[go: up one dir, main page]

JPH07335417A - Magnetic powder - Google Patents

Magnetic powder

Info

Publication number
JPH07335417A
JPH07335417A JP6131548A JP13154894A JPH07335417A JP H07335417 A JPH07335417 A JP H07335417A JP 6131548 A JP6131548 A JP 6131548A JP 13154894 A JP13154894 A JP 13154894A JP H07335417 A JPH07335417 A JP H07335417A
Authority
JP
Japan
Prior art keywords
magnetic powder
group
dispersion
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131548A
Other languages
Japanese (ja)
Inventor
Hajime Takeuchi
肇 竹内
Osamu Kubo
修 久保
Tatsumi Maeda
辰巳 前田
Etsuji Ogawa
悦治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6131548A priority Critical patent/JPH07335417A/en
Publication of JPH07335417A publication Critical patent/JPH07335417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic powder with which dispersion processes are easy and a degree of dispersion is excellent by a method wherein at least a group IIa element and a group IIIb element exist on a surface of a hexagonal ferrite magnetic powder. CONSTITUTION:A magnetic powder surface is coated with a group IIIb element and a group IIa element. Incidentally, the group IIa element is selected out of Be, Mg, Ca, Sr, Ra and Ba. Further, it is possible to enhance a wetting characteristic and affinity between magnetic powder and a solvent without reducing attraction activation marks enhancing a dispersion easiness of magnetic powder. As a result, it is possible to enhance not only a dispersion easiness but also a degree of dispersion, an orientation and an electric characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分散処理が容易で、かつ
分散度の良好な塗布型磁気記録媒体用磁性粉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder for a coating type magnetic recording medium which can be easily dispersed and has a good degree of dispersion.

【0002】[0002]

【従来の技術】塗布型の磁気記録媒体は、ポリエチレン
テレフタレート等の非磁性支持体と、この支持体に、強
磁性粉末を樹脂バインダ液中に均一に分散された磁性塗
料を塗布してなる磁性層とで構成されている。上記磁性
粉末としては従来よりγ−Fe23 等の針状強磁性粉
末が用いられてきたが、近年では記録密度の向上を狙っ
て六方晶フェライトの超微粒子磁性粉末を用いたものが
開発されており一部実用化も進められている。
2. Description of the Related Art A coating type magnetic recording medium is a non-magnetic support made of polyethylene terephthalate or the like, and a magnetic coating prepared by coating a ferromagnetic coating with a magnetic paint uniformly dispersed in a resin binder solution. It is composed of layers and. Needle-shaped ferromagnetic powder such as γ-Fe 2 O 3 has been used as the magnetic powder, but in recent years, one using ultrafine magnetic powder of hexagonal ferrite has been developed aiming at improvement of recording density. It is being done and is being put to practical use.

【0003】一般的に、磁性粉末の樹脂バインダー液中
での分散挙動を支配する因子としては、磁性粉末粒子同
士の静磁気的相互作用などに起因する凝集の進行、及び
磁性粉末表面とバインダー液との界面化学的相互作用に
起因する分散の進行があげられる。
Generally, as factors that control the dispersion behavior of magnetic powder in a resin binder solution, progress of aggregation due to magnetostatic interaction between magnetic powder particles and the like, and magnetic powder surface and binder solution The progress of dispersion due to the interfacial chemical interaction with

【0004】バインダー液と粉末表面との界面化学的相
互作用は、粉末の表面積に比例して起こると考えられ
る。特に最近よく用いられるスルホン基、カルボキシル
基、リン酸エステル基、硫酸エステル基等の酸性基を含
有する樹脂を使用する場合には、樹脂バインダーの酸性
基と吸着相互作用することのできる磁性粉末表面の塩基
点の存在が重要である。
The interfacial chemical interaction between the binder liquid and the surface of the powder is considered to occur in proportion to the surface area of the powder. Particularly when using a resin containing an acidic group such as a sulfone group, a carboxyl group, a phosphoric acid ester group, and a sulfuric acid ester group, which has been frequently used recently, a magnetic powder surface capable of adsorbing and interacting with the acidic group of the resin binder. The existence of the base point of is important.

【0005】例えば、 IIIb族元素の酸化物、あるいは
IIIb族元素のアモルファスは、固体酸として機能する
ので、溶剤とのウェッティング性及び親和性が向上し
て、その結果分散容易性が向上することはよく知られて
いる。しかし、固体酸の存在で吸着活性点(主に塩基
点)数が減少するので配向性及び分散性の低下を招き、
このため電気特性の向上は望めなかった。
For example, an oxide of a Group IIIb element, or
It is well known that the amorphous group IIIb element functions as a solid acid, so that the wetting property and affinity with a solvent are improved, and as a result, the ease of dispersion is improved. However, the presence of the solid acid reduces the number of adsorption active points (mainly base points), leading to a decrease in orientation and dispersibility.
For this reason, improvement in electrical characteristics could not be expected.

