JPH07333051A - Non-contact vibration detector - Google Patents
Non-contact vibration detectorInfo
- Publication number
- JPH07333051A JPH07333051A JP13158294A JP13158294A JPH07333051A JP H07333051 A JPH07333051 A JP H07333051A JP 13158294 A JP13158294 A JP 13158294A JP 13158294 A JP13158294 A JP 13158294A JP H07333051 A JPH07333051 A JP H07333051A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- magnetic
- subject
- magnet
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
Abstract
(57)【要約】
【構成】被検体1の上に磁石2などの磁場発生装置を設
け、これに対向して非接触に設置された架台7に固着さ
れた磁気計測装置4と機械振動計測装置6とを設け、磁
気計測装置4によって計測される被検体1と架台7との
間の相対変位を表す信号を、機械振動計測装置6によっ
て計測される架台7の変位を表す信号によって補正する
ことにより、被検体1の変位を計測する被接触振動検出
装置。
【効果】被検体の振動を、非接触で、精度よく、かつ安
価に計測できる。
(57) [Summary] [Structure] A magnetic field generator such as a magnet 2 is provided on a subject 1, and a magnetic measurement device 4 and a mechanical vibration measurement which are fixed to a pedestal 7 facing the non-contact and installed in a non-contact manner. The device 6 is provided, and the signal representing the relative displacement between the subject 1 and the gantry 7 measured by the magnetic measuring device 4 is corrected by the signal representing the displacement of the gantry 7 measured by the mechanical vibration measuring device 6. As a result, a contacted vibration detection device that measures the displacement of the subject 1. [Effect] The vibration of the subject can be measured accurately and inexpensively without contact.
Description
【0001】[0001]
【産業上の利用分野】本発明は、機械的に振動する任意
の被検体または磁石の振動量を測定する装置に係わり、
前記振動量を前記被検体または磁石に非接触に測定でき
る高精度、かつ安価な装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of vibration of any mechanically vibrating object or magnet.
The present invention relates to a highly accurate and inexpensive device that can measure the vibration amount in a non-contact manner with the subject or the magnet.
【0002】[0002]
【従来の技術】一般に被検体の振動を検出する場合、そ
の被検体の振動を計測したい部位に加速度計や歪みゲー
ジなどの検出器を貼付け、計測した電気信号を変位に換
算する。しかし、被検体が液体窒素や液体ヘリウムなど
で極低温に冷却されている場合や、逆に高温の場合、ま
たは表面に検出器貼付けが不可能な場合など被検体に被
接触で振動を計測したい場合には、レーザ干渉計の様な
高価かつ大がかりな測定装置が必要であった。被検体が
超伝導磁石、または常伝導磁石、または永久磁石などの
磁石である場合には、特願平5−236573 号明細書に記載
のように、磁石に対向して磁気検出器を設け、振動によ
る磁気検出器信号の変化を利用して、振動量を比較的安
価に非接触測定することが可能であった。この従来技術
による非接触振動測定装置の概念図を図2に示す。この
図において、14は振動の被検体である磁石、15は磁
石14に電流を供給して磁場を発生させる電流源、3は
磁気プローブ、4は磁気プローブ3の信号を処理する磁
気計測装置、7は磁気プローブ3を固着する架台であ
る。この図において、磁石14が振動すると磁気プロー
ブ3を鎖交する磁束が変化し、その磁束変化量に応じた
電圧を発生する。磁気計測装置4はこの電圧を計測し、
最後にこの電圧値からもとの振動量を換算出力する。こ
のような従来技術による被接触振動測定装置では、被検
体として磁石14のみが対象になり、任意一般の被検体
を扱えないこと、磁気プローブ3で計測する信号は磁石
14と架台7との相対変位量であり、架台7が振動する
場合には、精度よく被検体である磁石14の振動量を算
出できないことなどの問題があった。2. Description of the Related Art Generally, when detecting a vibration of a subject, a detector such as an accelerometer or a strain gauge is attached to a portion where the vibration of the subject is desired to be measured, and the measured electric signal is converted into a displacement. However, if you want to measure vibration by touching the subject, such as when the subject is cooled to extremely low temperature with liquid nitrogen or liquid helium, or when it is hot, or when it is not possible to attach the detector to the surface. In that case, an expensive and large-scale measuring device such as a laser interferometer was required. When the subject is a magnet such as a superconducting magnet, a normal conducting magnet, or a permanent magnet, a magnetic detector is provided facing the magnet as described in Japanese Patent Application No. 5-236573. It was possible to measure the amount of vibration in a non-contact manner relatively inexpensively by utilizing the change in the magnetic detector signal due to the vibration. FIG. 2 shows a conceptual diagram of the non-contact vibration measuring device according to this conventional technique. In this figure, 14 is a magnet which is an object to be oscillated, 15 is a current source for supplying a current to the magnet 14 to generate a magnetic field, 3 is a magnetic probe, 4 is a magnetic measuring device for processing signals of the magnetic probe 3, Reference numeral 7 is a mount for fixing the magnetic probe 3. In this figure, when the magnet 14 vibrates, the magnetic flux linking the magnetic probe 3 changes, and a voltage corresponding to the amount of change in the magnetic flux is generated. The magnetic measuring device 4 measures this voltage,
