JPH0733606B2 - Conductive fiber - Google Patents
Conductive fiberInfo
- Publication number
- JPH0733606B2 JPH0733606B2 JP63009399A JP939988A JPH0733606B2 JP H0733606 B2 JPH0733606 B2 JP H0733606B2 JP 63009399 A JP63009399 A JP 63009399A JP 939988 A JP939988 A JP 939988A JP H0733606 B2 JPH0733606 B2 JP H0733606B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- component
- core
- sheath
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title claims description 58
- 239000000126 substance Substances 0.000 claims description 33
- 239000000306 component Substances 0.000 claims description 28
- 239000008358 core component Substances 0.000 claims description 26
- 239000002131 composite material Substances 0.000 claims description 14
- 229920001634 Copolyester Polymers 0.000 claims description 12
- 229920000728 polyester Polymers 0.000 claims description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 9
- -1 polyethylene terephthalate Polymers 0.000 claims description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 4
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 claims description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- 150000002009 diols Chemical class 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims 1
- 208000028659 discharge Diseases 0.000 description 24
- 238000005406 washing Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 10
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000004744 fabric Substances 0.000 description 5
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Multicomponent Fibers (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性繊維、詳しくは芯成分に導電性物質を含
有する芯鞘型構造の導電性繊維に関する。TECHNICAL FIELD The present invention relates to a conductive fiber, and more specifically to a conductive fiber having a core-sheath structure containing a conductive substance as a core component.
(従来の技術) ポリエチレン、ポリアミド、ポリエステル等の熱可塑性
樹脂は、繊維製品として多くの用途に使用されている
が、制電性に乏しいため帯電しやすいという欠点があ
る。そのため、導電性繊維に関する多くの研究がなされ
ている。(Prior Art) Although thermoplastic resins such as polyethylene, polyamide, and polyester are used in many applications as textile products, they have a drawback that they are liable to be charged due to their poor antistatic property. Therefore, much research has been conducted on conductive fibers.
第一の方法として、繊維表面に導電性物質をコーティン
グする方法である。これらの導電性繊維は初期の導電性
能は良好であるが、着用時の耐摩耗性が不良であり、耐
洗濯性、耐薬品性も不良であり、防塵衣等に使用した場
合の発塵源となっている。The first method is to coat the fiber surface with a conductive substance. These conductive fibers have good initial conductive performance, but have poor wear resistance when worn, poor wash resistance and chemical resistance, and are a source of dust when used for dustproof clothing, etc. Has become.
第二の方法として、導電性物質の粉末を熱可塑性樹脂中
に分散させてコア層とし、繊維形成性ポリマーをシース
層としてシース・コアの複合繊維とする場合である。こ
の場合には、例えば導電性カーボンを配合した導電性繊
維は、導電性カーボンが黒色であるため、シース層の薄
い場合などには、黒色に着色し、審美性が要求される分
野に用いることができず、コア層が完全にシース層の中
にあり、かつ、シース層の厚みが充分でないとその用途
がきわめて限定されるという問題を有している。導電性
物質が導電性カーボンでない場合でも、シース層で完全
に覆わないと黒ずんで見えたり、使用中に脱落して機能
が低下するなどのトラブルの原因となっている。A second method is to disperse a powder of a conductive substance in a thermoplastic resin to form a core layer and a fiber-forming polymer as a sheath layer to form a sheath-core composite fiber. In this case, for example, the conductive fiber containing conductive carbon has a black conductive carbon. Therefore, when the sheath layer is thin, it is colored in black and used in a field requiring aesthetics. However, if the core layer is completely inside the sheath layer and the thickness of the sheath layer is not sufficient, its use is extremely limited. Even when the conductive material is not conductive carbon, it causes troubles such as appearing black if it is not completely covered with the sheath layer and falling off during use to deteriorate the function.
一方、シース層による完全被覆構造でも、以下のような
問題を有している。すなわち、繊維断面の芯部間の導電
性は良好で問題はないが、シース層は繊維形成性の良好
なポリマーで形成されているため、電気的には絶縁体と
なっており、表面の電気抵抗値が高く、導電性不良とな
っている点が問題である。On the other hand, even the completely covered structure with the sheath layer has the following problems. In other words, the conductivity between the cores of the fiber cross section is good and there is no problem, but since the sheath layer is made of a polymer with a good fiber forming property, it is an electrical insulator and the surface The problem is that the resistance is high and the conductivity is poor.
したがって、このように芯部に導電性物質を含有する芯
鞘型複合繊維であっても、これを使用した布帛の静電気
による不快感(着用衣服の身体へのまつわりつき、脱衣
時の放電音、空気中のほこり付着等)の問題があった。
さらに、かかる芯鞘型複合繊維の問題を解決するため、
特開昭60-110920号公報に記載されているように芯成分
を偏心させ、鞘成分の厚さを3μm以下とすることも提
案されているが、かかる複合繊維は、電気抵抗値も思っ
たように低くできない上、芯鞘界面剥離が生じ、発塵し
やすくなる等の問題がある。これらの問題点を解決する
ため本出願人は、特開昭62-53416号公報に記載されてい
るように導電性物質を芯成分に含有する芯鞘型複合繊維
を高電圧で放電加工することを提案した。Therefore, even in the case of the core-sheath type composite fiber containing a conductive substance in the core part as described above, the discomfort caused by the static electricity of the cloth using the same (glazing of the wearing clothes on the body, discharge sound when undressing, air, There was a problem of dust adhesion inside).
