[go: up one dir, main page]

JPH07333180A - Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method - Google Patents

Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method

Info

Publication number
JPH07333180A
JPH07333180A JP6128455A JP12845594A JPH07333180A JP H07333180 A JPH07333180 A JP H07333180A JP 6128455 A JP6128455 A JP 6128455A JP 12845594 A JP12845594 A JP 12845594A JP H07333180 A JPH07333180 A JP H07333180A
Authority
JP
Japan
Prior art keywords
molten metal
cooling rate
chill
cast iron
chilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6128455A
Other languages
Japanese (ja)
Inventor
Eiji Nakano
英治 中野
Toshiki Yoshida
敏樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6128455A priority Critical patent/JPH07333180A/en
Publication of JPH07333180A publication Critical patent/JPH07333180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To provide an evaluation method for the chilling tendency of molten metal, indispensable to the development and manufacture of such molten metal as hardly chilled, and useful for the quality control of molten metal as well CONSTITUTION:A critical cooling rate for chill crystallization is obtained via the analysis of the cooling curve where the cooling rate is variously changed, and a chilling tendency is evaluated on the basis of a difference in the critical cooling rate. In this case, the obtainable critical cooling rate is quantitative and universal with the unit expressed by deg.C/S. Thus, the chilling tendency can be examined via an objective comparison. Also, a measurement section and a tissue observation section can be made to agree to each other on the cooling curve. Accurate evaluation can, therefore, be made with cooling state properly related to chill crystallization. Furthermore, cast iron free from chill can be efficiently produced, using molten metal adjusted to optimum properties, according a cast iron manufacturing method using the chilling tendency evaluation method for the molten metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶湯のチル化傾向評価方
法およびその装置並びにこれを用いた鋳鉄の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chilling tendency evaluation method for molten metal, an apparatus therefor, and a method for producing cast iron using the same.

【0002】[0002]

【従来の技術】鋳物の製造においては、延性などの機械
的性質を損なうチルの晶出を防ぐことが必要である。チ
ルの発生要因としては、溶湯性状や、溶湯性状以外の要
因である湯流れや冷却速度等がある。溶湯性状以外の要
因を除外し、溶湯性状そのものをチル化しにくいものに
検討、改善して場合には、まず第一に、方案、製品形状
や鋳物砂の種類などの溶湯性状以外の外的因子に影響さ
れない、普遍的で定量的な、溶湯の正味のチル化傾向の
評価方法、そのための装置が確立されていることが必要
である。
2. Description of the Related Art In the production of castings, it is necessary to prevent crystallization of chill, which impairs mechanical properties such as ductility. The chill generation factors include the molten metal properties, and the factors other than the molten metal properties, such as the molten metal flow and the cooling rate. When factors other than the molten metal properties are excluded and the molten metal properties themselves are considered to be less likely to be chilled and improved, first of all, external factors other than the molten metal properties such as the plan, product shape and type of molding sand are considered. It is necessary to establish a universal and quantitative method for evaluating the net chilling tendency of molten metal, which is not affected by the above, and an apparatus therefor.

【0003】従来より広く行われている溶湯のチル化傾
向の評価方法には、クサビ型試験や板チル試験によるも
のがある。クサビ型試験は、テストピースの形状をクサ
ビ状にして溶湯の冷却速度を連続的に変化させ、破面に
現れるチルの深さの大小によってチル化傾向を判定する
方法である。また、板チル試験はテストピースの一端を
水冷銅板などで強制的に冷却し、同じく破面に現れるチ
ルの深さの大小によりチル化傾向を判定する方法であ
る。
Conventionally widely used methods for evaluating the chilling tendency of molten metal include a wedge type test and a plate chilling test. The wedge type test is a method in which the shape of the test piece is wedge-shaped, the cooling rate of the molten metal is continuously changed, and the chilling tendency is judged by the size of the depth of chill appearing on the fracture surface. The plate chill test is a method in which one end of a test piece is forcibly cooled with a water-cooled copper plate or the like, and the chilling tendency is judged by the size of the depth of the chill that also appears on the fracture surface.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来のチ
ル化傾向の判定方法は、得られるデータ(チル深さ)が
測定者の主観によるところが大きく、実際の鋳物におけ
る挙動と対応させることが困難である。そのために一般
性に欠け、信頼性に乏しく、定性的な評価に留まらざる
を得ず、定量的に判定することが困難である。また、上
記従来のチル化傾向の判定方法は、チルが明瞭に観察さ
れる普通鋳鉄のためのものであり、球状黒鉛鋳鉄に用い
ることは難かしい。
However, in the conventional method for determining the chilling tendency, the obtained data (chill depth) largely depends on the subjectivity of the measurer, and it is difficult to match it with the behavior in the actual casting. Is. Therefore, it lacks generality, lacks reliability, and has to be limited to qualitative evaluation, and it is difficult to make a quantitative determination. Further, the above conventional chilling tendency determination method is for ordinary cast iron in which chill is clearly observed, and it is difficult to use it for spheroidal graphite cast iron.

【0005】一方、板チルテストピースを用い、溶湯の
冷却速度をパラメータにして溶湯性状を定量化する方法
も提案されている。しかし、このものでは冷却速度を測
定するテストピースと、チルを評価するテストピースが
異なるため、溶湯の冷却状態とチル晶出との関係を正し
く対応されることは難しい。本発明は上記従来技術にお
ける問題の鑑みてなされたものであって、チル化しにく
い溶湯を開発、製造していくために不可欠であり、溶湯
の品質管理にも使用し得る、溶湯のチル化傾向評価方法
およびその装置並びにこの評価方法を利用した鋳鉄の製
造方法を提供することを目的とする。
On the other hand, there has been proposed a method of using a plate chill test piece to quantify the properties of the molten metal by using the cooling rate of the molten metal as a parameter. However, since the test piece for measuring the cooling rate and the test piece for evaluating the chill are different from each other, it is difficult to correctly correspond the relationship between the cooling state of the molten metal and the chill crystallization. The present invention has been made in view of the above problems in the prior art, is indispensable for developing and manufacturing molten metal that is difficult to chill, and can be used for quality control of molten metal, chilling tendency of molten metal An object of the present invention is to provide an evaluation method, an apparatus therefor, and a method for manufacturing cast iron using the evaluation method.