【0006】ところで、六方晶フェライトの微粒子を磁
性粉末に用いる場合は、当該微粒子の形状が板状である
ために磁気的相互作用が大きいこと、及び磁性粉末一つ
一つが単結晶であり多結晶の集合体で形成される従来の
針状粒子に比べ粉末表面の凹凸等の微細構造を取りにく
いことに起因する分散の困難さ、ならびに分散安定性の
欠如が指摘されてきた。このために、塗布して得られる
媒体の表面は高密度記録に十分適した表面精度に仕上が
っていないことが多かった。
By the way, when hexagonal ferrite fine particles are used for magnetic powder, magnetic interaction is large because the shape of the fine particles is plate-like, and each magnetic powder is single crystal and polycrystal. It has been pointed out that it is difficult to disperse due to the fact that it is difficult to form a fine structure such as irregularities on the powder surface as compared with the conventional acicular particles formed of the above-mentioned aggregate, and lack of dispersion stability. For this reason, the surface of the medium obtained by coating is often not finished with a surface precision suitable for high density recording.

【0007】かかる指摘に対し、従来は有機物コートに
よる表面処理等が提案されてきたが十分な効果を見い出
すには至らなかった。
[0007] In response to such a point, conventionally, a surface treatment with an organic coating has been proposed, but a sufficient effect has not been found.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる事情に
鑑み、分散処理が容易でかつ、分散度の良好な塗布型磁
気記録媒体用六方晶フェライト磁性粉末を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a hexagonal ferrite magnetic powder for a coating type magnetic recording medium which is easy to disperse and has a good degree of dispersion.

【0009】[0009]

【課題を解決するための手段】本発明者らは、六方晶フ
ェライト磁性粉末の表面に少なくともIIa族元素と III
b族元素とが存在することで分散処理が容易で、かつ分
散度の良好な塗布型磁気記録媒体用磁性粉末が得られる
ことを見い出し本発明を完成するに至った。
The present inventors have found that at least the group IIa element and the group IIIa element are present on the surface of the hexagonal ferrite magnetic powder.
The present inventors have completed the present invention by finding that the presence of the b-group element facilitates the dispersion treatment and provides a magnetic powder for a coating type magnetic recording medium having a good dispersity.

【0010】すなわち、本発明は、六方晶フェライト磁
性粉末の表面に、少なくともIIa族元素と IIIb族元素
とが存在することを特徴とする磁性粉末である。
That is, the present invention is a magnetic powder characterized in that at least the group IIa element and the group IIIb element are present on the surface of the hexagonal ferrite magnetic powder.

【0011】本発明において六方晶フェライトとして
は、鉄あるいは鉄を置換した金属の平均価数が3価であ
るBaFe1219に代表される結晶構造もしくは基本組
成がM型マグネトプランバイト六方晶系フェライト;2
価金属(以下Mという)の存在するBaM2 Fe1627
に代表される結晶構造もしくは基本組成がW型マグネト
プランバイト六方晶系フェライト;BaMFe611
代表される結晶構造もしくは基本組成がY型マグネトプ
ランバイト六方晶系フェライト;Ba32 Fe2441
に代表される結晶構造もしくは基本組成がZ型マグネト
プランバイト六方晶系フェライト;さらにはこれら六方
晶系フェライトの表面にスピネル系フェライトをエピタ
キシャルに複合化させたいわゆる複合タイプの六方晶系
フェライトが用いられる。
In the present invention, the hexagonal ferrite has a crystal structure represented by BaFe 12 O 19 in which iron or an iron-substituted metal has an average valence of 3 and its basic composition is an M-type magnetoplumbite hexagonal system. Ferrite; 2
BaM 2 Fe 16 O 27 containing a valent metal (hereinafter referred to as M)
Crystal structure or the basic composition is W-type magnetoplumbite hexagonal ferrite represented by; BaMFe 6 O 11 crystal structure or basic composition represented is Y-type magnetoplumbite hexagonal ferrite; Ba 3 M 2 Fe 24 O 41
Z-type magnetoplumbite hexagonal ferrite whose crystal structure or basic composition is typified by; and so-called composite type hexagonal ferrite in which spinel ferrite is epitaxially compounded on the surface of these hexagonal ferrites is used. To be

【0012】ここに六方晶フェライトの組成式中のM、
およびスピネル系フェライトを構成する2価の金属とし
ては、Co、Fe、Ni、Mn、Mg、Cu及びZnが
例示される。
Here, M in the composition formula of hexagonal ferrite,
Examples of the divalent metal that constitutes the spinel ferrite include Co, Fe, Ni, Mn, Mg, Cu and Zn.

【0013】とりわけ、W型及び複合タイプの六方晶系
フェライトでは、バルクの組成あるいは粉末表面の組成
において、アルカリ的な金属が少なく遷移金属及び酸素
が豊富であるため、粉末表面とバインダーとの酸−塩基
による界面化学的相互作用が乏しくなり、かつ両系とも
磁化量が大きく磁気的凝集力に富んでいる。本発明は、
このような系に対して特に有効に作用する。
In particular, in W-type and composite-type hexagonal ferrites, since there are few alkaline metals and transition metals and oxygen are abundant in the bulk composition or the composition of the powder surface, the acid of the powder surface and the binder -The surface chemical interaction by the base becomes poor, and both systems have a large amount of magnetization and are rich in magnetic cohesive force. The present invention is
It works particularly effectively for such systems.