Furthermore, in order to solve the problem of such a core-sheath type composite fiber,
As described in JP-A-60-110920, it is also proposed that the core component is eccentric and the thickness of the sheath component is 3 μm or less, but such a composite fiber also has an electric resistance value. However, there is a problem that the core-sheath interface peels off and dust is easily generated. In order to solve these problems, the applicant of the present invention, as described in JP-A-62-53416, to discharge core-sheath type composite fibers containing a conductive substance in the core component at high voltage. Proposed.
(発明が解決しようとする課題) 上記の特開昭62-53416号公報で提案した方法によると、
導電性能の優れた繊維が得られるものの、放電加工時の
繊維の損傷や耐洗濯性に劣るなどの問題があった。そこ
で、本発明は繊維に損傷を与えずに繊維表面の電気抵抗
を低下させ良好な導電性能を付与するとともに、耐洗濯
性、耐薬品性、に優れた導電性繊維を提供するものであ
る。(Problems to be Solved by the Invention) According to the method proposed in JP-A-62-53416,
Although fibers having excellent conductivity are obtained, there are problems such as damage to the fibers during electrical discharge machining and poor wash resistance. Therefore, the present invention provides an electrically conductive fiber that is excellent in washing resistance and chemical resistance, as well as imparting good electrical conductivity by lowering the electrical resistance of the fiber surface without damaging the fiber.
(課題を解決するための手段) 本発明者らは、上記問題点を解決するために研究を重ね
た結果、芯部を構成するポリエステルに特殊な共重合ポ
リエステルを用い、かつ、芯部の断面形状を鋭突部を有
する異形断面形状にすることによって、繊維に損傷を与
えず、耐洗濯性、耐薬品性に優れた導電性繊維が得られ
ることを見出し本発明に到達した。(Means for Solving the Problems) As a result of repeated studies to solve the above problems, the present inventors have used a special copolyester for the polyester constituting the core, and have a cross section of the core. The present inventors have found that by making the shape a modified cross-sectional shape having sharp protrusions, conductive fibers excellent in washing resistance and chemical resistance can be obtained without damaging the fibers, and arrived at the present invention.
すなわち、本発明は導電性物質を含有する芯成分と、該
芯成分を完全に被覆する繊維形成性ポリエステルからな
る鞘成分とにより構成され、繊維表面の電気抵抗値が10
11Ω/cm未満であり、かつ、該表面の電気抵抗値と断面
間の内部電気抵抗値との比が103以下である芯鞘型複合
繊維において、該芯成分が明確な融点を示さず、150℃
以下の軟化点を有する共重合ポリエステルと導電性物質
とからなり、芯成分の断面形状が2以上の鋭突部を有す
る異形断面形状であって、該鋭突部と該鞘成分外周部と
により形成される鞘成分最小厚さViのすべてが0.3μm
以上で、かつ、その少なくとも一つが5μm以下であ
り、放電加工されたことを特徴とする導電性繊維であ
る。That is, the present invention is composed of a core component containing a conductive substance and a sheath component made of a fiber-forming polyester that completely covers the core component, and the electric resistance value of the fiber surface is 10
In a core-sheath type composite fiber which is less than 11 Ω / cm, and the ratio of the electric resistance value of the surface to the internal electric resistance value of the cross section is 10 3 or less, the core component does not show a clear melting point. , 150 ℃
The cross-sectional shape of the core component is a modified cross-sectional shape having two or more sharp protrusions, which is composed of a copolymerized polyester having the following softening point and a conductive substance, and is composed of the sharp protrusions and the outer peripheral portion of the sheath component. The minimum thickness of the formed sheath component Vi is 0.3 μm
Above, and at least one of them is 5 μm or less, and is a conductive fiber characterized by being electric discharge machined.
本発明繊維の芯成分は導電性物質を含有するものである
が、該導電性物質としては、導電性カーボンブラック、
導電性金属化合物等の公知のものが使用できる。The core component of the fiber of the present invention contains a conductive substance, and as the conductive substance, conductive carbon black,
Known compounds such as conductive metal compounds can be used.
カーボンブラックの種類としては、アセチレンブラッ
ク、オイルファーネスブラック、サーマルブラック、チ
ャネルブラック、ケッチェンブラック等が例示される。
他方、導電性金属化合物としては、ヨウ化銅、硫化銅等
が挙げられ、導電性金属酸化物としては特に白色性に優
れた酸化第二錫、酸化亜鉛が挙げられる。ここでいう酸
化第二錫には、少量のアンチモン化合物を含む酸化第二
錫、酸化チタン粒子の表面に少量のアンチモン化合物を
含む酸化第二錫をコーティングして得られる導電性金属
複合体も含まれる。また、酸化亜鉛には少量の酸化アル
ミニウム、酸化リチウム、酸化インジウム等を溶解した
導電性酸化亜鉛も含まれる。これらは、通常微粉末とし
てマトリックスポリマーに分散して用いられるが、該マ
トリックスポリマーには、明確な融点を示さず、軟化点
が150℃以下である特殊な共重合ポリエステルポリマー
を用いることが重要である。150℃を超えると、導電性
物質を含有した系の粘度が高すぎて、複合紡糸そのもの
が困難である。Examples of the carbon black include acetylene black, oil furnace black, thermal black, channel black, and Ketjen black.