【0006】[0006]

【課題を解決するための手段】本発明者等は以上の課題
を達成するべく種々検討し、鋳鉄溶湯の冷却状態と組織
を検討し、冷却速度とその溶湯で晶出するチルの量との
間には相関があることを見い出し本発明に想到した。 (1) 即ち、本第1発明の溶湯のチル化傾向評価方法
は、鋳鉄溶湯の冷却過程におけるチル晶出の臨界冷却速
度に基づいてチル化傾向を評価することを特徴とする。 (2) そして、前記臨界冷却速度を鋳鉄溶湯の凝固後
の最大冷却速度から求める。 (3) また、鋳鉄溶湯の冷却過程におけるチル晶出の
臨界冷却速度からのチル晶出量−最大冷却速度関数の傾
きに基づきチル化傾向を評価する。 (4) 更に、同一溶湯を種々の冷却速度で凝固させ、
その際のチル化の有無に基づき前記臨界冷却速度を決定
する。 (5) 臨界冷却速度を決定するに当たり、チルの晶出
の有無およびその量を測温部のチル面積率またはチル体
積率として測定する。 (6) 本第2発明の溶湯のチル化傾向評価装置は、測
温手段を持ち冷却速度を変え得る複数の鋳型に同時に鋳
鉄溶湯を注入することを特徴とする。 (7) 本第3発明の溶湯のチル化傾向評価方法を利用
した鋳鉄の製造方法は、鋳鉄溶湯の冷却過程におけるチ
ル晶出の臨界冷却速度に基づいてチル化傾向を評価し、
その評価結果に基づいて溶湯性状を調整し、その溶湯を
用いて実質的にチルの無い鋳鉄を製造することを特徴と
する。
Means for Solving the Problems The inventors of the present invention have made various studies to achieve the above-mentioned objects, examined the cooling state and structure of a cast iron molten metal, and examined the cooling rate and the amount of chill crystallized in the molten metal. The inventors have found that there is a correlation between them and have conceived the present invention. (1) That is, the molten metal chilling tendency evaluation method of the present invention is characterized in that the chilling tendency is evaluated based on the critical cooling rate of chill crystallization during the cooling process of the cast iron molten metal. (2) Then, the critical cooling rate is obtained from the maximum cooling rate after solidification of the cast iron molten metal. (3) Further, the chilling tendency is evaluated based on the slope of the chill crystallization amount-maximum cooling rate function from the critical cooling rate of chill crystallization in the process of cooling the cast iron melt. (4) Further, the same molten metal is solidified at various cooling rates,
The critical cooling rate is determined based on the presence or absence of chilling at that time. (5) In determining the critical cooling rate, the presence or absence of crystallization of chill and the amount thereof are measured as a chill area ratio or a chill volume ratio in the temperature measuring section. (6) The molten metal chilling tendency evaluation device of the present invention is characterized in that the cast iron molten metal is simultaneously injected into a plurality of molds having a temperature measuring means and capable of changing the cooling rate. (7) The method for producing cast iron using the molten metal chilling tendency evaluation method according to the third aspect of the present invention evaluates the chilling tendency based on the critical cooling rate of chill crystallization in the cooling process of the cast iron molten metal,
It is characterized in that the molten metal properties are adjusted based on the evaluation results, and the chill-free cast iron is manufactured using the molten metal.

【0007】以下、上記課題を解決するための手段
(1)〜(7)を詳細に説明する。(1)チル晶出の臨界冷却速度に基づきチル化傾向を評
価する 本発明の溶湯のチル化傾向評価方法を説明する。熱分析
によって得られた冷却曲線と測温部の凝固組織は対応し
ているはずである。溶湯を様々な冷却速度で凝固させる
ことにより、チルが発生する臨界の冷却速度(臨界冷却
速度)を見いだすことができる。即ち、「臨界冷却速
度」とは、溶湯を様々な速度で冷却凝固させた場合に、
チルが晶出し始める冷却速度であり、その冷却速度より
も遅い冷却速度ではチルが発生せず、逆に、その冷却速
度よりも速い冷却速度ではチルが発生する冷却速度であ
る。チル化傾向の少ない優れた溶湯とは、速く冷却され
てもチル化し難い溶湯であり、臨界冷却速度の大きい溶
湯である。
Means (1) to (7) for solving the above problems will be described in detail below. (1) Evaluation of chilling tendency based on the critical cooling rate of chill crystallization
A method of evaluating the chilling tendency of the molten metal according to the present invention will be described. The cooling curve obtained by thermal analysis should correspond to the solidification structure of the temperature measuring part. By solidifying the molten metal at various cooling rates, it is possible to find a critical cooling rate at which chill occurs (critical cooling rate). That is, "critical cooling rate" means that when the molten metal is cooled and solidified at various rates,
The cooling rate at which chill begins to crystallize, chill does not occur at a cooling rate slower than that, and conversely, at a cooling rate higher than that cooling rate, chill occurs. An excellent molten metal having a small tendency of chilling is a molten metal which hardly chills even when cooled quickly, and has a high critical cooling rate.

