JPH07328445A - Catalytic composition for removing particulate substance of diesel vehicle - Google Patents
Catalytic composition for removing particulate substance of diesel vehicleInfo
- Publication number
- JPH07328445A JPH07328445A JP7131545A JP13154595A JPH07328445A JP H07328445 A JPH07328445 A JP H07328445A JP 7131545 A JP7131545 A JP 7131545A JP 13154595 A JP13154595 A JP 13154595A JP H07328445 A JPH07328445 A JP H07328445A
- Authority
- JP
- Japan
- Prior art keywords
- particulate matter
- diesel engine
- filter
- producing
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 47
- 239000000126 substance Substances 0.000 title claims description 26
- 230000003197 catalytic effect Effects 0.000 title description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 155
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010779 crude oil Substances 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 239000011733 molybdenum Substances 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000007670 refining Methods 0.000 claims abstract description 7
- 239000013618 particulate matter Substances 0.000 claims description 71
- 238000000151 deposition Methods 0.000 claims description 50
- 238000004519 manufacturing process Methods 0.000 claims description 50
- 239000000843 powder Substances 0.000 claims description 48
- 239000002699 waste material Substances 0.000 claims description 45
- 230000008021 deposition Effects 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 30
- 239000002002 slurry Substances 0.000 claims description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000919 ceramic Substances 0.000 claims description 19
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 12
- 239000006260 foam Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052878 cordierite Inorganic materials 0.000 claims description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical group [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 238000010298 pulverizing process Methods 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000006262 metallic foam Substances 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052863 mullite Inorganic materials 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 3
- 239000011236 particulate material Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000004071 soot Substances 0.000 description 21
- 241000264877 Hippospongia communis Species 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 238000002485 combustion reaction Methods 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 description 11
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 11
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 229910052815 sulfur oxide Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000006477 desulfuration reaction Methods 0.000 description 6
- 230000023556 desulfurization Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- -1 wire mesh Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920005830 Polyurethane Foam Polymers 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011496 polyurethane foam Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000009838 combustion analysis Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002816 fuel additive Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001888 lower sulfur oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Filtering Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はディーゼル車両が排出す
る排気ガスの浄化用触媒組成物、これを用いて排気ガス
中の粒子状及び気状物質を除去するための濾過材、濾過
体及び触媒体、これらの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst composition for purifying exhaust gas discharged from a diesel vehicle, a filter material, a filter body and a catalyst for removing particulate and gaseous substances in exhaust gas using the catalyst composition. The present invention relates to a medium and a manufacturing method thereof.
【0002】[0002]
【従来の技術】ディーゼル車両から排出される排気ガス
の粒子状物質は、平均直径0.3μm程度の未燃焼炭素
粒子、溶解性有機物質及び硫化物で、粒子状物質の濃度
が環境基準値(1993年ヘビーデューティ車両の場合
のスモッグ規制値:40%)を超過する場合、視覚的に
醜い不快感を招来するだけでなく、癌を誘発する等、人
体に非常に有害である。特に、ディーゼル車両の保有比
率が全体車両の42%、世界のどの国より高い韓国では
大気汚染の主要な原因として台頭しているため、このよ
うな粒子状物質の厳格な排出規制及び浄化が要求されて
いる。2. Description of the Related Art Particulate matter of exhaust gas emitted from a diesel vehicle is unburned carbon particles having an average diameter of about 0.3 μm, soluble organic substances and sulfides, and the concentration of the particulate matter is an environmental standard value ( When the smog regulation value in the case of the 1993 heavy duty vehicle: 40%) is exceeded, it not only causes visually unpleasant discomfort, but also induces cancer and is very harmful to the human body. Especially in Korea, where the ownership ratio of diesel vehicles is 42%, which is higher than any other country in the world, it is emerging as a major cause of air pollution. Therefore, strict emission regulations and purification of such particulate matter are required. Has been done.