On the other hand, examples of the conductive metal compound include copper iodide, copper sulfide, and the like, and examples of the conductive metal oxide include stannic oxide and zinc oxide which are particularly excellent in whiteness. The stannic oxide mentioned here also includes stannic oxide containing a small amount of antimony compound, and a conductive metal composite obtained by coating the surface of titanium oxide particles with stannic oxide containing a small amount of antimony compound. Be done. Zinc oxide also includes conductive zinc oxide in which a small amount of aluminum oxide, lithium oxide, indium oxide or the like is dissolved. These are usually used as fine powders dispersed in a matrix polymer, but it is important to use a special copolymerized polyester polymer having no softening point and a softening point of 150 ° C. or less for the matrix polymer. is there. When it exceeds 150 ° C, the viscosity of the system containing the conductive substance is too high, and the composite spinning itself is difficult.
かかる共重合ポリエステルとしては、特に、ジカルボン
酸成分としてイソフタル酸またはイソフタル酸ジメチル
が45〜80モル%とテレフタル酸またはテレフタル酸ジメ
チルが55〜20モル%からなり、ジオール成分としてエチ
レングリコールが80〜90モル%とジエチレングリコール
が20〜10モル%からなる共重合ポリエステルを用いるこ
とが好ましい。この共重合ポリエステルは導電性物質を
多量に分散させた状態でも分散性がよく、かつ、鞘部の
ポリエステル成分との接着性が特に良好であるため、芯
部の鋭突部と鞘成分外周とにより形成される鞘成分最小
厚さを薄くしても洗濯耐久性が良好であり、かつ、より
低電圧で放電処理を行っても、十分な導電性能を付与す
ることができるため、繊維に損傷を与えることがない。As such a copolyester, in particular, isophthalic acid or dimethyl isophthalate is 45 to 80 mol% and terephthalic acid or dimethyl terephthalate is 55 to 20 mol% as the dicarboxylic acid component, and ethylene glycol is 80 to 90 as the diol component. It is preferable to use a copolyester composed of mol% and diethylene glycol of 20 to 10 mol%. This copolyester has good dispersibility even in a state in which a large amount of a conductive substance is dispersed, and since the adhesiveness with the polyester component of the sheath is particularly good, the sharp protrusion of the core and the outer periphery of the sheath are Even if the minimum thickness of the sheath component formed by is reduced, the washing durability is good, and even if the discharge treatment is performed at a lower voltage, sufficient conductive performance can be imparted, so damage to the fiber Never give.
該芯成分を完全に取り囲む鞘成分は繊維形成性ポリエス
テルから構成される。特に、良好な風合、加工工程の取
り扱いが優れており、さらに、耐薬品性も良好なことか
らポリエチレンテレフタレートが好ましい。The sheath component, which completely surrounds the core component, is composed of fiber-forming polyester. In particular, polyethylene terephthalate is preferable because it has a good feel, is excellent in handling in the processing step, and has good chemical resistance.
かかる物質からなる導電性繊維は、繊維断面における該
芯成分の形状が2以上の鋭突部を有する異形断面形状で
あることが重要である。鋭突部の数は2〜8が好まし
い。ここにいう鋭突部を有する断面形状とは凸状ないし
は突起状の凸部を有する断面形状をいい、主なものに、
第1図(イ)〜(ニ)に示すものがある。さらに、第1
図(ロ)に示した鋭突部と鞘成分外周との最小厚さViの
すべてが0.3μm以上であり、少なくとも一つは5μm
以下であることが必要である。Viが0.3μmより小さい
箇所がある場合には、耐洗濯性が低下し、Viのすべてが
5μmより大きい場合には、導電性能が劣るという問題
がある。It is important that the conductive fiber made of such a substance has a modified cross-sectional shape in which the shape of the core component in the fiber cross section has two or more sharp protrusions. The number of sharp protrusions is preferably 2-8. The cross-sectional shape having a sharp projection referred to here means a cross-sectional shape having a convex shape or a projection-shaped convex part, and mainly includes
There are those shown in FIGS. 1 (a) to 1 (d). Furthermore, the first
The minimum thickness Vi between the sharp protrusion and the outer circumference of the sheath component shown in Fig. (B) is 0.3 μm or more, and at least one is 5 μm.
It must be: If there is a portion where Vi is smaller than 0.3 μm, the washing resistance is deteriorated, and if all of Vi is larger than 5 μm, there is a problem that the conductive performance is deteriorated.
また、本発明の導電性複合繊維は、第1図(ホ)に示す
ような中空繊維であってもよい。Further, the electroconductive conjugate fiber of the present invention may be a hollow fiber as shown in Fig. 1 (e).