【0014】本発明に用いる磁性粉末の粒径は、記録密
度によって異なるが、100〜1000Å、好ましくは
150〜800Å、さらに好ましくは300〜600Å
である。当該粒径が100Å未満では磁化量の低下が著
しいため記録媒体には適さず、1000Åを越えるとノ
イズ成分が大きくなり高密度記録には適さない。
The particle size of the magnetic powder used in the present invention varies depending on the recording density, but is 100 to 1000Å, preferably 150 to 800Å, more preferably 300 to 600Å.
Is. If the particle diameter is less than 100 Å, the amount of magnetization is significantly reduced, so that it is not suitable for a recording medium, and if it exceeds 1000 Å, a noise component becomes large and it is not suitable for high density recording.

【0015】一方、粒子の厚さに対する粒径の比で表わ
される板状比は2〜10、好ましくは3〜7、さらに好
ましくは3〜5である。当該比が、2未満では磁性粉末
の製造が困難であり、10を越えると磁気的凝集力が分
散力に比べて優勢となるため、分散が困難となるからで
ある。
On the other hand, the plate-like ratio represented by the ratio of the particle size to the particle thickness is 2 to 10, preferably 3 to 7, and more preferably 3 to 5. If the ratio is less than 2, it is difficult to produce the magnetic powder, and if it exceeds 10, the magnetic cohesive force is more dominant than the dispersive force, which makes the dispersion difficult.

【0016】上記六方晶フェライトの製造方法として
は、ガラス結晶化法、水熱合成法、共沈法、フラックス
法などいかなる方法によってもよい。いずれの方法にお
いても、形状分布及び粒径分布がシャープになる条件を
見い出すことが高密度達成には重要である。
The hexagonal ferrite may be produced by any method such as a glass crystallization method, a hydrothermal synthesis method, a coprecipitation method and a flux method. In any of the methods, it is important to find a condition where the shape distribution and the particle size distribution are sharp in order to achieve high density.

【0017】本発明の磁性粉末の表面に被着させるIIa
族元素は、Be、Mg、Ca、Sr、Ra及びBaから
選ばれる少なくとも一種の元素であり、これらのうち、
好ましくはMg、Ca、Sr、Baが用いられる。
IIa to be deposited on the surface of the magnetic powder of the present invention
The group element is at least one element selected from Be, Mg, Ca, Sr, Ra and Ba.
Mg, Ca, Sr and Ba are preferably used.

【0018】同じく、 IIIb族元素は、B、Al、G
a、In、及びTlから選ばれる少なくとも一種の元素
であり、これらのうち、好ましくはB、Al、Ga、I
n、特に好ましくはAl、Ga、Inが用いられる。
Similarly, the group IIIb elements are B, Al, and G.
At least one element selected from a, In, and Tl, and among these, preferably B, Al, Ga, and I
n, particularly preferably Al, Ga or In is used.

【0019】被着方法としては、上記方法で製造される
六方晶フェライトならびにIIa族元素及び IIIb族元素
の塩を水中で均一に混合した後、これにNaOHを添加
し、IIa族元素及び IIIb族元素を水酸化物として粉末
表面に沈着させ、次いで、濾過、水洗、乾燥、熱処理を
順次行う共沈法、あるいはガラス結晶化法によって、ガ
ラスマトリクスにIIa族元素及び IIIb族元素を添加し
て結晶成長させ、次いで水洗によってガラスマトリクス
を除去する際に、ガラスを一部分残す等の方法がある。
As the deposition method, after the hexagonal ferrite produced by the above method and the salts of the IIa group element and the IIIb group element are uniformly mixed in water, NaOH is added thereto, and the IIa group element and the IIIb group element are added. Element IIa and IIIb elements are added to the glass matrix by the coprecipitation method in which the elements are deposited as hydroxides on the powder surface and then filtered, washed with water, dried, and heat-treated in order, or by the glass crystallization method. When growing and then removing the glass matrix by washing with water, there is a method of leaving a part of the glass.

【0020】磁性粉末の表面に被着させる量は、磁性粉
末100重量部に対してIIa族元素及び IIIb族元素の
酸化物として0.1〜5.0重量部、好ましくは0.1
〜4.0重量部、特に好ましくは1.0〜3.0重量部
である。
The amount of the magnetic powder deposited on the surface of the magnetic powder is 0.1 to 5.0 parts by weight, preferably 0.1 to 5.0 parts by weight as an oxide of the IIa group element and the IIIb group element, relative to 100 parts by weight of the magnetic powder.
˜4.0 parts by weight, particularly preferably 1.0 to 3.0 parts by weight.

【0021】0.1重量部より少ないと分散性が不十分
であり、5.0重量部を越えると磁化量が低下し媒体の
電気特性は低下する。
If the amount is less than 0.1 parts by weight, the dispersibility is insufficient, and if it exceeds 5.0 parts by weight, the amount of magnetization is decreased and the electrical characteristics of the medium are deteriorated.