Finally, the original vibration amount is converted and output from this voltage value. In such a contact-type vibration measuring apparatus according to the related art, only the magnet 14 is targeted as the subject, and any general subject cannot be handled, and the signal measured by the magnetic probe 3 is relative to the magnet 14 and the pedestal 7. This is the amount of displacement, and when the gantry 7 vibrates, there was a problem that the amount of vibration of the magnet 14, which is the subject, could not be calculated accurately.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、二つ
の従来技術の問題点を解決し、すなわち、磁石のみに限
らない任意の被検体を対象とでき、かつ高精度,安価な
非接触振動検出装置を提供することにある。The object of the present invention is to solve the problems of the two prior arts, that is, it is possible to target any object not limited to a magnet, and it is highly accurate, inexpensive and non-contact. It is to provide a vibration detection device.
【0004】[0004]
【課題を解決するための手段】上記第一の課題、すなわ
ち、磁石のみに限らない任意の被検体を対象とするとい
う課題は、前記被検体に電磁石または永久磁石などの磁
場発生手段を固着することにより解決できる。上記第二
の課題、すなわち、精度よく被検体の振動量を算出する
という課題は、前記被検体に非接触に対向する同一架台
上に磁気検出手段に加えて振動検出手段を固着し、前記
磁気検出手段及び該振動検出手段からの信号を処理する
手段を備えることにより解決できる。Means for Solving the Problems The first problem, namely, the problem of targeting an arbitrary object not limited to a magnet, is to fix a magnetic field generating means such as an electromagnet or a permanent magnet to the object. It can be solved by The second problem, that is, the problem of accurately calculating the amount of vibration of the subject, is to fix the vibration detection means in addition to the magnetic detection means on the same frame facing the subject in a non-contact manner, The problem can be solved by providing the detecting means and the means for processing the signal from the vibration detecting means.
【0005】[0005]
【作用】被検体の振動を測定したい部位に電磁石または
永久磁石などの磁場発生手段を固着すると、この磁場発
生手段の発生する磁束は、被検体に非接触に対向する架
台上に設置された磁気プローブやホール素子などの磁気
検出器に鎖交する。この状態で、被検体が振動すると、
磁場発生手段は被検体に固着されているので被検体と同
じ振動を起こす。その結果、磁気検出器に鎖交する磁束
は、架台が静止している場合には被検体の振動に比例し
て変動する。磁気検出器はこの変動する磁束に比例する
電圧を発生し、これに電気的に接続された磁気計測装置
により検出される。しかし、一般には架台も振動するか
ら、この振動によっても磁気検出器に鎖交する磁束は変
動する。従って、磁気計測装置で検出される電圧は、被
検体と架台との相対変位に比例することになる。そこ
で、被検体の振動のみを精度よく取り出すために、架台
上に磁気検出器に加えて振動検出器を固着する。この振
動検出器は、例えば加速度センサや歪みゲージなどより
なり、それが固着された架台の振動に比例する電圧を発
生し機械振動計測装置により検出される。最後に信号処
理手段を設けて、被検体と架台との相対変位に比例する
磁気計測装置の電圧と、架台の振動に比例する機械振動
計測装置の電圧とを比較演算することにより、被検体の
振動のみを取り出すことができ、従来技術に比べて高精
度な非接触振動計測を実現することができる。When a magnetic field generating means such as an electromagnet or a permanent magnet is fixed to a site where vibration of the object is to be measured, the magnetic flux generated by the magnetic field generating means is a magnetic field which is installed on a pedestal facing the object in a non-contact manner. Interlinks with magnetic detectors such as probes and Hall elements. When the subject vibrates in this state,