本発明の導電性繊維は、後述するような放電処理を施し
て得られるが、繊維表面の電気抵抗値が1011Ω/cm未満
であり、かつ、該表面の電気抵抗値(Ω/cm)と断面間
の内部電気抵抗値(Ω/cm)との比が103以下である。通
常、繊維形成性ポリマーからなる繊維の表面抵抗値は、
例えば、1013Ω/cmオーダーというように非常に高く、
仮に断面間内部抵抗値が107Ω/cmオーダーと低くても、
表面の電気抵抗値と断面間の内部電気抵抗値の比は106
程度と大であり、繊維の表面には、ほとんど導電性の効
果が発現しない。The conductive fiber of the present invention is obtained by performing a discharge treatment as described below, but the electric resistance value of the fiber surface is less than 10 11 Ω / cm, and the electric resistance value of the surface (Ω / cm) And the internal electrical resistance (Ω / cm) between the sections is 10 3 or less. Usually, the surface resistance value of a fiber made of a fiber-forming polymer is
For example, it is very high such as 10 13 Ω / cm order,
Even if the cross-section internal resistance value is as low as 10 7 Ω / cm,
The ratio of the electric resistance value of the surface to the internal electric resistance value of the cross section is 10 6
However, the surface of the fiber hardly exhibits the effect of conductivity.
本発明者らは、先に、鞘成分が繊維形成性ポリマーから
構成されていても、繊維表面の電気抵抗値が1016Ω/cm
オーダー以下である導電性繊維を提案した(特開昭62-5
3416号公報)。The present inventors have previously found that even if the sheath component is composed of a fiber-forming polymer, the electric resistance value of the fiber surface is 10 16 Ω / cm.
We proposed conductive fibers that are below the order of magnitude (Japanese Patent Laid-Open No. 62-5
3416 publication).
ここに、電気抵抗値(Ω/cm)は次のようにして測定す
る。Here, the electric resistance value (Ω / cm) is measured as follows.
(イ)断面間内部電気抵抗値 繊維軸方向の長さ2.0cmとなるよう両端を横断面方向に
カットした繊維の該両断面にAgドウタイト(銀粒子含有
の導電性樹脂塗料、藤倉工業製)を付着させた試料を電
気絶縁性ポリエチレンテレフタレートフィルム上で、温
湿度20℃×30%RHの条件のもとに1KVの直流電圧を該Ag
ドウタイト付着面を使って印加して両断面間に流れる電
流を求め、オームの法則により電気抵抗値Ω/cmを算出
する。(A) Internal electrical resistance between cross-sections Ag doutite (silver particle-containing conductive resin paint, made by Fujikura Industries) on both cross-sections of the fiber cut at both ends in the transverse direction so that the length in the axial direction of the fiber is 2.0 cm. The sample with the attached is placed on an electrically insulating polyethylene terephthalate film, and a DC voltage of 1 KV is applied to the Ag under the conditions of temperature and humidity of 20 ° C × 30% RH.
The current flowing between the two cross sections is calculated by applying it using the doutite attachment surface, and the electrical resistance value Ω / cm is calculated according to Ohm's law.
(ロ)表面電気抵抗値 繊維軸方向の長さ約2.0cmにカットされた繊維のり両端
付近の表面(繊維側面)に前記のAgドウタイトを付着さ
せたものを試料として、該試料を電気絶縁性ポリエチレ
ンテレフタレートフィルム上で、温湿度20℃×30%RHの
条件の下に、1KVの直流電圧を該Agドウタイト間に印加
してAgドウタイト間に流れる電流を求め、かつ、Agドウ
タイト間の距離を測定して、オームの法則により表面電
気抵抗値Ω/cmを算出する。本発明の繊維は、放電処理
を施すことによって表面電気抵抗値を低下させ、表面電
気抵抗値と断面間の内部電気抵抗値との比を小さくし、
導電性を付与するものであるが、放電処理法としては、
前記のようにして得られた芯鞘型複合繊維を高電圧電極
に接触させて高電圧を印加する通電法、放電形状の異な
るコロナ放電、花火放電、グロー放電、アーク放電等の
高電圧放電処理法により処理することができる。(B) Surface electric resistance value A sample in which the above-mentioned Ag doutite was adhered to the surface (fiber side surface) near both ends of the fiber paste cut to a length of about 2.0 cm in the fiber axis direction was used as the sample On a polyethylene terephthalate film, under the conditions of temperature and humidity of 20 ° C. × 30% RH, a DC voltage of 1 KV is applied between the Ag doutites to obtain a current flowing between the Ag doutites, and the distance between the Ag doutites is determined. Measure and calculate the surface electrical resistance value Ω / cm according to Ohm's law. The fiber of the present invention reduces the surface electric resistance value by performing an electric discharge treatment, and reduces the ratio of the surface electric resistance value and the internal electric resistance value between the cross sections,
Although it imparts conductivity, the discharge treatment method is as follows.
Energization method of applying a high voltage by contacting the core-sheath type composite fiber obtained as described above with a high voltage electrode, corona discharge with different discharge shapes, firework discharge, glow discharge, high voltage discharge treatment such as arc discharge Can be processed by law.