【0022】IIa族元素の酸化物の存在により、バイン
ダーと粉末表面との間で生起する吸着相互作用が著しく
活発となるため、その結果としてIIa族元素量は少なく
てすむ。なお、被着量の制御、とりわけ重要なIIa族元
素量の制御が簡単なため、共沈法が一般的に採用されて
いる。
Due to the presence of the oxide of the group IIa element, the adsorption interaction occurring between the binder and the surface of the powder is remarkably active, and as a result, the amount of the group IIa element can be small. The coprecipitation method is generally adopted because the control of the deposition amount, particularly the control of the important amount of the group IIa element is easy.

【0023】なお、バインダー同士を三次元的に架橋し
て磁性塗膜の力学物性を向上させる目的でイソシアネー
ト化合物を用いるが、IIa族元素量が過剰になると、イ
ソシアネート化合物と粉末表面のIIa族原子との反応が
起こり、得られる磁性粉末の磁性、磁性塗膜の力学物性
及び粉末の表面特性は十分なものではなくなる。したが
って、バインダーの吸着サイトを供給するに足るだけの
IIa族元素量を導入することが重要であり、IIa族元素
の被着量は酸化物として1重量部以下であることが望ま
しい。
An isocyanate compound is used for the purpose of three-dimensionally cross-linking the binders with each other to improve the mechanical properties of the magnetic coating film. As a result, the magnetic properties of the resulting magnetic powder, the mechanical properties of the magnetic coating film, and the surface properties of the powder become insufficient. Therefore, it is enough to supply the adsorption site of the binder.
It is important to introduce the amount of the group IIa element, and the amount of the group IIa element deposited is preferably 1 part by weight or less as an oxide.

【0024】本発明の磁性粉末を用いて、従来のバイン
ダー組成、分散プロセス及び塗布配向技術をそのまま使
用して、磁性塗膜の力学物性を損なうことなく十分高密
度記録に適した磁気特性、粉末の表面特性及び電気特性
を有する磁気記録媒体を作製することができる。
Using the magnetic powder of the present invention, the conventional binder composition, dispersion process, and coating orientation technology can be used as they are, and magnetic properties and powder suitable for sufficiently high-density recording can be obtained without impairing the mechanical properties of the magnetic coating film. It is possible to manufacture a magnetic recording medium having the above surface characteristics and electrical characteristics.

【0025】本発明により、磁性粉末表面に IIIb族元
素とともにIIa族元素を導入することによって、磁性粉
末の分散容易性を向上させる吸着活性点(主に塩基点)
数を減少することなしに、磁性粉末と溶剤とのウェッテ
ィング性及び親和性を向上させることができ、その結
果、分散容易性はもとより分散度、配向性及び電気特性
の向上が可能となる。
According to the present invention, by introducing a group IIa element together with a group IIIb element on the surface of the magnetic powder, an adsorption active point (mainly a base point) for improving the ease of dispersion of the magnetic powder.
It is possible to improve the wetting property and affinity between the magnetic powder and the solvent without reducing the number, and as a result, it is possible to improve the dispersibility, the orientation and the electrical properties as well as the ease of dispersion.

【0026】[0026]

【実施例及び比較例】以下に、実施例を用いてさらに本
発明を詳細に説明する。なお、実施例及び比較例におい
ては、下記の試験方法によって磁性塗料を評価した。
EXAMPLES AND COMPARATIVE EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. In the examples and comparative examples, the magnetic coating materials were evaluated by the following test methods.

【0027】〔磁性塗料の評価〕 (1)分散性(分散容易性及び分散度)試験 処理磁性粉に、表2に示すバインダー、潤滑剤、研摩剤
及び溶剤を加えて、分散操作を1時間行った。なお、B
aフェライト粉末の処理方法、分散操作及び表2につい
ては実施例において詳述する。30μm ギャップのアプ
リケーターを用いて、得られた磁性塗料から磁性塗膜を
手引きにより作製した。得られた塗膜の光沢値(入射角
及び反射角は60度)を光沢度計を用いて測定し、この
光沢値をもって分散性とした。したがって、この数値が
大きいほど、分散容易性及び分散度で表わされる分散性
が良好であることを示す。
[Evaluation of Magnetic Paint] (1) Dispersibility (Ease of Dispersion and Dispersion) Test The binder, lubricant, abrasive and solvent shown in Table 2 were added to the treated magnetic powder, and the dispersion operation was carried out for 1 hour. went. In addition, B
The method of treating a ferrite powder, the dispersing operation, and Table 2 will be described in detail in Examples. Using an applicator with a gap of 30 μm, a magnetic coating film was prepared from the obtained magnetic coating material by hand. The gloss value (incident angle and reflection angle of 60 degrees) of the obtained coating film was measured using a gloss meter, and this gloss value was regarded as dispersibility. Therefore, the larger this value, the better the dispersibility and the dispersibility represented by the degree of dispersion.

【0028】(2)分散到達度試験 分散操作を3時間としたこと以外は、前記分散性試験と
同じ試験を行い、得られた塗膜の光沢値をもって分散到
達度とした。したがって、この数値が大きいほど、分散
性が良好であることを示す。
(2) Dispersion attainment test The same test as the dispersibility test was conducted except that the dispersion operation was carried out for 3 hours, and the gloss value of the obtained coating film was taken as the dispersion attainment ratio. Therefore, the larger this value is, the better the dispersibility is.

