の凸部および保持用弾性部材13とはエポキシ系
の接着剤で固定され、基本弾性体11と接する積層型圧
電素子12の側面部分は基本弾性体11とやはりエポキ
シ系の接着剤を用いて接着される。基本弾性体11の積
層型圧電素子12が配置されている面に対して反対側の
面(被駆動体と接触する側の面)の両端部から9mmの
位置(共振屈曲振動の振動振幅が極大値を示す位置)に
は矩形状(寸法:幅3mm,奥行4mm,厚み1mm)
の駆動子15(砥石材:樹脂にアルミナセラミックスの
砥粒を分散させたもの)がエポキシ系の接着剤を用いて
接合されている。
Both ends of the laminated piezoelectric element 12, the convex portion of the basic elastic body 11, and the holding elastic member 13 are fixed by an epoxy adhesive, and the side surface of the laminated piezoelectric element 12 in contact with the basic elastic body 11. The part is adhered to the basic elastic body 11 by using an epoxy adhesive as well. A position 9 mm from both ends of the surface of the basic elastic body 11 opposite to the surface on which the laminated piezoelectric element 12 is arranged (the surface in contact with the driven body) (the vibration amplitude of the resonance bending vibration is maximum). A rectangular shape (dimensions: width 3 mm, depth 4 mm, thickness 1 mm)
Driver 15 (grinding stone material: abrasive grains of alumina ceramics dispersed in resin) is bonded using an epoxy adhesive.

【0022】次に、超音波振動子10の動作について説
明する。上記に示した寸法形状によれば、1次の共振縦
振動モード及び2次の共振屈曲振動モードがほぼ同一周
波数Fr(53kHz〜56kHz)で励起出来る。こ
れらの振動を有限要素法を用いてコンピュータ解析した
結果、図2aに示す様な共振縦振動姿態、および図2b
に示す様な共振屈曲振動姿態が予想され、かつ振動測定
の結果それが実証された。
Next, the operation of the ultrasonic transducer 10 will be described. According to the dimensions and shapes described above, the primary resonant longitudinal vibration mode and the secondary resonant bending vibration mode can be excited at substantially the same frequency Fr (53 kHz to 56 kHz). As a result of computer analysis of these vibrations using the finite element method, the resonance longitudinal vibration mode as shown in FIG.
The resonance flexural vibration mode as shown in Fig. 3 is expected, and it was verified as a result of the vibration measurement.

【0023】図1に於いて左手前側の積層型圧電素子1
2から取り出されている電気端子をA,GND(以下、
A相と呼ぶ)とし、右奥側の積層型圧電素子12から取
り出されている電気端子をB,GND(以下、B相と呼
ぶ)とする。まず、A相に周波数Frで振幅10Vp−
pの交番電圧を印加し、B相に同一周波数・同振動で同
位相の交番電圧を印加すると図2aに示す様な一次の共
振縦振動が励起出来た。次に、A相に周波数Frで振幅
10Vp−pの交番電圧を印加し、B相に同一周波数・
同振幅で逆位相の交番電圧を印加すると図2bに示す様
な二次の共振屈曲振動が励起出来た。次に、A相に周波
数Frで振幅10Vp−pの交番電圧を印加し、B相に
同一周波数・同振幅で位相が±90度異なる交番電圧を
印加すると図1の駆動子15の位置に於いて超音波楕円
振動が励起出来た。
In FIG. 1, the laminated piezoelectric element 1 on the left front side
The electric terminals taken out from 2 are A, GND (hereinafter,
The electric terminals taken out from the laminated piezoelectric element 12 on the far right side are B and GND (hereinafter, referred to as B phase). First, the amplitude of 10 Vp-
When an alternating voltage of p was applied and an alternating voltage of the same frequency and the same phase and the same phase was applied to the B phase, the primary resonant longitudinal vibration as shown in FIG. 2a could be excited. Next, an alternating voltage having an amplitude of 10 Vp-p with a frequency Fr is applied to the A phase, and the same frequency is applied to the B phase.
When an alternating voltage of the same amplitude and opposite phase was applied, a secondary resonant bending vibration as shown in FIG. 2b could be excited. Next, when an alternating voltage having a frequency Fr and an amplitude of 10 Vp-p is applied to the A phase, and an alternating voltage having the same frequency and the same amplitude and a phase difference of ± 90 degrees is applied to the B phase, the position of the driver 15 in FIG. The ultrasonic elliptical vibration was excited.