印加電圧としては、1KVを超える高電圧であって、100KV
までの範囲のものが使用でき、好ましくは5〜100KV、
特に好ましくは10〜50KVの範囲のものが好適に例示され
る。電圧の極性はプラスでも、マイナスでも(直流)、
又は交流であってもよい。電極間の距離は0〜10cmの範
囲のものが使用でき、放電形態と処理速度との関係で決
めることができる。又、導電性物質を含有する芯成分を
一方の極とし、他方の極を別に設けて、該両極に高電圧
を印加し、この高電圧電極下で放電処理することが最適
に例示されるが、この方法に限るものではなく、別々に
設けた二つの極に高電圧を印加して放電処理する方法で
あってもよい。The applied voltage is 100KV, which is a high voltage exceeding 1KV.
Can be used, preferably 5 to 100KV,
Particularly preferably, those in the range of 10 to 50 KV are suitably exemplified. Whether the polarity of the voltage is positive or negative (DC),
Or it may be an exchange. The distance between the electrodes can be in the range of 0 to 10 cm, and can be determined by the relationship between the discharge form and the processing speed. Further, it is best exemplified that the core component containing a conductive substance is used as one pole, the other pole is separately provided, a high voltage is applied to the both poles, and the discharge treatment is performed under the high voltage electrode. However, the method is not limited to this method, and a method of applying a high voltage to two electrodes provided separately and performing a discharge process may be used.
又、このような放電処理は糸の状態でも、編織物等の布
帛、布織布の状態でも行うことができる。さらに糸の場
合、延伸糸に施しても、未延伸糸に施しても良い。Further, such an electric discharge treatment can be performed in a yarn state, a cloth such as a knitted fabric, or a woven cloth state. Further, in the case of yarn, it may be applied to drawn yarn or undrawn yarn.
かかる放電処理によって、表面電気抵抗値を1010Ω/cm
オーダー以下とすることができるし、表面電気抵抗値と
断面間内部電圧抵抗値との比を103以下とすることがで
き、好ましくは、この比を102以下、特に厳しい条件で
使用する場合は10以下とすることができる。By this discharge treatment, the surface electric resistance value is 10 10 Ω / cm.
It can be less than or equal to the order, and the ratio of the surface electric resistance value to the cross-section internal voltage resistance value can be 10 3 or less, preferably, this ratio is 10 2 or less, particularly when used under severe conditions. Can be 10 or less.
(作用) 本発明の繊維は、表面電気抵抗値と断面間の内部電気抵
抗値との比が103以下、表面電気抵抗値が1011Ω/cm未満
となり、かつ、洗濯耐久性および耐薬品性に優れた特性
を有するものである。(Function) The fiber of the present invention has a ratio of the surface electric resistance value to the internal electric resistance value between the cross sections of 10 3 or less, a surface electric resistance value of less than 10 11 Ω / cm, and washing durability and chemical resistance. It has excellent properties.
電気抵抗値に関しては、繊維形成性ポリマーの電気抵抗
値を高電圧による放電処理により低下させることができ
るため上記のような値をとることができる。特に、芯成
分を一方の極とし、他方の極を別に設けてこの両極に高
電圧をかけて放電処理した場合には繊維形成性ポリマー
の有する電気絶縁性をなくし、電気の半導体と同様の性
質を付与することができる。Regarding the electric resistance value, the electric resistance value of the fiber-forming polymer can be lowered by the discharge treatment with a high voltage, and thus the above-mentioned value can be obtained. In particular, when the core component is used as one pole and the other pole is separately provided and a high voltage is applied to both poles for electric discharge treatment, the electrical insulating property of the fiber-forming polymer is lost, and the same property as an electric semiconductor is obtained. Can be given.
また、芯成分として、鞘成分との接着性のすぐれた特殊
な共重合ポリエステルを用い、かつ、芯部の断面形状が
異形断面形状であり芯部が鞘部によって完全に被覆され
ているために、洗濯耐久性、耐薬品性に優れている。Further, as the core component, a special copolyester having excellent adhesiveness with the sheath component is used, and since the cross-sectional shape of the core part is a modified cross-sectional shape and the core part is completely covered by the sheath part, Excellent in washing durability and chemical resistance.
すなわち、芯成分が、鞘成分のポリエステルと良好な接
着性を示す軟化点が150℃以下で明確な融点を示さない
共重合ポリエステルからなるため、芯部の鋭突部と鞘成
分外周部とにより形成される鞘成分最小厚さViの値が小
さくても十分な耐洗濯性を有することができる。これは
従来の芯鞘型導電性繊維にはみられなかったことであ
る。さらに芯成分の断面形状が鋭突部を有する異形断面
形状であるため、放電加工時に該鋭突部先端において放
電処理を行われ、低電圧での処理でも十分な導電性を付
与することができるため、放電加工による鞘部の損傷を
最小限度にすることができ、強伸度低下、放電加工中の
断糸等のトラブルを防止できる。また、導電物質を含有
する芯成分が完全に鞘成分で覆われていながら制電性を
発揮するので、導電物質特有の色が繊維表面にあらわれ
ることもなく、芯成分が使用中に脱落して機能が低下す
ることもない。That is, since the core component is made of a copolyester having a softening point showing good adhesion to the polyester of the sheath component and having no clear melting point at 150 ° C. or less, the sharp protrusion of the core portion and the outer peripheral portion of the sheath component Even when the minimum thickness Vi of the formed sheath component is small, sufficient wash resistance can be obtained. This is not seen in the conventional core-sheath type conductive fiber. Further, since the cross-sectional shape of the core component is a modified cross-sectional shape having sharp protrusions, electric discharge treatment is performed at the tip of the sharp protrusions during electric discharge machining, and sufficient conductivity can be imparted even by treatment at low voltage. Therefore, damage to the sheath due to electric discharge machining can be minimized, and problems such as reduction in strength and elongation and yarn breakage during electric discharge machining can be prevented. Further, since the core component containing the conductive substance is completely covered with the sheath component and exhibits antistatic property, the color peculiar to the conductive substance does not appear on the fiber surface, and the core component falls off during use. The function does not deteriorate.