【0029】(3)配向性試験 分散操作を3時間行った磁性塗料を、直流磁場8kOe の
下で自然乾燥して磁性塗膜を得た。この塗膜の残留磁化
量及び飽和磁化量を、VSM(Vibrating Sample magne
tometer)を用いて測定し、残留磁化量/飽和磁化量比を
もって配向度とした。したがって、この数値が大きいほ
ど配向度が大きく良好であることを示す。
(3) Orientation test The magnetic coating material, which had been subjected to the dispersion operation for 3 hours, was naturally dried under a direct current magnetic field of 8 kOe to obtain a magnetic coating film. VSM (Vibrating Sample magne
and the residual magnetization amount / saturation magnetization amount ratio was taken as the degree of orientation. Therefore, the larger this value is, the larger the degree of orientation is and the better.

【0030】(4)イソシアネート化合物と磁性粉表面
との反応性測定 前記分散操作を3時間行った磁性塗料に、イソシアネー
ト化合物〔(株)日本ポリウレタン社製、商品名コロー
ネートL〕を処理磁性粉100重量部に対して3重量部
の割合になるように添加した。この磁性塗料をイソシア
ネート化合物添加直後から、20℃の温度及び60%の
相対湿度の環境下に放置し、イソシアネート化合物のN
CO伸縮運動に基づく赤外線吸収スペクトルの経時変化
を、赤外線分光光度計によって測定し、塗料中に残存す
る未反応のイソシアネート化合物量を求めた。イソシア
ネート化合物の初期添加量に対する反応後5時間におけ
る化合物の残存量の比をもって、イソシアネート化合物
の残存率とした。この残存率が大きいほど、イソシアネ
ート化合物とIIa族元素との反応を遅延させることがで
き良好であることを示す。
(4) Measurement of Reactivity between Isocyanate Compound and Surface of Magnetic Powder Magnetic powder coated with the above-mentioned dispersion operation for 3 hours was treated with an isocyanate compound [Coronate L, manufactured by Nippon Polyurethane Co., Ltd.] Magnetic powder 100 It was added at a ratio of 3 parts by weight to parts by weight. Immediately after the addition of the isocyanate compound, this magnetic paint was allowed to stand in an environment of a temperature of 20 ° C. and a relative humidity of 60% so that the N
The temporal change of the infrared absorption spectrum based on the CO stretching motion was measured by an infrared spectrophotometer to determine the amount of unreacted isocyanate compound remaining in the paint. The residual ratio of the isocyanate compound was defined as the ratio of the residual amount of the compound 5 hours after the reaction to the initial amount of the isocyanate compound added. It is shown that the larger the residual ratio, the better the delay in the reaction between the isocyanate compound and the Group IIa element.

【0031】(5)5MHz C/N測定 5MHz C/Nとは、ヘッド−テープ間相対速度を3.7
7m/s とし、5MHz の信号強度と4MHz の変調ノイズと
の比をdB表示したものである。なお、未処理磁性粉を用
いた後述の比較例1のサンプルを基準としている。
(5) 5 MHz C / N measurement 5 MHz C / N means the relative speed between the head and tape is 3.7.
It is set to 7 m / s, and the ratio between the signal strength of 5 MHz and the modulation noise of 4 MHz is displayed in dB. In addition, the sample of Comparative Example 1 described later using untreated magnetic powder is used as a reference.

【0032】実施例1〜8 ガラス結晶化法によりBaOFe14.44 Co0.78Ni
1.0 Zn1.0 Ti0.7824で示される基本組成がW型マ
グネトプランバイトである板状粒子のBaフェライト粉
末(保磁力1110Oe、飽和磁化61emu/g 、比表面積
35m2/g)を作製した。次いで、このようにして得られ
た未処理磁性粉300gを3000mlの水中によく分散
させてスラリーとした。さらにIIa族元素及び IIIb族
元素からなる処理元素を含む塩化物をこれらの元素の酸
化物として、未処理磁性粉100重量部に対して表1に
示す部数調合して上記スラリーに添加した。なお、用い
たIIa族元素と IIIb族元素の組合わせは、Mg/Al
系、Ba/Al系及びBa/In系の三種である。スラ
リーを十分撹拌した後、前記の塩化物に対して2倍等量
のNaOHを添加し、磁性粉表面上にIIa族元素及び I
IIb族元素の酸化物を沈着させた。得られた沈殿物を、
濾別、水洗、乾燥の順で処理して処理磁性粉を得た。
Examples 1 to 8 BaOFe 14.44 Co 0.78 Ni by the glass crystallization method
A plate-shaped particle of Ba ferrite powder (coercive force 1110 Oe, saturation magnetization 61 emu / g, specific surface area 35 m 2 / g) having a basic composition represented by 1.0 Zn 1.0 Ti 0.78 O 24 was W type magnetoplumbite was prepared. Then, 300 g of the untreated magnetic powder thus obtained was well dispersed in 3000 ml of water to obtain a slurry. Further, chlorides containing the treatment elements consisting of the IIa group elements and the IIIb group elements were mixed as the oxides of these elements in the amount shown in Table 1 with respect to 100 parts by weight of the untreated magnetic powder and added to the above slurry. The combination of the group IIa element and the group IIIb element used is Mg / Al.
System, Ba / Al system and Ba / In system. After sufficiently stirring the slurry, 2 times equivalent amount of NaOH was added to the above chloride, and the IIa group element and the I group were added on the surface of the magnetic powder.
The Group IIb element oxide was deposited. The obtained precipitate is
The treated magnetic powder was obtained by processing in the order of filtration, washing with water and drying.