【0024】次に、上記超音波振動子10を用いた超音
波リニアモータについて説明する。図3に示す様に、超
音波振動子10はそのピン16の部分で2つの保持板2
1により両面から保持されている。保持板21にはピン
16の直径とほぼ同径の穴があけられていて、その穴と
ピン16とが係合するようになっている。このように保
持することで、超音波振動子10はピン16まわりの回
転に対してのみ自由度をもつ。保持板21はビス23に
より保持板固定部材22に固定される。保持板固定部材
22にはリニアブッシュ24が保持されている。このリ
ニアブッシュ24は軸25に沿ってリニアに移動する。
Next, an ultrasonic linear motor using the ultrasonic vibrator 10 will be described. As shown in FIG. 3, the ultrasonic transducer 10 has two holding plates 2 at the pins 16 thereof.
It is held from both sides by 1. A hole having substantially the same diameter as the pin 16 is formed in the holding plate 21, and the hole and the pin 16 are engaged with each other. By holding in this way, the ultrasonic transducer 10 has a degree of freedom only with respect to the rotation around the pin 16. The holding plate 21 is fixed to the holding plate fixing member 22 with screws 23. A linear bush 24 is held by the holding plate fixing member 22. The linear bush 24 moves linearly along the shaft 25.

【0025】軸25は軸固定部材26に固定され、軸固
定部材26はベース27にビスにより固定されている。
軸固定部材26のほぼ中央部にはタップがきられてい
て、押圧ビス28がねじ込まれている。押圧ビス28と
保持板固定部材22との間にはバネ29が挿入されてい
る。ベース27にはクロスローラーガイドの固定部30
がビス31により固定されている。クロスローラーガイ
ドの移動部32には摺動部材保持部33が図示しないビ
スにより固定され、この摺動部材保持部33には摺動部
材34としてジルコニアセラミックスが接着されてい
る。このような構成とすることにより、押圧ビス28を
調整することで超音波振動子10の摺動部材34(被駆
動部材)への押圧力を調整することができる。
The shaft 25 is fixed to a shaft fixing member 26, and the shaft fixing member 26 is fixed to a base 27 with screws.
The shaft fixing member 26 has a tap at substantially the center thereof, and a pressing screw 28 is screwed therein. A spring 29 is inserted between the pressing screw 28 and the holding plate fixing member 22. The base 27 has a fixed portion 30 for the cross roller guide.
Are fixed by screws 31. A sliding member holding portion 33 is fixed to the moving portion 32 of the cross roller guide by screws (not shown), and zirconia ceramics is bonded to the sliding member holding portion 33 as a sliding member 34. With such a configuration, the pressing force on the sliding member 34 (driven member) of the ultrasonic transducer 10 can be adjusted by adjusting the pressing screw 28.

【0026】次に、本実施例の超音波リニアモータの動
作について説明する。先に示したように、超音波振動子
10のA相とB相に周波数Fr(53kHz〜56kH
zの間の周波数),振幅10Vp−p,位相差+90度
又は−90度の交番電圧を印加する。すると被駆動部は
右方向又は左方向に駆動される。さて、前に述べたよう
に図1に示すHの寸法を変化させた超音波振動子10を
試作してモータ特性を評価した。その結果を表1に示
す。
Next, the operation of the ultrasonic linear motor of this embodiment will be described. As described above, the frequency Fr (53 kHz to 56 kHz) is applied to the A phase and the B phase of the ultrasonic transducer 10.
alternating frequency), amplitude 10Vp-p, and phase difference +90 degrees or -90 degrees. Then, the driven part is driven rightward or leftward. As described above, the ultrasonic transducer 10 having the H dimension shown in FIG. 1 changed was prototyped and the motor characteristics were evaluated. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に於いて、モータ動作○印のものは動
作したということであり、×印のものは動作しないか、
もしくは動作するもののほとんど速度かつ推力のでない
ものである。△印は動作するものの非常に不安定のもの
である。また、駆動周波数は、屈曲振動共振周波数以上
でかつ縦振動共振周波数以下であった。この結果より、
屈曲振動共振周波数が縦振動共振周波数以下でないと安
定な動作をしないことが明らかになった。
In Table 1, the motors marked with "○" mean that they worked, and those marked with "X" did not work.
Or, it operates but has almost no speed and thrust. The mark Δ indicates that it works but is very unstable. The driving frequency was higher than the bending vibration resonance frequency and lower than the longitudinal vibration resonance frequency. From this result,
It was clarified that stable operation cannot be achieved unless the bending vibration resonance frequency is lower than the longitudinal vibration resonance frequency.