Since the magnetic field generating means is fixed to the subject, it causes the same vibration as the subject. As a result, the magnetic flux interlinking with the magnetic detector fluctuates in proportion to the vibration of the subject when the gantry is stationary. The magnetic detector produces a voltage proportional to this fluctuating magnetic flux, which is detected by a magnetic measuring device electrically connected thereto. However, since the pedestal also generally vibrates, the magnetic flux linked to the magnetic detector also fluctuates due to this vibration. Therefore, the voltage detected by the magnetic measurement device is proportional to the relative displacement between the subject and the gantry. Therefore, in order to accurately extract only the vibration of the subject, the vibration detector is fixed on the pedestal in addition to the magnetic detector. This vibration detector is composed of, for example, an acceleration sensor or a strain gauge, and generates a voltage proportional to the vibration of the pedestal to which it is fixed and is detected by the mechanical vibration measuring device. Finally, a signal processing means is provided to compare and calculate the voltage of the magnetic measuring device proportional to the relative displacement between the subject and the gantry and the voltage of the mechanical vibration measuring device proportional to the vibration of the gantry, Only the vibration can be taken out, and highly accurate non-contact vibration measurement can be realized as compared with the conventional technique.
【0006】[0006]
【実施例】本発明の一実施例を図1に示す。図におい
て、1は振動を計測すべき被検体、2は電磁石または永
久磁石などの磁石、3は磁気プローブ、4は磁気計測装
置、5は加速度計、6は機械振動計測装置、7は架台で
ある。磁気計測装置4及び機械振動計測装置6に計測さ
れる電圧の様子を図7及び図8を用いて説明する。これ
らの図において、16は磁石2の作る磁力線、17は被
検体1の振動を表す矢印、18は磁気プローブ3の電圧
波形、19は加速度計の電圧波形、20は架台7の振動
を表す矢印、21は磁気プローブ3の電圧波形、22は
加速度計の電圧波形である。まず、図7は、矢印17で
示すように被検体1のみが振動し、架台7は静止してい
る様子を表している。振動17によって磁石2も被検体
1と一緒に動き、磁石2の作る磁力線16も動く。その
結果、磁気プローブを横切って磁力線16が出入りし、
電圧波形18が計測される。しかし、架台7は静止して
いるため、加速度計5の電圧波形19には何も現れな
い。次に、図8は、矢印20で示すように架台7のみが
振動し、被検体1は静止している様子を表している。こ
の振動20によっても磁気プローブ3を横切って磁力線
16が出入りするので、電圧波形18と同様な電圧波形
21が計測される。また、加速度計は架台7と共に振動
するので、電圧波形22を出力する。ここで電圧波形2
1と22は、同じ架台7の振動により発生しているの
で、それぞれの波高と位相の間には一対一の関係が成り
立つ。すなわち、加速度計の電圧波形22から、架台7
の振動に伴う磁気プローブの電圧波形21を予測するこ
とができる。以上より、本発明の一実施例である図1に
おいて、被検体1と架台7とが同時に振動する場合、ま
ず、機械振動計測装置6の結果を用いて架台7の振動に
よる磁気計測装置4の計測結果を予測し、次に磁気計測
装置4の計測結果からのこの予測値を差し引くことによ
り、被検体1のみの振動量を算出することができる。以
上、本実施例によれば、任意の被検体振動を非接触で計
測できるばかりでなく、磁石2及び対向する磁気プロー
ブの大きさを調整することによって、局所的な振動や、
特別な振動成分のみを選択的に検出することもできる。
また、磁気プローブ3の代りに、ホール素子などの他の
磁気検出手段を用いても同じ効果が得られる。さらに、
加速度計5の代りに、歪みゲージなどの他の振動検出手
段を用いても同じ効果が得られる。FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an object whose vibration is to be measured, 2 is a magnet such as an electromagnet or a permanent magnet, 3 is a magnetic probe, 4 is a magnetic measuring device, 5 is an accelerometer, 6 is a mechanical vibration measuring device, and 7 is a pedestal. is there. The states of the voltages measured by the magnetic measuring device 4 and the mechanical vibration measuring device 6 will be described with reference to FIGS. 7 and 8. In these figures, 16 is a magnetic force line created by the magnet 2, 17 is an arrow representing the vibration of the subject 1, 18 is a voltage waveform of the magnetic probe 3, 19 is a voltage waveform of the accelerometer, and 20 is an arrow representing the vibration of the gantry 7. , 21 is the voltage waveform of the magnetic probe 3, and 22 is the voltage waveform of the accelerometer. First, FIG. 7 shows a state in which only the subject 1 vibrates and the gantry 7 stands still as indicated by an arrow 17. Due to the vibration 17, the magnet 2 also moves together with the subject 1, and the magnetic force lines 16 created by the magnet 2 also move. As a result, magnetic field lines 16 move in and out across the magnetic probe,
The voltage waveform 18 is measured. However, since the gantry 7 is stationary, nothing appears in the voltage waveform 19 of the accelerometer 5. Next, FIG. 8 shows a state in which only the gantry 7 vibrates as shown by an arrow 20, and the subject 1 stands still. The vibration 20 also causes the lines of magnetic force 16 to move in and out across the magnetic probe 3, so that a voltage waveform 21 similar to the voltage waveform 18 is measured. Further, since the accelerometer vibrates together with the pedestal 7, it outputs the voltage waveform 22. Here voltage waveform 2