【0033】[0033]

【表1】 [Table 1]

【0034】得られた処理磁性粉100重量部に対し
て、バインダー、潤滑剤、研摩剤及び溶剤をそれぞれ表
2に示す部数加えて、磁性塗料を作製した。なお、分散
は、直径が0.8mmのガラスビーズを用いて、ポット式
サンドグラインダーによって3時間行った。
A magnetic coating material was prepared by adding 100 parts by weight of the obtained treated magnetic powder with a binder, a lubricant, an abrasive and a solvent in the respective amounts shown in Table 2. The dispersion was performed for 3 hours with a pot type sand grinder using glass beads having a diameter of 0.8 mm.

【0035】[0035]

【表2】 [Table 2]

【0036】以上のようにして得られた磁性塗料を前記
試験方法に従って評価した。なお、Mg/Al系の塗料
評価結果を表3に、Ba/Al系の同結果を表4に、B
a/In系の同結果を表5にそれぞれ示す。Ba/Al
系の実施例については磁性塗料をポリエチレンテレフタ
レートの支持体フィルムに塗布し、配向させて、次いで
鏡面仕上げを行い5MHz におけるC/Nを測定し、結果
を同じく表4に示す。
The magnetic coating material obtained as described above was evaluated according to the test method described above. Table 3 shows the evaluation results of the Mg / Al based paints, Table 4 shows the same results of the Ba / Al based paints, and B
The same results for the a / In system are shown in Table 5, respectively. Ba / Al
For the system examples, the magnetic coating was applied to a polyethylene terephthalate support film, oriented, then mirror finished and the C / N at 5 MHz was measured and the results are also shown in Table 4.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】Mg/Al系とBa/Al系とは、よく似
た挙動を示すが、被着量が同じ場合はBa/Al系の方
が、Mg/Al系よりもイソシアネートの残存率が大き
く、また分散度も大きい。Ba元素の方がMg元素より
も原子量が大きく重いためであると考えられる。なお、
分散到達度については、Ba/Al系の方がMg/Al
系よりもやや低くなっている。
Although the Mg / Al system and the Ba / Al system show similar behaviors, the Ba / Al system has a larger residual ratio of isocyanate than the Mg / Al system when the coating amount is the same. Also, the degree of dispersion is large. It is considered that this is because the Ba element has a larger atomic weight and is heavier than the Mg element. In addition,
Regarding the degree of dispersion, the Ba / Al system is Mg / Al
It is slightly lower than the system.

【0041】一方、Ba/In系については、In元素
とAl元素の原子量に差があるにもかかわらず原因は不
明であるが、Ba/Al系と似た挙動を示している。
On the other hand, in the Ba / In system, although the cause is unknown although the atomic weights of the In element and the Al element are different, the behavior is similar to that of the Ba / Al system.

【0042】比較例1 ガラス結晶化法によりBaOFe14.44 Co0.78Ni
1.0 Zn1.0 Ti0.7824で示される基本組成がW型マ
グネトプランバイトである板状粒子のBaフェライト粉
末(保磁力1110Oe、飽和磁化61emu/g 、比表面積
35m2/g)を作製した。IIa族元素及び IIIb族元素を
被着させないこと以外は実施例1と同様にして塗料を評
価した。結果を表6に示す。
Comparative Example 1 BaOFe 14.44 Co 0.78 Ni by the glass crystallization method
A plate-shaped particle of Ba ferrite powder (coercive force 1110 Oe, saturation magnetization 61 emu / g, specific surface area 35 m 2 / g) having a basic composition represented by 1.0 Zn 1.0 Ti 0.78 O 24 was W-type magnetoplumbite was prepared. The coating material was evaluated in the same manner as in Example 1 except that the IIa group element and the IIIb group element were not deposited. The results are shown in Table 6.

【0043】比較例2及び3 ガラス結晶化法によりBaOFe14.44 Co0.78Ni
1.0 Zn1.0 Ti0.7824で示される基本組成がW型マ
グネトプランバイトである板状粒子のBaフェライト粉
末(保磁力1110Oe、飽和磁化61emu/g 、比表面積
35m2/g)を作製した。これにBaを酸化物換算で未処
理磁性粉100重量部に対し、0.1(比較例2)及び
0.5(比較例3)重量部となるように被着処理を行
い、得られた磁性塗料を実施例1と同様にして評価し
た。結果を表6に示す。
Comparative Examples 2 and 3 BaOFe 14.44 Co 0.78 Ni by glass crystallization method
A plate-shaped particle of Ba ferrite powder (coercive force 1110 Oe, saturation magnetization 61 emu / g, specific surface area 35 m 2 / g) having a basic composition represented by 1.0 Zn 1.0 Ti 0.78 O 24 was W-type magnetoplumbite was prepared. This was obtained by subjecting Ba to 100 parts by weight of untreated magnetic powder in terms of oxide so as to be 0.1 (comparative example 2) and 0.5 (comparative example 3) parts by weight. The magnetic coating material was evaluated in the same manner as in Example 1. The results are shown in Table 6.