【0029】以上の実験結果に対して、その原因を探る
ため次の様な実験を行った。図4に示す様に、超音波振
動子100の基本弾性体101下部に振動検出素子とし
て厚み方向に分極された圧電素子102を表裏に2個づ
つ接着した。この圧電素子102は図4に於いて、幅1
0mm,高さ3mm,厚み0.3mmである。接着位置
は駆動子103の直上である。基本弾性体101の表
(おもて)面にはその分極の向きが同一の向きとなるよ
うに配置し、直列に結線してF1端子とし、基本弾性体
101の裏面にはその分極の向きが逆向きとなるように
配置し、直列に結線してF2端子とした。図2の振動モ
ードの図から解かるようにF1端子は基本弾性体101
の駆動子103近傍の縦振動のみを検出する事が出来
る。また、F2端子は基本弾性体101の駆動子103
近傍の屈曲振動のみを検出することができる。
Based on the above experimental results, the following experiments were conducted to find out the cause. As shown in FIG. 4, two piezoelectric elements 102, which are polarized in the thickness direction, are bonded to the front and back as vibration detection elements below the basic elastic body 101 of the ultrasonic transducer 100. This piezoelectric element 102 has a width of 1 in FIG.
It is 0 mm, height 3 mm, and thickness 0.3 mm. The bonding position is directly above the driver element 103. Arranged on the front (front) surface of the basic elastic body 101 so that their polarization directions are the same, and connected in series to form an F1 terminal. On the back surface of the basic elastic body 101, the polarization direction is set. Are arranged in the opposite direction and connected in series to form an F2 terminal. As can be seen from the vibration mode diagram of FIG. 2, the F1 terminal is the basic elastic body 101.
It is possible to detect only the vertical vibration near the driver element 103. Further, the F2 terminal is the driver 103 of the basic elastic body 101.
Only bending vibrations in the vicinity can be detected.

【0030】さて、試作No.0〜9までの超音波振動
子100について、電圧印加時の振動の様子を上記F1
端子,F2端子によりそれぞれ縦振動および屈曲振動を
同時に検出した。その結果を図5に示す。この図に於い
て、上方に被駆動体が有り、図の左右に駆動される。ま
た、正および負は、正方向駆動時および負方向駆動時を
表わす。
Now, the prototype No. Regarding the ultrasonic transducers 100 of 0 to 9, the state of vibration when a voltage is applied is shown in F1 above.
Longitudinal vibration and bending vibration were simultaneously detected by the terminal and F2 terminal, respectively. The result is shown in FIG. In this figure, there is a driven body on the upper side, which is driven to the left and right of the figure. Further, positive and negative represent driving in the positive direction and driving in the negative direction.

【0031】図5は試作No.0の超音波振動子100
の振動形状の概略形で、ほとんど直線往復振動である。
この場合は、動作しないか、もしくは動作するもののほ
とんど速度かつ推力がでない。
FIG. 5 shows the prototype No. 0 ultrasonic transducer 100
It is a schematic form of the vibration shape of, and is almost a linear reciprocating vibration.
In this case, it does not work, or it works but has almost no speed and thrust.

【0032】図6は試作No.1からNo.5の超音波
振動子100の楕円形状の概略形である。この場合は良
好に、安定的に動作する。そして、特に縦振動と屈曲振
動の位相差が+π/8〜+3π/8、9π/8〜11π
/8の範囲の楕円振動のときに最も推力、速度が大きく
なった。
FIG. 6 shows the prototype No. 1 to No. 5 is an elliptical schematic shape of the ultrasonic transducer 100 of FIG. In this case, the operation is good and stable. In particular, the phase difference between longitudinal vibration and bending vibration is + π / 8 to + 3π / 8, 9π / 8 to 11π.
The maximum thrust and speed were obtained when the elliptical vibration was in the range of / 8.