Since 1 and 22 are generated by the vibration of the same gantry 7, there is a one-to-one relationship between the respective wave heights and phases. That is, from the voltage waveform 22 of the accelerometer,
It is possible to predict the voltage waveform 21 of the magnetic probe due to the vibration of As described above, in FIG. 1 which is an embodiment of the present invention, when the subject 1 and the pedestal 7 vibrate simultaneously, first, using the result of the mechanical vibration measurement device 6, the magnetic measurement device 4 based on the vibration of the pedestal 7 is used. By predicting the measurement result and then subtracting this predicted value from the measurement result of the magnetic measurement device 4, the vibration amount of only the subject 1 can be calculated. As described above, according to the present embodiment, not only the vibration of an arbitrary object can be measured in a non-contact manner, but also the local vibration and the local vibration can be suppressed by adjusting the sizes of the magnet 2 and the facing magnetic probe.
It is also possible to selectively detect only the special vibration component.
Also, instead of the magnetic probe 3, the same effect can be obtained by using other magnetic detection means such as a Hall element. further,
The same effect can be obtained by using other vibration detecting means such as a strain gauge instead of the accelerometer 5.
【0007】本発明の他の実施例を図3に示す。この図
には被検体1は示していないが、被検体及び検出器等の
構成は図1と同じであり、計測データ処理手段を加えた
ものである。この図において、8はデータ、9はデータ
変換装置、10は比較演算器、11はデータ、12はデ
ータ変換装置、13は表示装置である。データ8は、架
台7のみの振動により検出される磁気計測装置4の信号
と機械振動計測装置6の信号とを一対一に対応付けるデ
ータを格納している。このデータは図8の二つの電圧波
形21及び22を比較することにより簡単に得ることが
できる。また、データ11は、被検体1のみが振動する
場合の磁気計測装置4の信号と被検体1の変位との関係
を示すデータである。これらのデータ8及び11は、図
7及び図8の様な実験や、計算によって容易に評価する
ことができる。この実施例の働きを説明する。まず、機
械振動計測装置6の信号はデータ変換装置9に送られ、
データ8を参照することにより、等価な磁気計測装置信
号に置き換えられる。次に、この信号は、比較演算器1
0に送られ、磁気計測装置4の信号と比較することによ
り、被検体1の振動分のみに対応する信号を出力する。
この信号は、データ変換器12において、データ11の
参照により、振動量を表す信号に変換され、最後に表示
装置13に表示、または記録される。以上の信号処理
は、アナログまたはデジタル回路的に行ってもよいし、
計算機を用いてプログラム的に行ってもよい。以上、本
実施例によれば、被検体1の振動量を非接触かつ、自動
的に測定することができる。Another embodiment of the present invention is shown in FIG. Although the subject 1 is not shown in this figure, the configurations of the subject, the detector and the like are the same as those in FIG. 1, and a measurement data processing means is added. In this figure, 8 is data, 9 is a data conversion device, 10 is a comparison calculator, 11 is data, 12 is a data conversion device, and 13 is a display device. The data 8 stores data in which the signal of the magnetic measurement device 4 and the signal of the mechanical vibration measurement device 6, which are detected by the vibration of only the gantry 7, are associated with each other in a one-to-one correspondence. This data can be easily obtained by comparing the two voltage waveforms 21 and 22 of FIG. The data 11 is data indicating the relationship between the signal of the magnetic measurement device 4 and the displacement of the subject 1 when only the subject 1 vibrates. These data 8 and 11 can be easily evaluated by experiments and calculations as shown in FIGS. 7 and 8. The operation of this embodiment will be described. First, the signal of the mechanical vibration measuring device 6 is sent to the data conversion device 9,
By referring to the data 8, the equivalent magnetic measuring device signal is replaced. Next, this signal is output to the comparison calculator 1
0, and the signal corresponding to only the vibration component of the subject 1 is output by comparing with the signal of the magnetic measurement device 4.