【0008】(2)臨界冷却速度を鋳鉄溶湯の凝固後の
最大冷却速度から求める 図2は、鋳鉄溶湯の凝固後の最大冷却速度を説明する図
である。例えば、冷し金などにより冷却速度を変化させ
ると、同一の性状を持つ溶湯でも、図2に示す時間−温
度線図(冷却曲線)となる。本発明では、冷却速度を鋳
鉄溶湯の凝固後の時間−温度の微分値の最大値、即ち
「最大冷却速度」をパラメータにとる。鋳鉄の凝固後か
らの冷却速度によれば、鋳鉄が相変態しない温度域にあ
るので、相変態による熱の出入りの影響を受けることが
ないからである。図2での種々の最大冷却速度に対して
晶出するチルの面積率の関係を図1に示す。図1に示す
ように、凝固後の最大冷却速度と晶出するチル面積率は
相関を有していることがわかる。ここで、チル面積率に
代えてチル体積率によっても同様に評価できる。以下、
本発明においては、チル面積率で代表して説明する。一
方、比較のため、球状黒鉛鋳鉄溶湯の共晶温度以上の1
200℃から1170℃までの平均の冷却速度と、晶出
するチルの面積率の関係を図8に示す。共晶温度以上か
らの冷却速度では、チル晶出と冷却速度との間に良好な
対応関係が得られていないことがわかる。
(2) The critical cooling rate of the cast iron melt after solidification
Figure 2 obtained from the maximum cooling rate is a diagram for explaining the maximum cooling rate after solidification of cast iron. For example, when the cooling rate is changed by a chiller or the like, even with molten metal having the same properties, the time-temperature diagram (cooling curve) shown in FIG. 2 is obtained. In the present invention, the cooling rate takes the maximum value of the differential value of the time-temperature after solidification of the cast iron melt, that is, the "maximum cooling rate" as a parameter. According to the cooling rate after the solidification of the cast iron, the cast iron is in the temperature range where the phase transformation does not occur, so that it is not affected by the heat input and output due to the phase transformation. FIG. 1 shows the relationship of the area ratio of chill crystallized with respect to various maximum cooling rates in FIG. As shown in FIG. 1, it can be seen that the maximum cooling rate after solidification and the chill area ratio that crystallizes have a correlation. Here, instead of the chill area ratio, the chill volume ratio can be similarly evaluated. Less than,
In the present invention, the chill area ratio will be representatively described. On the other hand, for comparison, the eutectic temperature of the spheroidal graphite cast iron melt is 1 or higher.
FIG. 8 shows the relationship between the average cooling rate from 200 ° C. to 1170 ° C. and the area ratio of crystallized chill. It can be seen that at a cooling rate from the eutectic temperature or higher, a good correspondence between the chill crystallization and the cooling rate is not obtained.

【0009】(3)臨界冷却速度からのチル晶出量/最
大冷却速度関数の傾きに基づきチル化傾向を評価する 図1の冷却速度とチル面積率に示すように、臨界冷却速
度からのチル晶出量/凝固後の最大冷却速度の傾き
(α)が小さいほどチル化し難い優れた溶湯であると判
断できる。
(3) Chill crystallization amount from the critical cooling rate / maximum
Chilling tendency is evaluated based on the slope of the large cooling rate function . As shown in the cooling rate and the chill area ratio in FIG. 1, the chill crystallization amount from the critical cooling rate / the gradient of the maximum cooling rate after solidification (α) is It can be judged that the smaller the molten metal is, the more difficult it is to chill.

【0010】(4)同一溶湯を種々の冷却速度で凝固さ
せ、その際のチル化の有無に基づき前記臨界冷却速度を
決定する 同一溶湯を種々の速度で冷却凝固させた場合に、チルが
晶出し始める冷却速度があり、その冷却速度よりも遅い
冷却速度ではチルが発生せず、逆に、その冷却速度より
も速い冷却速度ではチルが発生する。同一溶湯により
「臨界冷却速度」を決定できる。
(4) The same molten metal is solidified at various cooling rates.
The critical cooling rate based on the presence or absence of chilling at that time.
When the same molten metal to be determined is cooled and solidified at various speeds, there is a cooling rate at which chill begins to crystallize, and at a cooling rate slower than that cooling rate, chill does not occur, and conversely it is faster than that cooling rate. Chilling occurs at the cooling rate. The "critical cooling rate" can be determined by the same molten metal.

【0011】(5)臨界冷却速度は、チルの晶出の有無
およびその量を測温部のチル面積率またはチル体積率と
して測定する 本発明の溶湯チル化傾向の定量評価方法で重要なこと
は、測定部位と観察部位とを一致させることである。つ
まり、冷却曲線はテストピース中の限られた一部分の挙
動を表したものであるから、これに対応する組織を考え
る場合にはその限られた一部分を観なければならない。
従って、組織観察は測温のための熱電対の温度検出部近
傍で行い、チル化傾向はその部位のチル面積率またはチ
ル体積率で求めるのが好ましい。
(5) The critical cooling rate is whether chill is crystallized or not.
And its amount as the chill area ratio or chill volume ratio of the temperature measuring unit.
What is important in the method for quantitatively evaluating the molten metal chilling tendency of the present invention, which is measured by the above method, is to match the measurement site and the observation site. In other words, the cooling curve represents the behavior of a limited part of the test piece, so when considering the structure corresponding to this, the limited part must be viewed.
Therefore, it is preferable that the tissue observation is performed in the vicinity of the temperature detecting portion of the thermocouple for temperature measurement, and the chilling tendency is obtained by the chill area ratio or the chill volume ratio of that portion.

【0012】(6) 溶湯のチル化傾向評価装置は、測
温手段を持ち冷却速度を変え得る複数の鋳型に同時に鋳
鉄溶湯を注入する 本発明の溶湯のチル化傾向評価方法によれば、同一の溶
湯を同時に注湯して様々な冷却速度で凝固させたテスト
ピースを複数採取することが必要となる。なぜなら、時
間経過や温度低下に伴って溶湯性状のチル化傾向が変化
するからである。
(6) The molten metal chilling tendency evaluation device
Simultaneous casting in multiple molds that have temperature means and can change the cooling rate
According to the chilling tendency evaluation method for molten metal of the present invention, in which the molten iron is injected, it is necessary to pour the same molten metal at the same time and collect a plurality of test pieces solidified at various cooling rates. This is because the tendency of chilling of the molten metal property changes with the passage of time and a decrease in temperature.