【0033】図7は試作No.6の超音波振動子100
の楕円形状の概略形である。これから、楕円の主軸のう
ちの一つが被駆動体の駆動される方向と平行の場合は、
動作が不安定になることが判明した。図8は試作No.
7からNo.9の超音波振動子100の楕円形状の概略
形である。この場合も、動作しないか、もしくは動作す
るもののほとんど速度かつ推力がでない。
FIG. 7 shows the prototype No. 6 ultrasonic transducer 100
Is a schematic shape of an elliptical shape. From this, if one of the principal axes of the ellipse is parallel to the driven direction of the driven body,
It turned out to be unstable. FIG. 8 shows the prototype No.
7 to No. 9 is an elliptical schematic shape of the ultrasonic transducer 100 of FIG. Also in this case, it does not work, or it works but has almost no speed and thrust.

【0034】以上の結果から楕円形状に関しては図6の
様な形状の超音波振動子でないとモータが安定的に動作
しないことが明らかになった。つまり、基本弾性体の駆
動子近傍に励起する超音波楕円振動の長軸方向のベクト
ルであって被駆動体に接近していく方向に向かう向きの
ベクトルと、該超音波楕円振動の接線方向の速度ベクト
ルであって被駆動体が駆動される方向および向きのみの
成分を有する速度ベクトルとのなす角が、鋭角となる如
く超音波楕円振動が形成されないと超音波モータは安定
的に動作しないのである。
From the above results, it has been clarified that with respect to the elliptical shape, the motor cannot operate stably unless the ultrasonic vibrator has the shape as shown in FIG. That is, a vector in the long axis direction of the ultrasonic elliptical vibration excited in the vicinity of the driver of the basic elastic body, which is a vector in the direction toward the driven body, and a tangential direction of the ultrasonic elliptical vibration. The ultrasonic motor does not operate stably unless the ultrasonic elliptical vibration is formed such that the angle formed by the velocity vector, which is a velocity vector and has only components in the direction and direction in which the driven body is driven, becomes an acute angle. is there.

【0035】さらに詳細には、二つの振動モードのうち
の第一の振動モードは弾性体の駆動子近傍に、被駆動体
の駆動される方向の振動であり被駆動体の駆動される向
きを正とする振動を励起し、二つの振動モードのうちの
第二の振動モードは弾性体の駆動子近傍に、被駆動体の
駆動される方向と直角方向の振動であり被駆動体に向か
う向きを正とする振動を励起し、第一の振動モードの振
動の位相に対する第二の振動モードの振動の位相の差δ
θが、0<δθ<+π/2(正方向駆動時)、または+
π<δθ<+3π/2(負方向駆動時)となるごとく駆
動される必要がある。
More specifically, the first vibration mode of the two vibration modes is vibration in the driving direction of the driven body near the driver of the elastic body, and the driving direction of the driven body is changed. The positive vibration is excited, and the second vibration mode of the two vibration modes is the vibration in the direction perpendicular to the driven direction of the driven body in the vicinity of the driver of the elastic body and the direction toward the driven body. The difference between the phase of the vibration of the first vibration mode and the phase of the vibration of the second vibration mode δ
θ is 0 <δθ <+ π / 2 (when driven in the forward direction), or +
It is necessary to drive as π <δθ <+ 3π / 2 (during negative drive).

【0036】次に、表の試作No.0〜9までの超音波
振動子100に対して、印加電圧に対する各振動モード
の振幅と位相の関係を周波数をスイープして調べた。そ
の結果は図9の様になった。flは縦振動の共振周波数
であり、fbは屈曲振動の共振周波数である。超音波振
動子100試作における試作No.0の超音波振動子の
場合は、振動モード1に対応するものは縦振動モードで
あり、振動モード2に対応するものは屈曲振動である。
flとfb間に於いて位相差はπ/2であった。試作N
o.1からNo.5の超音波振動子の場合は、振動モー
ド1に対応するものは縦振動モードであり、振動モード
2に対応するものは屈曲振動である。flとfb間に於
いて位相差は0を越えてπ/2未満であった。
Next, the trial manufacture No. in the table is shown. For the ultrasonic transducers 100 of 0 to 9, the relationship between the amplitude and the phase of each vibration mode with respect to the applied voltage was examined by sweeping the frequency. The result is shown in Fig. 9. fl is the resonance frequency of longitudinal vibration, and fb is the resonance frequency of bending vibration. The prototype No. of the ultrasonic transducer 100 prototype. In the case of the ultrasonic transducer of 0, the one corresponding to the vibration mode 1 is the longitudinal vibration mode, and the one corresponding to the vibration mode 2 is the bending vibration.
The phase difference between fl and fb was π / 2. Prototype N
o. 1 to No. In the case of the ultrasonic transducer of No. 5, the one corresponding to the vibration mode 1 is the longitudinal vibration mode, and the one corresponding to the vibration mode 2 is the bending vibration. The phase difference between fl and fb was more than 0 and less than π / 2.