【0044】比較例4及び5 ガラス結晶化法によりBaOFe14.44 Co0.78Ni
1.0 Zn1.0 Ti0.7824で示される基本組成がW型マ
グネトプランバイトである板状粒子のBaフェライト粉
末(保磁力1110Oe、飽和磁化61emu/g 、比表面積
35m2/g)を作製した。これにAlを酸化物換算で未処
理磁性粉100重量部に対し、0.1(比較例4)及び
0.5(比較例5)重量部となるように被着処理を行
い、得られた磁性塗料を実施例1と同様にして評価し
た。結果を表6に示す。
Comparative Examples 4 and 5 BaOFe 14.44 Co 0.78 Ni by the glass crystallization method.
A plate-shaped particle of Ba ferrite powder (coercive force 1110 Oe, saturation magnetization 61 emu / g, specific surface area 35 m 2 / g) having a basic composition represented by 1.0 Zn 1.0 Ti 0.78 O 24 was W-type magnetoplumbite was prepared. This was obtained by subjecting Al to an amount of 0.1 (Comparative Example 4) and 0.5 (Comparative Example 5) parts by weight based on 100 parts by weight of untreated magnetic powder in terms of oxide. The magnetic coating material was evaluated in the same manner as in Example 1. The results are shown in Table 6.

【0045】比較例6及び7 ガラス結晶化法によりBaOFe14.44 Co0.78Ni
1.0 Zn1.0 Ti0.7824で示される基本組成がW型マ
グネトプランバイトである板状粒子のBaフェライト粉
末(保磁力1110Oe、飽和磁化61emu/g 、比表面積
35m2/g)を作製した。これにZrを酸化物換算で未処
理磁性粉100重量部に対し、0.1(比較例6)及び
0.5(比較例7)重量部となるように被着処理を行
い、得られた磁性塗料を実施例1と同様にして評価し
た。結果を表6に示す。
Comparative Examples 6 and 7 BaOFe 14.44 Co 0.78 Ni by glass crystallization method
A plate-shaped particle of Ba ferrite powder (coercive force 1110 Oe, saturation magnetization 61 emu / g, specific surface area 35 m 2 / g) having a basic composition represented by 1.0 Zn 1.0 Ti 0.78 O 24 was W-type magnetoplumbite was prepared. This was obtained by subjecting Zr to an amount of 0.1 (Comparative Example 6) and 0.5 (Comparative Example 7) parts by weight based on 100 parts by weight of untreated magnetic powder in terms of oxide. The magnetic coating material was evaluated in the same manner as in Example 1. The results are shown in Table 6.

【0046】比較例8及び9 ガラス結晶化法によりBaOFe14.44 Co0.78Ni
1.0 Zn1.0 Ti0.7824で示される基本組成がW型マ
グネトプランバイトである板状粒子のBaフェライト粉
末(保磁力1110Oe、飽和磁化61emu/g 、比表面積
35m2/g)を作製した。これに珪酸ナトリウム溶液をS
iを酸化物換算で未処理磁性粉100重量部に対し、
0.1(比較例8)及び0.5(比較例9)重量部とな
るように磁性粉スラリーに添加した後、スラリーのpHが
4になるまで塩酸を添加した。次いで、濾過、水洗及び
乾燥して処理粉を得、実施例1と同様にして評価した。
結果を表6に示す。
Comparative Examples 8 and 9 BaOFe 14.44 Co 0.78 Ni by glass crystallization method
A plate-shaped particle of Ba ferrite powder (coercive force 1110 Oe, saturation magnetization 61 emu / g, specific surface area 35 m 2 / g) having a basic composition represented by 1.0 Zn 1.0 Ti 0.78 O 24 was W-type magnetoplumbite was prepared. Add sodium silicate solution to this
i is converted to oxide based on 100 parts by weight of untreated magnetic powder,
After adding 0.1 (Comparative Example 8) and 0.5 (Comparative Example 9) parts by weight to the magnetic powder slurry, hydrochloric acid was added until the pH of the slurry became 4. Then, the treated powder was obtained by filtering, washing with water and drying, and evaluated in the same manner as in Example 1.
The results are shown in Table 6.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】以上の例よりも明らかなように本発明の
磁性粉末は、IIa族元素と IIIb族元素を表面に被着せ
しめることで分散容易性が改善され、分散度も良好で、
電気特性に優れているほか、量産時には重要になるイソ
シアネート化合物との反応も遅延させることのできる磁
性粉末となっている。
As is apparent from the above examples, the magnetic powder of the present invention has improved dispersibility and good dispersibility by depositing the IIa group element and the IIIb group element on the surface.
In addition to its excellent electrical properties, it is a magnetic powder that can delay the reaction with isocyanate compounds, which is important during mass production.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 悦治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuji Ogawa 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research and Development Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 六方晶フェライト磁性粉末の表面に、少
なくともIIa族元素と IIIb族元素とが存在することを
特徴とする磁性粉末。
1. A magnetic powder characterized in that at least a Group IIa element and a Group IIIb element are present on the surface of a hexagonal ferrite magnetic powder.
【請求項2】 六方晶フェライト磁性粉末が、結晶構造
もしくは基本組成がM型マグネトプランバイト六方晶系
フェライト、W型マグネトプランバイト六方晶系フェラ
イト、Y型マグネトプランバイト六方晶系フェライト、
Z型マグネトプランバイトの六方晶系フェライト又はこ
れら六方晶系フェライトの表面にスピネル系フェライト
をエピタキシャルに複合化した複合タイプの六方晶系フ
ェライトである請求項1記載の磁性粉末。
2. The hexagonal ferrite magnetic powder has a crystal structure or basic composition of M-type magnetoplumbite hexagonal ferrite, W-type magnetoplumbite hexagonal ferrite, Y-type magnetoplumbite hexagonal ferrite,
The magnetic powder according to claim 1, which is a hexagonal ferrite of Z-type magnetoplumbite or a composite type hexagonal ferrite in which spinel ferrite is epitaxially compounded on the surface of these hexagonal ferrites.
【請求項3】 IIa族元素がBe、Mg、Ca、Sr、
Ra及びBaから選ばれる少なくとも一種の元素であ
り、 IIIb族元素がB、Al、Ga、In及びTlから
選ばれる少なくとも一種の元素である請求項1又は2記
載の磁性粉末。
3. The IIa group element is Be, Mg, Ca, Sr,
The magnetic powder according to claim 1 or 2, which is at least one element selected from Ra and Ba, and the Group IIIb element is at least one element selected from B, Al, Ga, In, and Tl.
JP6131548A 1994-06-14 1994-06-14 Magnetic powder Pending JPH07335417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131548A JPH07335417A (en) 1994-06-14 1994-06-14 Magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131548A JPH07335417A (en) 1994-06-14 1994-06-14 Magnetic powder