(実施例) 以下、実施例について述べるが、洗濯耐久性及び、耐薬
品性は下記の方法により評価した。(Examples) Examples will be described below. The washing durability and chemical resistance were evaluated by the following methods.
試料はT-89393の繊維規格に準じて作成し、導電糸を1cm
間隔でストライプに織込んだ。洗濯耐久性はクリーンル
ーム内で洗濯をくり返した後の織物表面を任意に20ヶ所
外観検査し、破損箇所の個数割合を%で表した。耐薬品
性は、織物試料を薬品に室温で24時間浸漬後、水洗乾燥
後、スコットテスターで50回揉み操作をくり返した後、
織物表面を任意に20ヶ所外観検査し、剥離なしを○、一
部剥離を△、大部分剥離を×で評価した。The sample is made according to the fiber standard of T-89393, and the conductive thread is 1 cm.
Woven into stripes at intervals. For the durability of washing, the appearance of the surface of the woven fabric after repeated washing in a clean room was arbitrarily inspected at 20 locations, and the number of broken points was expressed as a percentage. The chemical resistance is as follows: After the fabric sample is immersed in the chemical at room temperature for 24 hours, washed with water and dried, and then repeatedly rubbed with a Scott tester 50 times.
The appearance of the surface of the woven fabric was arbitrarily inspected at 20 places, and ◯ was evaluated for no peeling, Δ for partial peeling, and x for most peeled.
実施例1 酸化チタン微粒子の表面に導電性酸化第二錫をコーティ
ングした平均粒径0.25μ、比抵抗9Ωcmの導電性粉体24
0重量部と、ジカルボン酸成分としてテレフタル酸ジメ
チルを60モル%、イソフタル酸ジメチルを40モル%とか
らなり、ジオール成分としてエチレングリコールが88モ
ル%、ジエチレングリコールが12モル%とからなる共重
合ポリエステル(軟化点:90℃、固有粘度:0.50)75重量
部をニーダーに仕込み、250℃で30分間混練した。得ら
れた導電性樹脂の比抵抗は、3.0×102Ωcmであった。Example 1 A conductive powder having an average particle size of 0.25 μ and a specific resistance of 9 Ωcm, obtained by coating the surface of titanium oxide fine particles with conductive stannic oxide 24.
Copolymerized polyester consisting of 0 parts by weight, 60 mol% of dimethyl terephthalate as a dicarboxylic acid component and 40 mol% of dimethyl isophthalate, and 88 mol% of ethylene glycol and 12 mol% of diethylene glycol as a diol component ( A kneader was charged with 75 parts by weight of a softening point: 90 ° C., intrinsic viscosity: 0.50) and kneaded at 250 ° C. for 30 minutes. The specific resistance of the obtained conductive resin was 3.0 × 10 2 Ωcm.
この導電性樹脂を芯成分とし、ポリエチレンテレフタレ
ートを鞘成分とし複合紡糸装置を用いて溶融紡糸し、第
1図(ロ)に示すような断面形状を有する芯鞘型複合繊
維としたのち3.1倍に延伸して25デニール、単糸数5の
マルチフィラメントを得た。This conductive resin is used as a core component, and polyethylene terephthalate is used as a sheath component, and melt-spun using a composite spinning device to obtain a core-sheath type composite fiber having a cross-sectional shape as shown in FIG. It was drawn to obtain a multifilament having 25 denier and 5 single yarns.
この芯鞘型複合繊維をマイナス5KV、50m/分でコロナ放
電処理をした。電気抵抗値、強伸度、耐洗濯性、耐薬品
性を第1表に示す。The core-sheath type composite fiber was subjected to corona discharge treatment at -5 KV and 50 m / min. Table 1 shows the electric resistance value, the strength and elongation, the washing resistance and the chemical resistance.
比較例1 実施例1で用いた導電性粉体240重量部とメルトインデ
ックス75のポリエチレン75重量部とをニーダーに仕込
み、180℃で30分間混練した。得られた導電性樹脂の比
抵抗は、3.5×102Ωcmであった。実施例1と同様に溶融
紡糸、延伸し、コロナ放電処理を行った後の性質を第1
表に示す。Comparative Example 1 240 parts by weight of the conductive powder used in Example 1 and 75 parts by weight of polyethylene having a melt index of 75 were charged into a kneader and kneaded at 180 ° C. for 30 minutes. The specific resistance of the obtained conductive resin was 3.5 × 10 2 Ωcm. As in Example 1, the properties after melt spinning, drawing and corona discharge treatment were
Shown in the table.