【0037】試作No.6の超音波振動子の場合は、振
動モード1に対応するものは縦振動モードであり、振動
モード2に対応するものは屈曲振動であるがこれらの曲
線はほとんど一致している。よって、flとfbとも一
致しており、位相差は0であった。試作No.7からN
o.9の超音波振動子の場合は、振動モード1に対応す
るものは屈曲振動モードであり、振動モード2に対応す
るものは縦振動である。flとfb間に於いて位相差は
0以上であった。
Prototype No. In the case of the ultrasonic transducer No. 6, the one corresponding to the vibration mode 1 is the longitudinal vibration mode, and the one corresponding to the vibration mode 2 is the bending vibration, but these curves are almost the same. Therefore, both fl and fb were in agreement, and the phase difference was 0. Prototype No. 7 to N
o. In the case of the ultrasonic transducer of No. 9, the one corresponding to the vibration mode 1 is the bending vibration mode, and the one corresponding to the vibration mode 2 is the longitudinal vibration. The phase difference between fl and fb was 0 or more.

【0038】以上の実験結果から、二つの振動モードの
うちの第一の振動モードは弾性体の駆動子近傍に、被駆
動体の駆動される方向の振動であり被駆動体の駆動され
る向きを正とする振動を励起し、二つの振動モードのう
ちの第二の振動モードは弾性体の駆動子近傍に、被駆動
体の駆動される方向と直角方向の振動であり被駆動体に
向かう向きを正とする振動を励起し、第一の振動モード
の共振周波数が第二の振動モードの共振周波数以上の周
波数範囲に於いて第一の振動モードの交番電圧に対する
振動の位相差δαと第二の振動モードの交番電圧に対す
る振動の位相差δβが、 0<(δα−δβ)<+π/2 となる如く形成された超音波振動子からなり、二つ以上
の電気機械変換素子には位相が±π/2異なる交番電圧
が印加され、第一の振動モードの共振周波数以下で第二
の振動モードの共振周波数以上の周波数により駆動され
ることにより、安定した動作を行わせることができるの
である。
From the above experimental results, the first vibration mode of the two vibration modes is the vibration in the driving direction of the driven body near the driver of the elastic body, and the driving direction of the driven body. The second vibration mode of the two vibration modes is the vibration in the direction perpendicular to the driven direction of the driven body, which is toward the driven body, in the vicinity of the driver of the elastic body. In the frequency range in which the resonance frequency of the first vibration mode is equal to or higher than the resonance frequency of the second vibration mode, the phase difference δα of the vibration with respect to the alternating voltage of the first vibration mode The phase difference δβ of the vibration with respect to the alternating voltage in the second vibration mode is composed of an ultrasonic vibrator formed so that 0 <(δα−δβ) <+ π / 2, and the phase difference is applied to two or more electromechanical transducers. , ± π / 2 different alternating voltage is applied, and the first vibration By being driven by a second frequency above the resonance frequency of the vibration mode in the following resonant frequencies over de, it is possible to perform stable operation.

【0039】尚、本実施例においては、縦振動と屈曲振
動とを合成して超音波楕円振動を得る例について述べた
が、その他の例えば、ねじり振動,すべり振動,呼吸振
動および拡がり振動などを組み合わせた場合も同様であ
る。また、本実施例においては、リニア型の超音波モー
タについてのみ応用を述べたが、本発明の超音波振動子
を用いて移動体を回転体とすれば、回転型の超音波モー
タに応用も可能である。
In the present embodiment, the example of obtaining the ultrasonic elliptical vibration by synthesizing the longitudinal vibration and the bending vibration has been described, but other examples such as torsional vibration, sliding vibration, respiration vibration, and spreading vibration are obtained. The same is true when combined. Further, in the present embodiment, the application is described only for the linear type ultrasonic motor, but if the moving body is a rotating body using the ultrasonic transducer of the present invention, the application is also applied to the rotating type ultrasonic motor. It is possible.