【0013】(7)溶湯のチル化傾向評価方法を鋳鉄溶
湯の冷却過程におけるチル晶出の臨界冷却速度に基づい
てチル化傾向を評価し、その評価結果に基づいて溶湯性
状を調整し、その溶湯を用いて実質的にチルの無い鋳鉄
を製造する 前記(1)〜(5)の溶湯のチル化傾向評価方法を利用
することにより、鋳鉄溶湯の冷却過程におけるチル晶出
の臨界冷却速度に基づいてチル化傾向を評価し、その評
価結果に基づいて溶湯性状を調整し、その溶湯を用いて
実質的にチルの無い鋳鉄を製造することができる。
(7) A method for evaluating the chilling tendency of molten metal
Based on the critical cooling rate of chill crystallization in the cooling process of hot water
The chilling tendency is evaluated and the meltability is evaluated based on the evaluation result.
Adjusting the shape and using the molten metal, chill-free cast iron
The chilling tendency is evaluated based on the critical cooling rate of chill crystallization in the cooling process of the cast iron molten metal by utilizing the method for evaluating a chilling tendency of the molten metal of (1) to (5) for manufacturing The molten metal properties can be adjusted based on the results, and the chill-free cast iron can be manufactured using the molten metal.

【0014】[0014]

【実施例】以下、本発明の溶湯のチル化傾向評価方法お
よび装置、並びに溶湯のチル化傾向評価方法を利用した
鋳鉄の製造方法の一実施例を説明する。 (実施例1)溶湯のチル化傾向評価装置の実施例を図6
および図7により説明する。図6は、溶湯のチル化傾向
評価装置の見取り図であり、図7は図6の断面図であ
る。1は鋳型であり、溶湯注入口2と、堰3と、同心円
状に8箇所配設した空孔部4を有している。また、この
8箇所の空孔部4内には各々シェルカップ5を挿入し、
各シェルカップ5内には厚みtを変化させた冷し金6を
設けている。そして、鋳型1の底部より各々のシェルカ
ップ5に向けて熱電対7を挿入し、熱電対7の温度検知
部8はシェルカップ5内の中心位置になるように配設し
ている。熱電対7は、高温に耐えて応答速度の良い白金
−白金ロジウム熱電対を用いている。更に、各熱電対7
は、集合されてデータロガーによる温度測定器(図示せ
ず)に接続している。
EXAMPLES An example of a molten metal chilling tendency evaluation method and apparatus of the present invention and a cast iron manufacturing method using the molten metal chilling tendency evaluation method will be described below. (Example 1) An example of an apparatus for evaluating the tendency of molten metal to chill is shown in FIG.
And FIG. 7 demonstrates. FIG. 6 is a sketch of a molten metal chilling tendency evaluation device, and FIG. 7 is a sectional view of FIG. Reference numeral 1 denotes a mold, which has a molten metal injection port 2, a weir 3, and voids 4 concentrically arranged at eight positions. In addition, the shell cups 5 are inserted into the eight hole portions 4 respectively,
Inside each shell cup 5, a cooling metal 6 having a different thickness t is provided. Then, thermocouples 7 are inserted from the bottom of the mold 1 toward the respective shell cups 5, and the temperature detecting portion 8 of the thermocouple 7 is arranged so as to be at the center position in the shell cups 5. The thermocouple 7 is a platinum-platinum-rhodium thermocouple that withstands high temperatures and has a good response speed. In addition, each thermocouple 7
Are connected together and connected to a temperature measuring device (not shown) by a data logger.

【0015】溶湯が注入口2に注入されると、堰3を介
して8箇所のシェルカップ5内に同時に注湯される。次
に、各シェルカップ5内の溶湯は、厚みtを変化させた
冷し金6により各々凝固を開始する。そして、各シェル
カップ5内に設けた温度検知部8で検知した温度を温度
測定器で解析することにより、図2に示す時間−温度線
図(冷却曲線)を得る。このように、鋳鉄溶湯を同時に
注入し、同一性状の溶湯から同時に冷却速度の異なる多
数のテストピースを得ることができる。
When the molten metal is poured into the pouring port 2, the molten metal is simultaneously poured into the shell cups 5 at eight locations via the weir 3. Next, the molten metal in each shell cup 5 starts to solidify by the cooling metal 6 with the thickness t changed. Then, the temperature detected by the temperature detecting unit 8 provided in each shell cup 5 is analyzed by the temperature measuring device to obtain the time-temperature diagram (cooling curve) shown in FIG. In this way, it is possible to simultaneously inject molten cast iron and simultaneously obtain a large number of test pieces with different cooling rates from the molten metal having the same properties.

【0016】シェルカップ5内の溶湯が凝固後、温度検
知部8近傍の部分からテストピースを切り出し、エメリ
ー紙で#2400まで機械研磨した後、バフ研磨にて鏡
面仕上げ後ナイタール腐食し、半径約3mm以内を検鏡
する。チル晶出が認められたテストピースについては、
さらに硫化アンモニウム溶液に約60S浸漬し、そのテ
ストピースを200倍にて検鏡し、温度検知部近傍の任
意の5視野を画像解析装置にて測定し、その平均値をチ
ル面積率とする。図9は、硫化アンモニウム溶液に約6
0S浸漬した後のテストピースの金属組織顕微鏡写真で
ある。図9で、白色部は晶出しているチルで、黒い部分
はチル以外の部分である。
After the molten metal in the shell cup 5 is solidified, a test piece is cut out from the portion in the vicinity of the temperature detecting portion 8 and mechanically polished to # 2400 with emery paper, and then buffed to a mirror finish and nital corrosion to a radius of about 2. Examine within 3 mm. For the test pieces in which chill crystallization was observed,
Further, the test piece is immersed in an ammonium sulfide solution for about 60 S, and the test piece is observed at a magnification of 200 times. Any 5 fields of view in the vicinity of the temperature detecting portion are measured by an image analyzer, and the average value is taken as the chill area ratio. FIG. 9 shows about 6 for ammonium sulfide solution.
It is a metallographic micrograph of the test piece after being immersed in 0S. In FIG. 9, the white part is the crystallized chill and the black part is the part other than the chill.