【0003】粒子状物質の排出規制基準は、ヘビーデュ
ーティディーゼル車両の場合、1996年に0.67g
/HP.Hour(米国は1994年から0.1g/H
P.Hour)で、毎年漸次強化する趨勢であるので、
ディーゼル車両が排出する粒子状物質を除去するための
多様な研究が活発に遂行されている。粒子状物質の除去
技術の開発方向は、エンジン改善による未燃焼物質の生
成抑制、燃料添加剤を用いた燃焼効率の改善、そして粒
子状物質の後処理等に大別される。The emission control standard for particulate matter is 0.67 g in 1996 for heavy-duty diesel vehicles.
/ HP. Hour (USA: 0.1 g / H since 1994)
P. Hour), the trend is to strengthen gradually every year,
Various studies have been actively conducted to remove particulate matter emitted from diesel vehicles. The development direction of particulate matter removal technology can be broadly divided into the suppression of unburned matter generation by engine improvement, the improvement of combustion efficiency using fuel additives, and the post-treatment of particulate matter.
【0004】エンジンの改善及び燃料添加剤の利用方法
はエンジン内の燃焼効率を向上させて粒子状物質又は煤
煙等の有害物質を根本的に減少させることができるが、
費用が過多に必要であり、技術的限界から完全な抑制が
難しい実情であり、一般に後処理技術による除去方法を
用いている。後処理技術は、排気ガス中の粒子状物質を
濾過する濾過技術と濾過された粒子状物質を燃焼して濾
過材を再生する再生技術とから構成され、濾過技術は排
気ガス中の粒子状物質を効果的に補集し得る、性能の優
れた濾過材を選択し、実際の車両に適合に応用する研究
に注力している。While engine improvements and fuel additive utilization methods can improve combustion efficiency within the engine and can fundamentally reduce harmful substances such as particulate matter or soot,
Since the cost is excessively high and it is difficult to completely suppress it due to the technical limit, the removal method by the post-treatment technology is generally used. The post-treatment technology is composed of a filtration technology that filters particulate matter in exhaust gas and a regeneration technology that burns the filtered particulate matter to regenerate the filter material. We are focusing on research to select a filtering material with excellent performance that can effectively collect water, and apply it to an actual vehicle.
【0005】一方、粒子状物質の濾過によるエンジン排
気通路の背圧上昇により濾過材が損傷し、エンジンの性
能が低下し、補集された粒子状物質を高温度条件で燃焼
させる時に濾過材に熱衝撃を与えて、耐久性の問題が深
刻であるため、粒子状物質を低温で効果的に燃焼させる
ための再生技術の開発が必要になった。現在まで最も広
く知られた再生技術としては、バーナー、ヒーター等を
用いて外部から2次エネルギーを供給するかスロットリ
ングで排気ガス温度を高めて再生する方法と、燃料に触
媒を添加するか触媒を濾過材に担持させて酸化反応の活
性化エネルギーを減少させることにより相対的に低温で
再生させる方法とがある。On the other hand, the filter medium is damaged by the increase of the back pressure in the engine exhaust passage due to the filtration of the particulate matter, the performance of the engine is deteriorated, and when the collected particulate matter is burned at a high temperature condition, the filter medium becomes a filter medium. Due to the serious problem of durability due to thermal shock, it was necessary to develop a regeneration technique for effectively burning particulate matter at low temperatures. The most widely known regeneration technology to date is to supply secondary energy from the outside using a burner, heater, etc. or to raise exhaust gas temperature by throttling, and to add a catalyst to fuel or a catalyst. There is a method in which the carbon dioxide is supported on a filter medium to reduce the activation energy of the oxidation reaction and thereby regenerate at a relatively low temperature.