【0041】[0041]

【発明の効果】請求項1,2,3の共通した効果は、推
力や速度が大きく、安定的に動作する超音波モータ駆動
装置を得ることができるということである。請求項2,
3の共通した効果は、被駆動体に対して、平行な振動と
直交する振動を組み合わせたので、両振動が満足すべき
位相条件が簡単になる。請求項3の固有の効果は、共振
周波数の設定が明らかになる、超音波振動子が満足すべ
き振動の位相遅れ条件が明らかとなる、駆動周波数が明
らかとなる。
The effects common to claims 1, 2 and 3 are that it is possible to obtain an ultrasonic motor driving device which has a large thrust and speed and operates stably. Claim 2,
The common effect of 3 is that the parallel vibration and the orthogonal vibration are combined with respect to the driven body, so that the phase condition to be satisfied by both vibrations is simplified. The effect peculiar to claim 3 is that the setting of the resonance frequency is clarified, the phase delay condition of the vibration that the ultrasonic transducer should satisfy is clarified, and the driving frequency is clarified.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例を示す超音波振動子の斜視図である。FIG. 1 is a perspective view of an ultrasonic transducer showing an embodiment.

【図2】aおよびbは実施例を示す超音波振動子の作用
の説明図である。
FIG. 2A and FIG. 2B are explanatory diagrams of the operation of the ultrasonic transducer according to the embodiment.

【図3】実施例を示す超音波リニアモータの正面図であ
る。
FIG. 3 is a front view of an ultrasonic linear motor showing an embodiment.

【図4】a〜cは実施例の駆動子を示し、aは正面図、
bは背面図、cは側面図である。
4A to 4C show driver elements of the embodiment, a is a front view,
b is a rear view and c is a side view.

【図5】実施例を示す超音波振動子の作用の説明図であ
る。
FIG. 5 is an explanatory diagram of the operation of the ultrasonic transducer according to the embodiment.

【図6】実施例を示す超音波振動子の作用の説明図であ
る。
FIG. 6 is an explanatory view of the action of the ultrasonic transducer showing the embodiment.

【図7】実施例を示す超音波振動子の作用の説明図であ
る。
FIG. 7 is an explanatory diagram of the operation of the ultrasonic transducer according to the embodiment.

【図8】実施例を示す超音波振動子の作用の説明図であ
る。
FIG. 8 is an explanatory diagram of the operation of the ultrasonic transducer according to the embodiment.

【図9】実施例を示すグラフである。FIG. 9 is a graph showing an example.

【図10】従来例を示す超音波振動子の斜視図である。FIG. 10 is a perspective view of an ultrasonic transducer showing a conventional example.

【図11】従来例を示す超音波リニアモータの正面図で
ある。
FIG. 11 is a front view of an ultrasonic linear motor showing a conventional example.

【符号の説明】[Explanation of symbols]