【0017】(実施例2)同一の溶湯において冷却速度
とチル晶出量が相関あることを、球状黒鉛鋳鉄に適用し
た実施例で説明する。溶湯は表1に示す球状黒鉛鋳鉄溶
湯(表示以外として、Feおよび不可避不純物を含む)
である。溶解は高周波誘導溶解にて行い、出湯温度は1
550±10℃、注湯温度は1410±10℃とする。
球状化処理および1次接種は50kg用取鍋にてサンド
イッチ法にて行い、2次接種は注湯直前に取鍋に添加後
攪拌する方法を採る。以上の溶湯により、鋳造を3チャ
ージ行い、前記の溶湯のチル化傾向評価装置を用いてチ
ル化傾向を測定する。
(Embodiment 2) The fact that the cooling rate and the amount of chill crystallization are correlated in the same molten metal will be explained in an embodiment applied to spheroidal graphite cast iron. The molten metal is a spheroidal graphite cast iron molten metal shown in Table 1 (including Fe and unavoidable impurities except for the indication)
Is. High-frequency induction melting is used for melting, and tapping temperature is 1
550 ± 10 ° C, pouring temperature is 1410 ± 10 ° C.
The spheroidizing treatment and the primary inoculation are carried out by a sandwich method in a ladle for 50 kg, and the secondary inoculation is carried out by adding the mixture to the ladle immediately before pouring and stirring. Casting is performed 3 times with the above molten metal, and the chilling tendency is measured by using the molten metal chilling tendency evaluation device.

【0018】[0018]

【表1】 溶湯の化学成分(mass%) Si Mn Mg CE値 溶湯A 3.73 2.46 0.28 0.017 0.009 0.035 4.55 溶湯B 3.74 2.55 0.29 0.015 0.010 0.039 4.59 溶湯C 3.82 2.42 0.25 0.015 0.013 0.039 4.63[Table 1] Chemical composition of molten metal (mass%) C Si Mn P S Mg CE value Molten metal A 3.73 2.46 0.28 0.017 0.009 0.035 4.55 Molten metal B 3.74 2.55 0.29 0.015 0.010 0.039 4.59 Molten metal C 3.82 2.42 0.25 0.015 0.013 0.039 4.63

【0019】その結果を、図3の凝固後の最大冷却速度
とチル面積率の関係図に示す。同一条件で作った溶湯で
も、厳密に言えば各チャージ間に若干のバラツキを生じ
ることが考えられる。しかし、溶湯A、溶湯Bおよび溶
湯Cの何れも、凝固後の最大冷却速度とチル面積率との
関係は、ほぼ同じで破線に乗り、臨界冷却速度(P)は
約7℃/sである。以上のことから、本発明の溶湯チル
化傾向の評価方法は、再現性があることがわかる。
The results are shown in the relationship diagram between the maximum cooling rate after solidification and the chill area ratio in FIG. Strictly speaking, it is conceivable that some variations will occur between the charges even if the molten metal is made under the same conditions. However, in all of molten metal A, molten metal B, and molten metal C, the relationship between the maximum cooling rate after solidification and the chill area ratio is almost the same, and the broken line appears, and the critical cooling rate (P) is about 7 ° C./s. . From the above, it is understood that the method for evaluating the tendency of molten metal chilling of the present invention has reproducibility.

【0020】(実施例3)CE(炭素当量)値が変わる
とチル化傾向が変わる。これを利用して、CE値を変化
させた場合に追随して、冷却速度に対してチル晶出量が
変化するかの確認を行った結果を実施例により説明す
る。CE値の高い溶湯として、溶湯Cに対してSi%を
大きくした溶湯Dと、CE値の低い溶湯として溶湯Cに
対してSi%を小さくした溶湯Eに成分調整を行い鋳造
を行う。表2は各チャージの化学成分(表示以外とし
て、Feおよび不可避不純物を含む)である。
(Example 3) When the CE (carbon equivalent) value changes, the chilling tendency changes. Utilizing this, the result of confirming whether the chill crystallization amount changes with the cooling rate following the change of the CE value will be described by way of examples. Casting is performed by adjusting the components of a molten metal D having a high Si value and a large Si% relative to the molten metal C and a molten metal E having a low CE value of a small Si% relative to the molten metal C. Table 2 shows the chemical composition of each charge (including Fe and unavoidable impurities, except for the indication).

【0021】[0021]

【表2】 溶湯の化学成分(mass%) Si Mn Mg CE値 溶湯C 3.82 2.42 0.25 0.015 0.013 0.039 4.63 溶湯D 3.84 2.57 0.24 0.014 0.010 0.038 4.70 溶湯E 3.82 2.09 0.27 0.010 0.009 0.033 4.52TABLE 2 Chemical composition of the molten metal (mass%) C Si Mn P S Mg CE value molten C 3.82 2.42 0.25 0.015 0.013 0.039 4.63 melt D 3.84 2.57 0.24 0.014 0.010 0.038 4.70 melt E 3.82 2.09 0.27 0.010 0.009 0.033 4.52

【0022】図4は、CE値を変化させた表2成分の凝
固後の最大冷却速度とチル面積率の結果を示す図であ
る。溶湯Dは臨界冷却速度(Pd)が約16゜/sと、
実施例1の溶湯Cに比較して10゜/s大きい値を示
し、チル化傾向が小さい溶湯であることを示している。
これに対し、溶湯Eは臨界冷却速度(Pe)が約4゜/
sと、溶湯Cよりも3゜/s小さく、チル化傾向が大き
い溶湯であることを示している。このように、CE値を
高くなると臨界冷却速度が大きく上昇し、CE値相応に
臨界冷却速度が変化することが確認され、本発明により
チル化傾向の差異が明確にされる。
FIG. 4 is a diagram showing the results of the maximum cooling rate and the chill area ratio after solidification of the components of Table 2 having different CE values. The critical cooling rate (Pd) of molten metal D is about 16 ° / s,
Compared with the molten metal C of Example 1, a value 10 ° / s larger was shown, indicating that the molten metal has a smaller tendency to chill.
On the other hand, the melt E has a critical cooling rate (Pe) of about 4 ° /
s, which is 3 ° / s smaller than that of the molten metal C and has a large tendency of chilling. Thus, it was confirmed that the higher the CE value, the higher the critical cooling rate and the more the critical cooling rate changes in accordance with the CE value. The present invention makes clear the difference in the chilling tendency.