This signal is converted by the data converter 12 into a signal representing the amount of vibration by referring to the data 11, and finally displayed or recorded on the display device 13. The above signal processing may be performed by an analog or digital circuit,
It may be performed programmatically using a computer. As described above, according to this embodiment, the vibration amount of the subject 1 can be automatically measured in a non-contact manner.
【0008】本発明のその他の実施例を図4に示す。こ
の図において、14は磁石、15は電流源であり、その
他の部分は図1と同じである。この場合、磁石14はコ
イルに電流を流すことによって磁場を発生する超伝導ま
たは常伝導磁石であり、そのための電流源15が付加さ
れている。本実施例の構成では、被検体は磁石14その
ものである。従って、本実施例によれば、被検体が自分
で磁場を発生することを利用して、図1のような一般の
被検体1の場合に必要であった磁石2をわざわざ設ける
必要がない。Another embodiment of the present invention is shown in FIG. In this figure, 14 is a magnet, 15 is a current source, and other parts are the same as in FIG. In this case, the magnet 14 is a superconducting or normal conducting magnet that generates a magnetic field by passing an electric current through the coil, and a current source 15 for that is added. In the configuration of this embodiment, the subject is the magnet 14 itself. Therefore, according to the present embodiment, it is not necessary to bother to provide the magnet 2 required for the general subject 1 as shown in FIG. 1 by utilizing the fact that the subject generates a magnetic field.
【0009】本発明の別の実施例を図5に示す。本実施
例では図1の実施例に比べて、複数の磁石2及び磁気プ
ローブ3,加速度計5を設置しているという特徴があ
る。これにより、それぞれの磁石2の位置に対応した被
検体1の振動が計測できるから、詳細な振動分布,振動
モードなどを非接触で計測することができる。Another embodiment of the present invention is shown in FIG. The present embodiment is characterized in that a plurality of magnets 2, a magnetic probe 3, and an accelerometer 5 are installed as compared with the embodiment of FIG. Thereby, the vibration of the subject 1 corresponding to the position of each magnet 2 can be measured, and thus the detailed vibration distribution, vibration mode, etc. can be measured in a non-contact manner.
【0010】本発明の最後の実施例を図6に示す。本実
施例では図4の実施例に比べて、複数の磁気プローブ
3,加速度計5を設置しているという特徴がある。この
ように一つの被検体である磁石14に対して複数の磁気
プローブ3,加速度計5を設置することにより、簡単な
構成でそれぞれの計測位置に対応した振動を計測し、詳
細な振動分布,振動モードなどを非接触で計測すること
ができる。A final embodiment of the invention is shown in FIG. The present embodiment is characterized in that a plurality of magnetic probes 3 and accelerometers 5 are installed as compared with the embodiment of FIG. As described above, by installing the plurality of magnetic probes 3 and the accelerometer 5 on the magnet 14 that is one subject, the vibration corresponding to each measurement position is measured with a simple configuration, and the detailed vibration distribution, The vibration mode etc. can be measured without contact.
【0011】[0011]
【発明の効果】本発明によれば、任意一般の被検体の振
動を非接触かつ精度よく計測することができる。また、
そのために用いる磁場発生手段,磁場計測手段,振動計
測手段は、一般に使用されているものを利用できるた
め、安価で信頼性の高い計測となる。According to the present invention, the vibration of an arbitrary general subject can be measured in a non-contact and accurate manner. Also,
As the magnetic field generating means, magnetic field measuring means, and vibration measuring means used for that purpose, generally used ones can be used, and therefore inexpensive and highly reliable measurement can be performed.