10 超音波振動子 11 基本弾性体 12 積層型圧電素子 13 保持用弾性部材 15 駆動子 16 ピン 21 保持板 22 保持板固定部材 24 リニアブッシュ 25 軸 26 軸固定部材 27 ベース 28 押圧ビス 29 バネ 30 固定部 32 移動部 33 摺動部材保持部 34 摺動部材 10 Ultrasonic Transducer 11 Basic Elastic Body 12 Laminated Piezoelectric Element 13 Retaining Elastic Member 15 Driver 16 Pin 21 Holding Plate 22 Holding Plate Fixing Member 24 Linear Bushing 25 Shaft 26 Shaft Fixing Member 27 Base 28 Press Screw 29 Spring 30 Fixing Part 32 Moving part 33 Sliding member holding part 34 Sliding member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも二つ以上の電気機械変換素
子,弾性体および駆動子からなり、二つの振動モードを
合成して超音波惰円振動を発生する超音波振動子と、駆
動子により駆動される被駆動体と、電気機械変換素子に
交番電圧を印加するための電源手段とを有する超音波モ
ータ駆動装置において、弾性体の駆動子近傍に励起する
超音波楕円振動の長軸方向のベクトルであって被駆動体
に接近していく方向に向かう向きのベクトルと、該超音
波楕円振動の接線方向の速度ベクトルであって被駆動体
が駆動される方向および向きのみの成分を有する速度ベ
クトルとのなす角が、鋭角となるごとく形成された超音
波楕円振動により駆動されることを特徴とする超音波モ
ータ駆動装置。
1. An ultrasonic transducer which is composed of at least two electromechanical conversion elements, an elastic body and a driver element, and which is driven by a driver element and an ultrasonic transducer for synthesizing two vibration modes to generate an ultrasonic inertia circular vibration. In the ultrasonic motor drive device having a driven body to be driven and a power supply means for applying an alternating voltage to the electromechanical conversion element, a vector in the long axis direction of the ultrasonic elliptical vibration excited near the driver of the elastic body. And a velocity vector in the direction approaching the driven body, and a velocity vector in the tangential direction of the ultrasonic elliptical vibration, which has a component only in the direction and direction in which the driven body is driven. The ultrasonic motor drive device is characterized in that it is driven by ultrasonic elliptical vibrations formed so that the angle formed by the angle becomes an acute angle.
【請求項2】 少なくとも二つ以上の電気機械変換素
子,弾性体および駆動子からなり、二つの振動モードを
合成して超音波楕円振動を発生する超音波振動子と、駆
動子により駆動される被駆動体と、電気機械変換素子に
交番電圧を印加するための電源手段とを有する超音波モ
ータ駆動装置において、二つの振動モードのうちの第一
の振動モードは弾性体の駆動子近傍に、被駆動体の駆動
される方向の振動であり被駆動体の駆動される向きを正
とする振動を励起し、二つの振動モードのうちの第二の
振動モードは弾性体の駆動子近傍に、被駆動体の駆動さ
れる方向と直角方向の振動であり被駆動体に向かう向き
を正とする振動を励起し、第一の振動モードの振動の位
相に対する第二の振動モードの振動の位相の差δθが、 0<δθ<+π/2、または+π<δθ<+3π/2 となるごとく形成された超音波楕円振動により駆動され
ることを特徴とする超音波モータ駆動装置。
2. An ultrasonic transducer that is composed of at least two electromechanical conversion elements, an elastic body, and a driver, and that is driven by a driver and an ultrasonic transducer that synthesizes two vibration modes to generate ultrasonic elliptical vibration. In the ultrasonic motor drive device having a driven body and a power supply means for applying an alternating voltage to the electromechanical conversion element, the first vibration mode of the two vibration modes is in the vicinity of the driver of the elastic body. Exciting vibration in the driven direction of the driven body and positive in the driven direction of the driven body, the second vibration mode of the two vibration modes is in the vicinity of the driver of the elastic body, Excitation of the vibration in the direction perpendicular to the driven direction of the driven body and positive in the direction toward the driven body, of the phase of the vibration of the second vibration mode with respect to the phase of the vibration of the first vibration mode The difference δθ is 0 <δθ <+ π / 2, or It is + π <δθ <+ 3π / 2 driven that the ultrasonic elliptical vibration formed as a ultrasonic motor driving apparatus according to claim.
【請求項3】 少なくとも二つ以上の電気機械変換素
子,弾性体および駆動子からなり、二つの振動モードを
合成して超音波楕円振動を発生する超音波振動子と、駆
動子により駆動される被駆動体と、電気機械変換素子に
交番電圧を印加するための電源手段とを有する超音波モ
ータ駆動装置において、二つの振動モードのうちの第一
の振動モードは弾性体の駆動子近傍に、被駆動体の駆動
される方向の振動であり被駆動体の駆動される向きを正
とする振動を励起し、二つの振動モードのうちの第二の
振動モードは弾性体の駆動子近傍に、被駆動体の駆動さ
れる方向と直角方向の振動であり被駆動体に向かう向き
を正とする振動を励起し、第一の振動モードの共振周波
数が第二の振動モードの共振周波数より高く設定され、
第一の振動モードの共振周波数以下で第二の振動モード
の共振周波数以上の周波数範囲に於いて第一の振動モー
ドの交番電圧に対する振動の位相差δαと第二の振動モ
ードの交番電圧に対する振動の位相差δβが、 0<(δα−δβ)<+π/2 となるごとく形成された超音波振動子からなり、二つ以
上の電気機械変換素子には位相が±π/2異なる交番電
圧が印加され、第一の振動モードの共振周波数以下で第
二の振動モードの共振周波数以上の周波数により駆動さ
れることを特徴とする超音波モータ駆動装置。
3. An ultrasonic transducer which is composed of at least two electromechanical conversion elements, an elastic body and a driver, and which is driven by a driver and an ultrasonic transducer that synthesizes two vibration modes to generate ultrasonic elliptical vibration. In the ultrasonic motor drive device having a driven body and a power supply means for applying an alternating voltage to the electromechanical conversion element, the first vibration mode of the two vibration modes is in the vicinity of the driver of the elastic body. Exciting vibration in the driven direction of the driven body and positive in the driven direction of the driven body, the second vibration mode of the two vibration modes is in the vicinity of the driver of the elastic body, Excites vibration in a direction perpendicular to the driven direction of the driven body and positive in the direction toward the driven body, and sets the resonance frequency of the first vibration mode higher than the resonance frequency of the second vibration mode. Is
In the frequency range below the resonance frequency of the first vibration mode and above the resonance frequency of the second vibration mode, the phase difference δα of the vibration with respect to the alternating voltage of the first vibration mode and the vibration with respect to the alternating voltage of the second vibration mode The phase difference δβ is 0 <(δα−δβ) <+ π / 2, and the two or more electromechanical transducers are provided with alternating voltages different in phase by ± π / 2. An ultrasonic motor driving device, wherein the ultrasonic motor driving device is applied and driven at a frequency equal to or lower than a resonance frequency of a first vibration mode and equal to or higher than a resonance frequency of a second vibration mode.
JP6145307A 1994-06-03 1994-06-03 Ultrasonic motor drive Withdrawn JPH07337045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6145307A JPH07337045A (en) 1994-06-03 1994-06-03 Ultrasonic motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6145307A JPH07337045A (en) 1994-06-03 1994-06-03 Ultrasonic motor drive