【0023】(実施例4)次に、本発明の溶湯のチル化
傾向評価方法を利用して、チル晶出防止に効果がある球
状黒鉛鋳鉄溶湯へのBi添加量の検討を行い、チル化傾
向の少ない溶湯を製造する実施例につき説明する。Bi
は強力な球状化阻害元素であるが、極微量の添加で黒鉛
粒数増加作用を示すことが知られており、球状黒鉛鋳鉄
のチル化傾向低減の一つの有効な方策として期待されて
いる。ところが、黒鉛粒数が最大となるBi添加量は5
0ppm(0.005%)〜100ppm(0.010
%)とされている。しかし、その最適添加量は定かでは
ない。そこで本発明を実施してBi添加量とチル化傾向
との相関を検討する。溶湯処理は、球状化剤として、F
e−46Si−5.8Mg−3.5Ca−1.2REM
を含有を用いた他は、実施例1と同様である。Bi添加
は、金属Biを高周波溶解炉からの出湯中に取鍋添加す
る方法を採り、添加量は25ppm,50ppm,10
0ppm、および400ppmとする。表4に各チャー
ジの化学成分(但し、Biはppm単位、表示以外とし
て、Feおよび不可避不純物を含む)を示す。
(Example 4) Next, by utilizing the method for evaluating the chilling tendency of the molten metal of the present invention, the amount of Bi added to the spheroidal graphite cast iron molten metal which is effective in preventing chill crystallization is examined, and chilling is performed. An example of producing a molten metal having a low tendency will be described. Bi
Is a strong spheroidization-inhibiting element, but is known to exhibit an effect of increasing the number of graphite particles with the addition of an extremely small amount, and is expected as one effective measure for reducing the chilling tendency of spheroidal graphite cast iron. However, the Bi addition amount that maximizes the number of graphite particles is 5
0 ppm (0.005%) to 100 ppm (0.010
%). However, the optimum addition amount is not clear. Therefore, the present invention is carried out to examine the correlation between the Bi addition amount and the chilling tendency. The molten metal treatment is F as a spheroidizing agent.
e-46Si-5.8Mg-3.5Ca-1.2REM
The same as Example 1 except that the inclusion of was used. For Bi addition, a method of adding metal Bi to a ladle during tapping from a high-frequency melting furnace is used, and the addition amount is 25 ppm, 50 ppm, 10
It is set to 0 ppm and 400 ppm. Table 4 shows the chemical components of each charge (however, Bi is in ppm, and Fe and unavoidable impurities are included except for the indication).

【0024】[0024]

【表4】 溶湯の化学成分(mass%)、Biは添加量 Si Mn Mg Bi(ppm) CE値 溶湯F 3.78 2.46 0.27 0.016 0.007 0.041 25 4.60 溶湯G 3.74 2.44 0.28 0.013 0.007 0.041 50 4.55 溶湯H 3.80 2.40 0.28 0.014 0.009 0.037 100 4.60 溶湯I 3.82 2.39 0.25 0.014 0.008 0.034 400 4.62 [Table 4] Chemical composition (mass%) of molten metal, Bi is addition amount C Si Mn P S S Mg Bi (ppm ) CE value Molten metal F 3.78 2.46 0.27 0.016 0.007 0.041 25 4.60 Molten metal G 3.74 2.44 0.28 0.013 0.007 0.041 50 4.55 Molten metal H 3.80 2.40 0.28 0.014 0.009 0.037 100 4.60 Molten metal I 3.82 2.39 0.25 0.014 0.008 0.034 400 4.62