【0006】本発明では、これら技術のうち、特に触媒
作用による粒子状物質の除去方法を研究したが、これは
セラミックフォーム、ワイヤメッシュ、メタルフォー
ム、ウォールフローセラミックハニカム、オープンフロ
ーセラミックハニカム又はメタルハニカムのような耐火
性三次元構造物を含む濾過材に粒子状物質を燃焼させ得
る触媒物質を担持して、ディーゼルエンジンの排気ガス
に含まれた微細粒子物質を濾過し、通常のディーゼルエ
ンジン運転状態の排気ガス排出条件(ガス組成及び温
度)下で粒子状物質を燃焼させることである。In the present invention, among these techniques, a method for removing particulate matter by a catalytic action has been studied, which is a ceramic foam, wire mesh, metal foam, wall flow ceramic honeycomb, open flow ceramic honeycomb or metal honeycomb. A filter material containing a refractory three-dimensional structure such as the one described above is loaded with a catalyst material capable of burning particulate matter, and fine particulate matter contained in the exhaust gas of a diesel engine is filtered, and the diesel engine is normally operated. That is, the particulate matter is burned under the exhaust gas discharge conditions (gas composition and temperature).
【0007】ディーゼルエンジンの排気ガス浄化用触媒
の一般の要求性能は次のようである。第一に、炭素微細
粒子だけでなく未燃焼炭化水素のような人体有害成分を
低温でも燃焼により高効率で除去できること、第二に、
燃料として使用される軽油に多量に含有されている硫黄
成分からエンジン内で生成したSO2 がSO3 に酸化さ
れる活性が低く、排気ガス中のSO3 の排出量が少ない
こと、第三に、SO2等の被毒剤により触媒が非活性化
しないこと、第四に、高温での連続使用時にも非活性化
されない耐久性を備えることである。The general required performance of a catalyst for purifying exhaust gas of a diesel engine is as follows. First of all, not only fine carbon particles but also harmful components of human body such as unburned hydrocarbons can be removed with high efficiency by combustion even at low temperature. Second,
As SO 2 generated from a sulfur component contained in large amounts diesel in the engine used is less active that is oxidized to SO 3 fuel, be less emissions of SO 3 in the exhaust gas, the third The catalyst is not deactivated by poisoning agents such as SO 2 and SO 4 and fourthly, it has durability that is not deactivated even when continuously used at high temperature.
【0008】燃焼による粒子状物質の除去効率を増進さ
せるために多様な方法が提案されている。これら従来の
方法は、広い反応表面積を提供するために濾過材に予め
活性アルミナ又はチタニア等の沈着支持体を触媒担体と
して沈着させた後、粒子状物質の燃焼触媒として知られ
ている白金族金属を白金族塩水溶液で濾過体に均一に担
持する方法を使用している。Various methods have been proposed to enhance the efficiency of particulate matter removal by combustion. In these conventional methods, a platinum group metal, which is known as a catalyst for burning particulate matter, is prepared by pre-depositing a deposition support such as activated alumina or titania as a catalyst carrier on a filter material in order to provide a large reaction surface area. Is uniformly supported on the filter with an aqueous platinum group salt solution.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、このよ
うな沈着支持体及び触媒成分の種類、量及び製造方法が
必ず満足な触媒効果を与えるものではなかった.即ち、
前記一般的なアルミナの場合には、800℃程度の高温
で熱的に安定で、高温での連続使用に十分な耐久性を有
するが、軽油に多量に含有されている硫黄成分の燃焼に
より排出される硫黄三酸化物と反応してアルミニウムス
ルファートを形成して表面積、気孔構造の変化を引き起
こし、これによりアルミナを担体とする触媒の活性が急
激に低下するという問題点があった。However, the types and amounts of the deposition support and the catalyst component and the production method have not always provided a satisfactory catalytic effect. That is,
In the case of the general alumina, it is thermally stable at a high temperature of about 800 ° C. and has sufficient durability for continuous use at a high temperature, but is discharged by burning a large amount of sulfur component contained in light oil. There is a problem that it reacts with the sulfur trioxide to form aluminum sulfate and causes a change in surface area and pore structure, which causes a rapid decrease in activity of the catalyst having alumina as a carrier.