【図1】本発明の実施例を示す任意被検体の非接触振動
検出装置の説明図。FIG. 1 is an explanatory diagram of a non-contact vibration detection device for an arbitrary subject, showing an embodiment of the present invention.
【図2】従来技術の非接触振動検出装置の説明図。FIG. 2 is an explanatory diagram of a conventional non-contact vibration detection device.
【図3】本発明の実施例を示す計測信号処理手段を持つ
任意被検体の非接触振動検出装置のブロック図。FIG. 3 is a block diagram of a non-contact vibration detection device for an arbitrary subject having a measurement signal processing unit according to an embodiment of the present invention.
【図4】本発明の実施例を示す磁石を被検体とする非接
触振動検出装置のブロック図。FIG. 4 is a block diagram of a non-contact vibration detection device using a magnet as an object according to an embodiment of the present invention.
【図5】本発明の実施例を示す複数の検出手段を備えた
任意被検体の非接触振動検出装置の説明図。FIG. 5 is an explanatory diagram of a non-contact vibration detection device for an arbitrary subject, which is provided with a plurality of detection means according to an embodiment of the present invention.
【図6】本発明の実施例を示す複数の検出手段を備えた
磁石を被検体とする非接触振動検出装置の説明図。FIG. 6 is an explanatory diagram of a non-contact vibration detection device that uses a magnet as a subject and that includes a plurality of detection means according to an embodiment of the present invention.
【図7】本発明の被検体振動時の計測信号の説明図。FIG. 7 is an explanatory diagram of a measurement signal at the time of subject vibration according to the present invention.
【図8】本発明の架台振動時の計測信号の説明図。FIG. 8 is an explanatory diagram of a measurement signal during vibration of the gantry of the present invention.
1…被検体、2…磁石、3…磁気プローブ、4…磁気計
測装置、5…加速度計、6…機械振動計測装置、7…架
台。DESCRIPTION OF SYMBOLS 1 ... Subject, 2 ... Magnet, 3 ... Magnetic probe, 4 ... Magnetic measuring device, 5 ... Accelerometer, 6 ... Mechanical vibration measuring device, 7 ... Stand.
Claims (7)
被検体に非接触に対向し同一架台上に固着された磁気検
出手段及び振動検出手段と,前記磁気検出手段及び前記
振動検出手段からの信号処理手段とを備え、前記信号処
理手段は前記磁気検出手段の信号から前記被検体と前記
架台との間の相対変位を算出し、前記振動検出手段の信
号から前記架台の絶対変位を算出し、かつ前記算出され
た相対変位と前記算出された絶対変位とより前記被検体
の絶対変位を算出することを特徴とする非接触振動検出
装置。1. A magnetic field generating means fixed to a subject, a magnetic detecting means and a vibration detecting means which are fixed to the subject in a non-contact manner and fixed to the same frame, the magnetic detecting means and the vibration detecting means. Signal processing means from the magnetic detection means, the signal processing means calculates the relative displacement between the subject and the pedestal from the signal of the magnetic detection means, the absolute displacement of the pedestal from the signal of the vibration detection means. A non-contact vibration detecting device, characterized in that the absolute displacement of the subject is calculated, and the absolute displacement of the subject is calculated from the calculated relative displacement and the calculated absolute displacement.
磁石および/または永久磁石である非接触振動検出装
置。2. The non-contact vibration detecting device according to claim 1, wherein the magnetic field generating means is an electromagnet and / or a permanent magnet.
線を巻回してなる磁気プローブおよび/またはホール素
子である非接触振動検出装置。3. The non-contact vibration detection device according to claim 1, wherein the magnetic detection means is a magnetic probe and / or a hall element formed by winding a conductive wire.
速度計および/または歪みゲージである非接触振動検出
装置。4. The non-contact vibration detecting device according to claim 1, wherein the vibration detecting means is an accelerometer and / or a strain gauge.