【0025】そして、得られた結果を図5に示す。比較
のために実施例1における溶湯Cの最大冷却速度とチル
面積の関係を、図中の破線で示す。図5に示すように臨
界冷却速度は、溶湯F(Bi:25ppm)が約7゜/
s、溶湯G(Bi:50ppm)が約12゜/s、溶湯
H(Bi:100ppm)が約7゜/s、および溶湯I
(Bi:400ppm)が約2゜/sである。なお、溶
湯C(Bi:無添加、破線で示す)の臨界冷却速度は約
7゜/sである。図5から、溶湯Cに対して溶湯I(B
i:400ppm)は臨界冷却速度が極端に小さく、B
i添加量が必要以上に多いとチル化を大きく助長してし
まうことがわかる。これに対し、溶湯G(Bi:50p
pm)は臨界冷却速度が大きく、Bi:50ppmの添
加によりチル化が大きく抑制され、Bi:50ppmが
適正な添加量であることがわかる。また、臨界冷却速度
のみに注目すれば、溶湯F(Bi:25ppm)、およ
び溶湯H(Bi:100ppm)は溶湯Cとほぼ同じで
あるが、Bi:25〜100ppm添加の溶湯は、凝固
後の最大冷却速度が10〜40℃/sの範囲では溶湯C
に対してチル量が少ないことから、この範囲のBi添加
でチル化を抑制できることがわかる。以上のように、球
状黒鉛鋳鉄のある材質においては、Biを50ppm添
加した際に最も臨界冷却速度が大きく、チル化傾向が小
さくなり、Biの適正添加によりチル化が抑制され、こ
れを利用してチル発生の無い健全な球状黒鉛鋳鉄を製造
することが可能となる。
The obtained results are shown in FIG. For comparison, the relationship between the maximum cooling rate of the molten metal C and the chill area in Example 1 is shown by the broken line in the figure. As shown in FIG. 5, the critical cooling rate is about 7 ° / mol for molten metal F (Bi: 25 ppm).
s, molten metal G (Bi: 50 ppm) is approximately 12 ° / s, molten metal H (Bi: 100 ppm) is approximately 7 ° / s, and molten metal I
(Bi: 400 ppm) is about 2 ° / s. The critical cooling rate of the molten metal C (Bi: no addition, indicated by a broken line) is about 7 ° / s. From FIG. 5, the melt I (B
i: 400 ppm) has an extremely small critical cooling rate, and B
It can be seen that chilling is greatly promoted if the amount of i added is unnecessarily large. On the other hand, molten metal G (Bi: 50p
pm) has a high critical cooling rate, and addition of Bi: 50 ppm significantly suppresses chilling, and Bi: 50 ppm is an appropriate addition amount. If attention is paid only to the critical cooling rate, the molten metal F (Bi: 25 ppm) and the molten metal H (Bi: 100 ppm) are almost the same as the molten metal C, but the molten metal added with Bi: 25 to 100 ppm is Molten metal C when the maximum cooling rate is in the range of 10-40 ° C / s
On the other hand, since the amount of chill is small, it is understood that the addition of Bi in this range can suppress chilling. As described above, in the material having spheroidal graphite cast iron, when Bi is added at 50 ppm, the critical cooling rate is the largest and the chilling tendency is small, and chilling is suppressed by proper addition of Bi. As a result, it is possible to manufacture sound spheroidal graphite cast iron without chilling.

【0026】[0026]

【発明の効果】以上、詳細に説明の通り、本発明の溶湯
のチル化傾向評価方法および装置によれば、冷却速度を
種々に変化させた冷却曲線を解析することによりチル晶
出の臨界冷却速度を求め、この臨界冷却速度の差異から
チル化傾向を判定することができる。そして、得られる
臨界冷却速度は単位が℃/sで表される定量的、普遍的
なものであるから、チル化傾向を客観的に比較して検討
することができる。また、冷却曲線の測定部位と組織観
察部位とを一致させるので、冷却状態とチル晶出との関
係を正しく対応させた正確な評価を行うことができる。
加えて、本発明の溶湯のチル化傾向評価方法を利用した
鋳鉄の製造方法によれば、最適に性状を調整した溶湯に
よりチルのない鋳鉄を効率よく生産することが可能とな
る。
As described above in detail, according to the method and apparatus for evaluating the chilling tendency of molten metal of the present invention, the critical cooling of chill crystallization can be performed by analyzing the cooling curves with various cooling rates. The rate can be obtained, and the chilling tendency can be determined from the difference in the critical cooling rate. Since the obtained critical cooling rate is a quantitative and universal one expressed in units of ° C / s, the chilling tendency can be objectively compared and examined. Further, since the measured portion of the cooling curve and the observed portion of the structure are made to coincide with each other, it is possible to perform an accurate evaluation in which the relationship between the cooled state and the chill crystallization is correctly associated.
In addition, according to the method for producing cast iron using the molten metal chilling tendency evaluation method of the present invention, it becomes possible to efficiently produce chill-free cast iron with the molten metal whose properties are optimally adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の最大冷却速度に対して晶出す
るチル面積率の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a chill area ratio of crystallization and a maximum cooling rate in an example of the present invention.

【図2】鋳鉄溶湯の凝固後の最大冷却速度を説明する図
である。
FIG. 2 is a diagram illustrating a maximum cooling rate after solidification of a cast iron molten metal.

【図3】本発明の別の実施例の凝固後の最大冷却速度と
チル面積率の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the maximum cooling rate after solidification and the chill area ratio in another example of the present invention.

【図4】本発明の更に別の実施例のCE値を変化させた
表2に示す成分の凝固後の最大冷却速度とチル面積率の
結果を示す図である。
FIG. 4 is a diagram showing the results of maximum cooling rate and chill area ratio after solidification of the components shown in Table 2 in which the CE value was changed in still another example of the present invention.

【図5】本発明の更にまた別の実施例のBi添加量を変
えた場合の凝固後の最大冷却速度とチル面積率の結果を
示す図である
FIG. 5 is a diagram showing the results of the maximum cooling rate and the chill area ratio after solidification in the case where the amount of Bi added is changed in still another embodiment of the present invention.

【図6】本発明のチル化傾向評価装置の一実施例の見取
り図である。
FIG. 6 is a sketch of an embodiment of the chilling tendency evaluation device of the present invention.

【図7】図6のチル化傾向評価装置の断面図である。7 is a cross-sectional view of the chilling tendency evaluation device of FIG.

【図8】比較のための、球状黒鉛鋳鉄溶湯の共晶温度以
上の1200℃から1170℃までの平均の冷却速度
と、晶出するチルの面積率の関係を示す図である。
FIG. 8 is a diagram showing, for comparison, the relationship between the average cooling rate from 1200 ° C. to 1170 ° C. above the eutectic temperature of the spheroidal graphite cast iron melt and the area ratio of crystallized chill.

【図9】硫化アンモニウム溶液に浸漬した後のテストピ
ースの金属組織顕微鏡写真である。
FIG. 9 is a metallographic micrograph of a test piece after being immersed in an ammonium sulfide solution.