比較例2 実施例1において、共重合ポリエステルのかわりにナイ
ロン6を用いた以外は同様に行った。得られた繊維の性
質を第1表に示す。Comparative Example 2 The procedure of Example 1 was repeated except that nylon 6 was used instead of the copolyester. The properties of the fibers obtained are shown in Table 1.
実施例2 導電性物質として、導電性カーボンブラック30重量部
と、実施例1で用いた共重合ポリエステル70重量部を混
練した以外は実施例1と同様に行った。得られた繊維の
性質を第1表に示す。Example 2 The procedure of Example 1 was repeated, except that 30 parts by weight of conductive carbon black and 70 parts by weight of the copolyester used in Example 1 were kneaded as the conductive substance. The properties of the fibers obtained are shown in Table 1.
比較例3〜4 実施例1において、Viが第1表に示す値になるように芯
・鞘成分の量を変更した以外は、実施例1と同様に紡
糸、延伸、コロナ放電処理を行った。結果を第1表に示
す。Comparative Examples 3 to 4 Spinning, drawing, and corona discharge treatment were performed in the same manner as in Example 1 except that the amounts of the core / sheath components were changed so that Vi had the values shown in Table 1. . The results are shown in Table 1.
なお、第1表中、L0、L100、L200はそれぞれ洗濯回数が
0、100、200であることを示すものである。In Table 1, L 0 , L 100 , and L 200 indicate that the number of washings was 0 , 100 , and 200 , respectively.
第1表の結果から明らかなように、芯成分が導電性物質
と共重合ポリエステルからなる場合、かつ、Viの値が本
発明の範囲内にある場合(実施例1および2)には、芯
成分がナイロン6やポリエチレンの場合(比較例1およ
び2)、Viの値が本発明の範囲外にある場合(比較例3
〜4)に比べて、耐洗濯性および耐薬品性が優れている
ことがわかる。 As is clear from the results in Table 1, when the core component is composed of the conductive substance and the copolyester and the value of Vi is within the range of the present invention (Examples 1 and 2), the core is When the component is nylon 6 or polyethylene (Comparative Examples 1 and 2), the value of Vi is outside the range of the present invention (Comparative Example 3).
It can be seen that the washing resistance and the chemical resistance are superior to those of (4) to (4).
実施例3、比較例5 実施例1において、イソフタル酸ジメチルの量を第2表
に示すように変更し、軟化点の異なる芯成分ポリマーと
した以外は、同様に紡糸延伸を行い、放電処理を行っ
た。電気抵抗値、強伸度、耐洗濯性、耐薬品性を第2表
に示す。Example 3 and Comparative Example 5 In Example 1, except that the amount of dimethyl isophthalate was changed as shown in Table 2 to use core component polymers having different softening points, spinning drawing was performed in the same manner, and discharge treatment was performed. went. Table 2 shows the electric resistance value, the strength and elongation, the washing resistance and the chemical resistance.
第2表の結果から明らかなように、芯成分の共重合ポリ
エステルの軟化点が150℃を超える場合(比較例5)に
は芯鞘セクションの不良な糸しか得られず、L0で約半数
が欠陥であるという結果が得られた。一方、軟化点が本
発明の範囲にある場合(実施例3)には、電気抵抗値が
低くなり、強伸度、耐洗濯性および耐薬品性は良好であ
る。 As is clear from the results shown in Table 2, when the softening point of the copolyester as the core component exceeds 150 ° C (Comparative Example 5), only poor yarns in the core-sheath section are obtained, and L 0 is about half the number. Is a defect. On the other hand, when the softening point is within the range of the present invention (Example 3), the electric resistance value is low, and the strength and elongation, washing resistance and chemical resistance are good.
(発明の効果) 本発明によれば、繊維表面の電気抵抗値が低く、制電性
に優れた芯鞘型複合繊維であり、かつ耐洗濯性、耐薬品
性に優れた導電性繊維を提供することができる。(Effect of the Invention) According to the present invention, there is provided a conductive fiber which is a core-sheath type composite fiber having a low electric resistance value on the fiber surface and excellent antistatic property, and having excellent washing resistance and chemical resistance. can do.
第1図は、本発明の導電性芯鞘型複合繊維の断面形状の
例を示す図である。 Vi……鋭突部と鞘成分外周部とにより形成される鞘成分
最小厚さ。FIG. 1 is a diagram showing an example of a cross-sectional shape of a conductive core-sheath type composite fiber of the present invention. Vi ... Minimum thickness of the sheath component formed by the sharp protrusion and the outer periphery of the sheath component.