【0010】又、前記通常のチタニアの場合には、硫黄
三酸化物に対して化学的に安定であり硫黄三酸化物によ
る活性低下は小さいが、500℃以上では熱的に不安定
で実際のディーゼル車両の運転条件である300〜60
0℃程度の排気ガス温度で劣化し、特に煤煙の燃焼、つ
まり濾過材の再生時の急激な高温上昇に反復露出される
場合、チタニアの表面積減少と相変化(つまり、アナタ
ース形態から結晶性ルチル形態)による気孔構造の破壊
により活性及び耐久性が低下する欠点がある。Further, in the case of the above-mentioned ordinary titania, it is chemically stable to sulfur trioxide and the activity decrease due to sulfur trioxide is small, but it is thermally unstable at 500 ° C. or more and is practically not practical. 300-60, which is the operating condition of a diesel vehicle
Deterioration at exhaust gas temperature of around 0 ° C, especially when repeatedly exposed to combustion of soot, that is, rapid rise in temperature during regeneration of filter media, causes a decrease in surface area and phase change of titania (that is, from anatase form to crystalline rutile). There is a drawback that the activity and durability are deteriorated by the destruction of the pore structure due to the morphology.
【0011】以上説明したように、ディーゼルエンジン
排気ガス浄化触媒として要求される前記四つの性能を完
全に満足させる触媒はまだ報告されなかった。従って、
本発明の目的は、第一に、高温で熱的に安定で高い触媒
効果を長期間維持することができ、エンジンで生成され
る硫黄酸化物により触媒の活性が低下せず、単独でもデ
ィーゼル車両から排出される粒子状物質の燃焼性能が優
秀である触媒組成物及びその製造方法を提供することで
ある。As explained above, no catalyst has yet been reported that completely satisfies the above four performances required as a diesel engine exhaust gas purification catalyst. Therefore,
The object of the present invention is, firstly, that it is thermally stable at high temperatures and can maintain a high catalytic effect for a long period of time, and the activity of the catalyst does not decrease due to the sulfur oxides produced in the engine, and it can be used alone in diesel vehicles. Disclosed is a catalyst composition having excellent combustion performance of particulate matter discharged from a catalyst, and a method for producing the same.
【0012】第二に、前記触媒組成物を用いてディーゼ
ル車両の粒子状物質を除去するに卓越した性能を有する
濾過材及びその製造方法を提供することである。第三
に、既存の濾過材を使用してディーゼル車両の粒子状物
質を除去しようとする場合には、第二の目的で前述した
濾過材に等しい効果を奏する沈着支持体が沈着された濾
過体及びその製造方法を提供することである。第四に、
前記目的で前述した濾過材又は濾過体を用いたディーゼ
ルエンジン粒子状物質除去用触媒体及びその製造方法を
提供することである。Secondly, it is to provide a filter medium having excellent performance for removing particulate matter of diesel vehicles using the catalyst composition and a method for producing the same. Thirdly, when the particulate matter of the diesel vehicle is to be removed by using the existing filter medium, the filter medium having the deposited support, which has the same effect as the filter medium for the second purpose, is deposited. And a method for manufacturing the same. Fourth,
It is an object of the present invention to provide a diesel engine particulate matter removing catalyst body using the filter medium or the filter body described above for the above purpose, and a method for producing the same.