【符号の説明】[Explanation of symbols]

1:鋳型、 2:注入口、 3:堰、
4:空孔部、5:シェルカップ、 6:冷し金、 7:
熱電対、 8:温度検出部、t:厚み。
1: mold, 2: injection port, 3: weir,
4: hole part, 5: shell cup, 6: chilled part, 7:
Thermocouple, 8: temperature detection part, t: thickness.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 鋳鉄溶湯の冷却過程におけるチル晶出の
臨界冷却速度に基づいてチル化傾向を評価することを特
徴とする溶湯のチル化傾向評価方法。
1. A method for evaluating a chilling tendency of a molten metal, which comprises evaluating a chilling tendency based on a critical cooling rate of chill crystallization in a cooling process of a cast iron molten metal.
【請求項2】 前記臨界冷却速度を鋳鉄溶湯の凝固後の
最大冷却速度から求める請求項1記載の溶湯のチル化傾
向評価方法。
2. The chilling tendency evaluation method for molten metal according to claim 1, wherein the critical cooling rate is obtained from the maximum cooling rate after solidification of the cast iron molten metal.
【請求項3】 鋳鉄溶湯の冷却過程におけるチル晶出の
臨界冷却速度からのチル晶出量−最大冷却速度関数の傾
きに基づきチル化傾向を評価することを特徴とする請求
項1または請求項2記載の溶湯のチル化傾向評価方法。
3. The chilling tendency is evaluated based on the slope of the chill crystallization amount-maximum cooling rate function from the critical cooling rate of chill crystallization in the cooling process of the cast iron molten metal. 2. The chilling tendency evaluation method for molten metal according to 2.
【請求項4】 同一溶湯を種々の冷却速度で凝固させ、
その際のチル化の有無に基づき前記臨界冷却速度を決定
する請求項1乃至請求項3いずれかに記載の溶湯のチル
化傾向評価方法。
4. The same molten metal is solidified at various cooling rates,
The chilling tendency evaluation method for molten metal according to claim 1, wherein the critical cooling rate is determined based on the presence or absence of chilling at that time.
【請求項5】 臨界冷却速度を決定するにあたり、チル
の晶出の有無およびその量を測温部のチル面積率または
チル体積率として測定する請求項1乃至請求項4記載い
ずれかに記載の溶湯のチル化傾向評価方法。
5. The method according to claim 1, wherein in determining the critical cooling rate, the presence or absence of chill crystallization and the amount thereof are measured as a chill area ratio or a chill volume ratio of the temperature measuring section. Method for evaluating chilling tendency of molten metal.
【請求項6】 測温手段を持ち冷却速度を変え得る複数
の鋳型に同時に鋳鉄溶湯を注入することを特徴とする溶
湯のチル化傾向評価装置。
6. An apparatus for evaluating the tendency of molten metal chilling, wherein molten cast iron is simultaneously injected into a plurality of molds having temperature measuring means and capable of changing cooling rates.
【請求項7】 鋳鉄溶湯の冷却過程におけるチル晶出の
臨界冷却速度に基づいてチル化傾向を評価し、その評価
結果に基づいて溶湯性状を調整し、その溶湯を用いて実
質的にチルの無い鋳鉄を製造することを特徴とする溶湯
のチル化傾向評価方法を利用した鋳鉄の製造方法。
7. The chilling tendency is evaluated based on the critical cooling rate of chill crystallization during the cooling process of the cast iron molten metal, and the molten metal properties are adjusted based on the evaluation result. A method for producing cast iron using a method for evaluating the chilling tendency of molten metal, which comprises producing cast iron that does not exist.
JP6128455A 1994-06-10 1994-06-10 Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method Pending JPH07333180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6128455A JPH07333180A (en) 1994-06-10 1994-06-10 Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128455A JPH07333180A (en) 1994-06-10 1994-06-10 Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method

Publications (1)

Publication Number Publication Date
JPH07333180A true JPH07333180A (en) 1995-12-22

Family

ID=14985137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128455A Pending JPH07333180A (en) 1994-06-10 1994-06-10 Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method

Country Status (1)

Country Link
JP (1) JPH07333180A (en)

Similar Documents

Publication Publication Date Title
US4667725A (en) Method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
Djurdjevic et al. Determination of dendrite coherency point characteristics using first derivative curve versus temperature
JP2510947B2 (en) Method for discriminating presence / absence of spheroidizing agent or CV agent in molten cast iron and chilling tendency of flake graphite cast iron, and sampling container used therefor
JP2750832B2 (en) Method for determining the properties of molten cast iron
CN116312900B (en) Hypoeutectic aluminum alloy melt manufacturability evaluation method
Cojocaru et al. Solidification influence in the control of inoculation effects in ductile cast irons by thermal analysis
KR20090086222A (en) New thermal analysis device
JP2003075431A (en) Sampling container for thermal analysis in metal molten metal
JPH07333180A (en) Chilling tendency evaluation method for molten metal and device therefor, and manufacture of cast iron using the evaluation method
WO2016204683A1 (en) Apparatus and method for analysis of molten metals
Ozbayraktar et al. Effect of superheat on the solidification structures of AISI 310S austenitic stainless steel
JPH0596365A (en) Method for deciding shrinkage property of molten metal
Žbontar et al. A modified test for determining the fluidity of ductile cast iron
KR102131005B1 (en) Solidification simulator
Isaev Effectiveness of using large cooling elements to alleviate axial segregation in continuous-cast ingots
Bhat et al. Speed of recalescence as a measure of graphite nucleation in spheroidal graphite cast iron castings
Svidró et al. Determination of the columnar to equiaxed transition in hypoeutectic lamellar cast iron
JPH10206358A (en) Chilling tendency evaluating method for molten metal and substantially unchilled cast iron using chilling tendency evaluating method for molten metal
David et al. Gating system design to cast thin wall ductile iron plates
JPH0596343A (en) Method for designing casting plan for iron casting utilizing solidification analysis
JP7355250B2 (en) Continuous steel casting method and steel test solidification device
Fraś et al. The transition from gray to white cast iron during solidification: Part III. Thermal analysis
Fraś et al. Eutectic cell and nodule count in grey and nodular cast irons
Kawashima et al. Cooling Rate and Graphite Structure of Final Eutectic Solidification Part in Cast Iron
Chen et al. Volume change during the solidification of SG iron: comparison between experimental results and simulation