Publications (1)

Publication Number Publication Date
JPH07337045A true JPH07337045A (en) 1995-12-22

Family

ID=15382134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6145307A Withdrawn JPH07337045A (en) 1994-06-03 1994-06-03 Ultrasonic motor drive

Country Status (1)

Country Link
JP (1) JPH07337045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254627A (en) * 2005-03-11 2006-09-21 Olympus Corp Ultrasonic motor
JP2009017778A (en) * 2008-08-11 2009-01-22 Seiko Instruments Inc Ultrasonic motor and electronic equipment having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254627A (en) * 2005-03-11 2006-09-21 Olympus Corp Ultrasonic motor
JP2009017778A (en) * 2008-08-11 2009-01-22 Seiko Instruments Inc Ultrasonic motor and electronic equipment having the same

Similar Documents

Publication Publication Date Title
JP2012016107A (en) Vibration-type drive unit
JP3477304B2 (en) Ultrasonic motor drive
JP3173902B2 (en) Ultrasonic linear motor and method of manufacturing the same
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH07337045A (en) Ultrasonic motor drive
JP3444502B2 (en) Ultrasonic linear motor
JPH01264582A (en) Ultrasonic linear motor
JPS59185179A (en) Supersonic motor
JP3802625B2 (en) Ultrasonic motor drive device
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JPH066989A (en) Ultrasonic linear motor
JPH07337046A (en) Ultrasonic motor drive
JPH10309085A (en) Ultrasonic motor
JP3318122B2 (en) Ultrasonic transducer
JPH09121571A (en) Ultrasonic vibrator and ultrasonic linear motor or ultrasonic motor using it
JP3306211B2 (en) Ultrasonic actuator
JP2971971B2 (en) Ultrasonic actuator
JPH09289785A (en) Ultrasonic-motor driving device
JPH07337044A (en) Ultrasonic actuator
JPH0787710B2 (en) Ultrasonic linear motor
JPH03104512A (en) Tapping machine
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPH07256207A (en) Ultrasonic oscillator
JP2543163B2 (en) Ultrasonic linear motor
JP3192023B2 (en) Ultrasonic transducer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904