【0013】[0013]
【課題を解決するための手段】本発明者等は多数の実験
と研究を重ねた結果、ディーゼル車両から排出される粒
子状物質の除去に優秀な触媒効果を奏し、前記触媒要件
を備えた触媒成分を発見し、精油工場の重質油分解施設
中の脱硫工程で排出される廃触媒中にこのような触媒成
分が多量含有されているため、このような廃触媒を原料
として製造された濾過材又は沈着支持体が単独で煤煙の
燃焼に優秀な性能を奏し、このような濾過材又は沈着支
持体に、白金族金属中から選択された少なくとも一つの
白金族金属を分散、担持させた触媒体がアルミナ又はチ
タニアを沈着支持体として製造された既存の触媒体より
高温での熱的安定性と硫黄三酸化物に対する化学的安定
性が著しく改善できるという事実を発見して本発明を完
成した。As a result of a number of experiments and researches conducted by the present inventors, a catalyst having an excellent catalytic effect for removing particulate matter discharged from a diesel vehicle and having the above-mentioned catalytic requirements Since a large amount of such catalyst components were found in the waste catalyst discharged in the desulfurization process in the heavy oil cracking facility of the refinery plant after the discovery of the components, filtration produced using such waste catalyst as a raw material The material or the deposition support alone exerts excellent performance in burning soot, and such a filter material or the deposition support has at least one platinum group metal selected from platinum group metals dispersed and supported thereon. The present invention was completed by discovering the fact that the medium can significantly improve the thermal stability at high temperature and the chemical stability to sulfur trioxide as compared with the existing catalyst bodies produced by using alumina or titania as a deposition support. .
【0014】精油工場の重質油分解施設中の脱硫工程で
使用される触媒は、一般に、アルミニウム30〜50
%、モリブデン0〜10%、ニッケル0〜3%、燐0〜
3%等の重量比で構成されているが、脱硫工程に使用さ
れることにより、このような触媒成分以外にも粒子状物
質燃焼に卓越した効果を奏するバナジウム、コバルト等
の触媒成分が添加されて全く新しい組成の廃触媒として
排出される。前記廃触媒は脱硫工程の運転条件、使用期
間、原油及び脱硫触媒の組成等によって廃触媒の組成も
変わるが、一般的にはバナジウム80%以下、モリブデ
ン80%以下、ニッケル20%以下、コバルト30%以
下、アルミニウム99%以下及び通常の原油精製時の不
純物からなる。The catalyst used in the desulfurization process in the heavy oil cracking facility of the refinery is generally aluminum 30-50.
%, Molybdenum 0-10%, nickel 0-3%, phosphorus 0-
It is composed of a weight ratio of 3%, etc., but by using it in the desulfurization process, catalyst components such as vanadium and cobalt which have an excellent effect on combustion of particulate matter are added in addition to such catalyst components. It is discharged as a waste catalyst with a completely new composition. The composition of the waste catalyst varies depending on the operating conditions of the desulfurization process, the period of use, the composition of crude oil and the desulfurization catalyst, etc., but generally 80% or less of vanadium, 80% or less of molybdenum, 20% or less of nickel and 30 % Or less, 99% or less of aluminum, and impurities during ordinary crude oil refining.
【0015】前記本発明の第一の目的を達成するための
ディーゼル車両粒子物質除去用触媒組成物の製造方法
は、 a)原料として使用される廃触媒を加熱して前処理する
段階と、 b)a)段階の廃触媒を粉砕して廃触媒粉末を製造する
段階とからなる。 前記原料として使用される廃触媒は精油工場の重質油分
解施設中の脱硫工程で一般的に排出される廃触媒で、水
分又は油分等の不純物が含有されているので、これを除
去するために廃触媒を酸素雰囲気下の400〜1000
℃で0.5〜5時間加熱し、粉砕機で100〜800メ
ッシュの粒子に粉砕して廃触媒粉末を製造する。The method for producing a catalyst composition for removing particulate matter of a diesel vehicle for achieving the first object of the present invention comprises a) a step of heating and pre-treating a waste catalyst used as a raw material, and b. A) grinding the waste catalyst of step a) to produce a waste catalyst powder. The waste catalyst used as the raw material is a waste catalyst that is generally discharged in the desulfurization process in the heavy oil cracking facility of an oil refinery and contains impurities such as moisture or oil. The waste catalyst in an oxygen atmosphere of 400 to 1000
The waste catalyst powder is manufactured by heating at 0 ° C. for 0.5 to 5 hours and pulverizing it to 100 to 800 mesh particles with a pulverizer.