Publications (1)

Publication Number Publication Date
JPH07335417A true JPH07335417A (en) 1995-12-22

Family

ID=15060658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131548A Pending JPH07335417A (en) 1994-06-14 1994-06-14 Magnetic powder

Country Status (1)

Country Link
JP (1) JPH07335417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343617A (en) * 2001-05-17 2002-11-29 Sony Corp Magnetic powder and magnetic recording medium using the same
WO2003033407A1 (en) * 2001-10-15 2003-04-24 Mitsui Mining & Smelting Company, Ltd. Iron oxide particles and method for production thereof
US7101489B2 (en) 2002-02-01 2006-09-05 Sanyo Electric Co., Ltd. Composite magnetic material and a method for producing the same
EP1849839A2 (en) 2006-04-28 2007-10-31 Toda Kogyo Corporation Black magnetic iron oxide particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343617A (en) * 2001-05-17 2002-11-29 Sony Corp Magnetic powder and magnetic recording medium using the same
WO2003033407A1 (en) * 2001-10-15 2003-04-24 Mitsui Mining & Smelting Company, Ltd. Iron oxide particles and method for production thereof
US7147796B2 (en) 2001-10-15 2006-12-12 Mitsui Mining & Smelting Company, Ltd. Iron oxide particles and method for production thereof
US7101489B2 (en) 2002-02-01 2006-09-05 Sanyo Electric Co., Ltd. Composite magnetic material and a method for producing the same
EP1849839A2 (en) 2006-04-28 2007-10-31 Toda Kogyo Corporation Black magnetic iron oxide particles
EP1849839A3 (en) * 2006-04-28 2008-02-06 Toda Kogyo Corporation Black magnetic iron oxide particles
US7572505B2 (en) 2006-04-28 2009-08-11 Toda Kogyo Corporation Black magnetic iron oxide particles having high breakdown voltage

Similar Documents

Publication Publication Date Title
JPH0690969B2 (en) Magnetic powder for magnetic recording medium and magnetic recording medium using the same
DE3885335T2 (en) Disc-shaped magnetic powder and its production process and a recording medium from this magnetic powder.
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
Sakai et al. Preparation and magnetic properties of barium ferrite fine particles by the coprecipitation salt-catalysis method
JPS5856232A (en) Magnetic recording medium
JPH07335417A (en) Magnetic powder
JP6968045B2 (en) Method for producing powder of β-iron hydroxide compound, β-iron hydroxide compound sol, powder of ε-iron oxide compound, and method for producing magnetic recording medium.
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JPH06151139A (en) Powder of magnetic particles for magnetic recording and manufacture thereof
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JPH0283219A (en) Production of cobalt-containing ferromagnetic iron oxide powder
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JP2740914B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JP3132536B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2745306B2 (en) Ferromagnetic fine powder for magnetic recording and method for producing the same
JP3417981B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS6132259B2 (en)
JP3654917B2 (en) Method of manufacturing magnetic recording medium using hexagonal ferrite powder
JPH01125805A (en) Magnetic powder having improved dispersibility
JP5316522B2 (en) Magnetic particle powder
JP3398430B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
KR920004999B1 (en) Ferrous type magnetic body and its manufacturing method and magnatic medium using it
JPH0668451A (en) Magnetic recording medium