Claims (2)
を完全に被覆する繊維形成性ポリエステルからなる鞘成
分とにより構成され、繊維表面の電気抵抗値が1011Ω/c
m未満であり、かつ、該表面の電気抵抗値と断面間の内
部電気抵抗値との比が103以下である芯鞘型複合繊維に
おいて、該芯成分が明確な融点を示さず、150℃以下の
軟化点を有する共重合ポリエステルと導電性物質とから
なり、芯成分の断面形状が2以上の鋭突部を有する異形
断面形状であって、該鋭突部と該鞘成分外周部とにより
形成される鞘成分最小厚さViのすべてが0.3μm以上
で、かつ、その少なくとも一つが5μm以下であり、放
電加工されたことを特徴とする導電性繊維。1. A core component containing a conductive substance and a sheath component made of fiber-forming polyester that completely covers the core component, and has an electric resistance value of 10 11 Ω / c on the fiber surface.
In a core-sheath type composite fiber having a ratio of the electric resistance value of the surface and the internal electric resistance value of the cross section of 10 3 or less and less than m, the core component does not show a clear melting point, and is 150 ° C. The cross-sectional shape of the core component is a modified cross-sectional shape having two or more sharp protrusions, which is composed of a copolymerized polyester having the following softening point and a conductive substance, and is composed of the sharp protrusions and the outer peripheral portion of the sheath component. A conductive fiber having a minimum sheath component thickness Vi formed of 0.3 μm or more, and at least one of which is 5 μm or less, and which has been electric discharge machined.
エチレンテレフタレートであり、芯成分を構成する共重
合ポリエステルが、45〜80モル%のイソフタル酸または
イソフタル酸ジメチルと55〜20モル%のテレフタル酸ま
たはテレフタル酸ジメチルとからなるジカルボン酸成分
と、80〜90モル%のエチレングリコールと20〜10モル%
のジエチレングリコールとからなるジオール成分とから
なる共重合ポリエステルである特許請求の範囲第1項記
載の導電性繊維。2. The fiber-forming polyester is mainly polyethylene terephthalate, and the copolyester constituting the core component is 45-80 mol% of isophthalic acid or dimethyl isophthalate and 55-20 mol% of terephthalic acid or terephthalate. Dicarboxylic acid component consisting of dimethyl acid, 80-90 mol% ethylene glycol and 20-10 mol%
The electrically conductive fiber according to claim 1, which is a copolyester comprising a diol component comprising diethylene glycol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63009399A JPH0733606B2 (en) | 1988-01-18 | 1988-01-18 | Conductive fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63009399A JPH0733606B2 (en) | 1988-01-18 | 1988-01-18 | Conductive fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01183520A JPH01183520A (en) | 1989-07-21 |
JPH0733606B2 true JPH0733606B2 (en) | 1995-04-12 |
Family
ID=11719342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63009399A Expired - Lifetime JPH0733606B2 (en) | 1988-01-18 | 1988-01-18 | Conductive fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0733606B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008096537A (en) | 2006-10-06 | 2008-04-24 | Ricoh Co Ltd | Cleaning device, process cartridge and image forming apparatus |
JP5037951B2 (en) | 2007-01-10 | 2012-10-03 | 株式会社リコー | Image forming apparatus and process cartridge |
JP4928973B2 (en) | 2007-02-14 | 2012-05-09 | 株式会社リコー | Cleaning device, process cartridge, and image forming apparatus |
JP5790986B2 (en) | 2011-03-04 | 2015-10-07 | 株式会社リコー | Image forming apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58136828A (en) * | 1982-02-09 | 1983-08-15 | Kuraray Co Ltd | Fiber made of copolymerized polyester |
JPS6021909A (en) * | 1983-07-15 | 1985-02-04 | Unitika Ltd | Antistatic synthetic fiber |
JPS60110920A (en) * | 1983-11-14 | 1985-06-17 | Kanebo Ltd | Electrically conductive composite fiber |
-
1988
- 1988-01-18 JP JP63009399A patent/JPH0733606B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01183520A (en) | 1989-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4902545B2 (en) | Conductive conjugate fiber and method for producing the same | |
KR930000241B1 (en) | Conductive Composite Fiber and Manufacturing Method Thereof | |
JP3917524B2 (en) | Fiber composite and use thereof | |
JPH01292116A (en) | Electrically conductive fiber and production thereof | |
JPH10131035A (en) | Production of electroconductive fiber | |
JPH0733637B2 (en) | Conductive fiber | |
JPH0733606B2 (en) | Conductive fiber | |
JP2004225214A (en) | Electroconductive conjugated fiber | |
JPH10310974A (en) | Production of electrically conductive fiber | |
JPH0364604B2 (en) | ||
JP5504048B2 (en) | Conductive composite fiber | |
JPS6253416A (en) | Electrically conductive fiber and production thereof | |
JPS61174469A (en) | Production of conductive composite fiber | |
JP2801386B2 (en) | Conductive fiber | |
JP2833780B2 (en) | Conductive composite fiber | |
JP2593937B2 (en) | White conductive composite fiber | |
JPS6350446B2 (en) | ||
JPH10212622A (en) | Electroconductive fiber | |
JPH0733605B2 (en) | Conductive hollow composite fiber | |
JPH09143821A (en) | Electroconductive fiber | |
JPS60224813A (en) | Antistatic conjugated fiber | |
JP2005290630A (en) | Conductive fiber | |
JP2003278031A (en) | Highly durable conductive fiber | |
JP3279965B2 (en) | Conductive composite fiber and contact charging brush comprising the same | |
JPS63190017A (en) | Antistatic conjugate fiber |