の中の少なくともいずれか一つの磁石において、前記磁
石に非接触に対向し同一架台上に固着された磁気検出手
段及び振動検出手段と、前記磁気検出手段及び前記振動
検出手段からの信号処理手段とを備え、前記信号処理手
段は前記磁気検出手段の信号から前記磁石と前記架台と
の間の相対変位を算出し、前記振動検出手段の信号から
前記架台の絶対変位を算出し、前記算出された相対変位
と前記算出された絶対変位とより前記磁石の絶対変位を
算出することを特徴とする磁石。5. A magnetism detecting means and a vibration detecting means in at least one magnet selected from a superconducting magnet, a normal conducting magnet and a permanent magnet, the magnetism detecting means and vibration detecting means being opposed to the magnet in a non-contact manner and fixed on the same frame. The magnetic detection means and the signal processing means from the vibration detection means, the signal processing means calculates the relative displacement between the magnet and the gantry from the signal of the magnetic detection means, and the vibration detection means. The absolute displacement of the gantry is calculated from the signal, and the absolute displacement of the magnet is calculated based on the calculated relative displacement and the calculated absolute displacement.
線を巻回してなる磁気プローブおよび/またはホール素
子である非接触振動検出装置。6. The non-contact vibration detection device according to claim 5, wherein the magnetic detection means is a magnetic probe and / or a hall element formed by winding a conductive wire.
速度計および/または歪みゲージである非接触振動検出
装置。7. The non-contact vibration detecting device according to claim 5, wherein the vibration detecting means is an accelerometer and / or a strain gauge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13158294A JPH07333051A (en) | 1994-06-14 | 1994-06-14 | Non-contact vibration detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13158294A JPH07333051A (en) | 1994-06-14 | 1994-06-14 | Non-contact vibration detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07333051A true JPH07333051A (en) | 1995-12-22 |
Family
ID=15061431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13158294A Pending JPH07333051A (en) | 1994-06-14 | 1994-06-14 | Non-contact vibration detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07333051A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008246A1 (en) * | 2001-07-19 | 2003-01-30 | Bridgestone Corporation | Road surface friction coefficient estimating method, signal multiplex transmission method and signal multiplex transmission device |
JP2009085596A (en) * | 2007-09-27 | 2009-04-23 | Railway Technical Res Inst | Measuring and monitoring device considering the correlation between inner and outer tank vibrations in vibration mode of superconducting magnet device |
-
1994
- 1994-06-14 JP JP13158294A patent/JPH07333051A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008246A1 (en) * | 2001-07-19 | 2003-01-30 | Bridgestone Corporation | Road surface friction coefficient estimating method, signal multiplex transmission method and signal multiplex transmission device |
JP2009085596A (en) * | 2007-09-27 | 2009-04-23 | Railway Technical Res Inst | Measuring and monitoring device considering the correlation between inner and outer tank vibrations in vibration mode of superconducting magnet device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5281921A (en) | Non-contact capacitance based image sensing method and system | |
EP3090269B1 (en) | System for condition monitoring of electric machine, mobile phone and method thereof | |
KR960703460A (en) | METHOD AND DEVICE FOR MEASURING THE POSITION AND ORIENTATION OF OBJECTS IN THE PRESENCE OF INTERFERING METALS | |
DE50015183D1 (en) | EM POSITIONER | |
KR960008329A (en) | Electromagnetic Induction Tester | |
EP1804031A2 (en) | Magnetic line-type position-angle detecting device | |
US20110029271A1 (en) | Method of inspecting motor condition and device for inspecting motor characteristics | |
JPH08273952A (en) | Plane current detector | |
JP2019105457A (en) | Bearing inspection device | |
CN113710997B (en) | Magnetic sensing system, detection device and magnetic interference biasing method | |
HU184962B (en) | Loop-sensor of eddy current | |
ATE322670T1 (en) | MEASUREMENT OF VOLTAGE IN A FERROMAGNETIC MATERIAL | |
US2269453A (en) | Device for detecting displacements | |
US20210190541A1 (en) | Magnetic encoder, method, system for detecting absolute electrical angle, and readable storage medium | |
KR101554509B1 (en) | Sensor for electrostatic charge of a charged body and a measuring device of the electrostatic charge | |
JPH07333051A (en) | Non-contact vibration detector | |
US6236198B1 (en) | Method and device for non-contact measurement of electrically conductive material | |
JP7312442B2 (en) | Inspection device and inspection method | |
JPH0356848A (en) | Method and device for surface cracking measurement | |
JP2019207192A (en) | Material testing machine | |
GB2270386A (en) | Acceleration transducer using SQUID detector | |
JP2000337811A (en) | Magnetic marker position detecting method and device therefor | |
US6188217B1 (en) | Inductive measurement device for determining dimensions of objects | |
JP2001337146A (en) | Sensitivity calibration device for magnetic sensor | |
JP3272232B2 (en) | Vibration displacement detector |