【0016】このように前処理された廃触媒を、本発明
の目的を達成するための濾過材、沈着支持体及び触媒体
の製造原料(以下、YK−Rと称する)として使用す
る。この際、加熱温度400℃以下では加熱が不充分で
不純物が完全に除去されず、1000℃以上ではエネル
ギーの浪費だけでなく寧ろ廃触媒中の触媒成分の劣化を
加速させる。又、粒子大きさがあまり大きいと、次の段
階のスラリー製造時に均一に混合されたスラリーを得る
ことが難しく、粒子の大きさがあまり小さいと製造費用
が増加するばかりでなく、高温での耐久性が低下する。The waste catalyst thus pretreated is used as a raw material (hereinafter referred to as YK-R) for producing a filter medium, a deposition support and a catalyst body for achieving the object of the present invention. At this time, if the heating temperature is 400 ° C. or lower, the heating is insufficient and impurities are not completely removed. If the heating temperature is 1000 ° C. or higher, not only energy is wasted but also deterioration of the catalyst component in the waste catalyst is accelerated. Also, if the particle size is too large, it is difficult to obtain a uniformly mixed slurry at the time of slurry production in the next step, and if the particle size is too small, not only the manufacturing cost increases, but also the durability at high temperature is high. Sex decreases.
【0017】前記本発明の第二の目的を達成するための
ディーゼル車両粒子状物質除去用濾過材の製造方法は、 a)YK−R粉末単独又はYK−R粉末に既存の濾過材
粉末を混合して濾過材スラリーを製造する段階と、 b)濾過材スラリーを濾過材構造に成形する段階と、 c)b)段階の結果生成物を焼結して濾過材を製造する
段階とからなる。The method for producing a diesel vehicle particulate matter removing filter material for achieving the second object of the present invention is as follows: a) YK-R powder alone or YK-R powder mixed with an existing filter material powder. To produce a filter medium slurry, b) forming the filter medium slurry into a filter medium structure, and c) sintering the product resulting from the step b) to produce a filter medium.
【0018】濾過材スラリーは前記製造されたYK−R
粉末又はYK−R粉末と既存の濾過材粉末の混合物に接
着剤、成形安定剤(Attacking Agent )、活性物質そし
て水等をよく混合して製造する。本発明に使用された既
存の濾過材粉末はコージアライト、ムライト、ジルコニ
ア、シリカ等、セラミック濾過材の製造原料として既に
公知の全ての物質が使用でき、これに特別な制限はな
い。又、YK−R粉末と既存の濾過材粉末の混合組成は
YK−R粉末の場合10〜100%が適当であり、既存
の濾過材粉末の場合0〜90%が適当である。YK−R
粉末の含量が10%未満である場合には、前述した触媒
物質の濃度が小さくて活性が低下する。The filter medium slurry is the YK-R produced as described above.
It is manufactured by thoroughly mixing a powder or a powder of YK-R powder and a powder of an existing filter medium with an adhesive, a molding stabilizer (Attacking Agent), an active substance and water. As the existing filter medium powder used in the present invention, all known substances such as cordierite, mullite, zirconia, and silica can be used as raw materials for producing ceramic filter medium, and there is no particular limitation. Further, the mixed composition of the YK-R powder and the existing filter medium powder is preferably 10 to 100% in the case of the YK-R powder and 0 to 90% in the case of the existing filter medium powder. YK-R
If the content of the powder is less than 10%, the concentration of the above-mentioned catalyst substance is small and the activity is lowered.
【0019】本発明に使用される接着剤としては、セラ
ミック材料の硬化に有用なもので、既に公知の全ての物
質が使用でき、これに特別な制限はない。本発明に使用
される成形安定剤はセラミック材料の円筒型フォーム
(TubularFoam)の防止に有用なもので、既に公知の全
ての物質が使用でき、これに特別な制限はない。本発明
に使用される活性物質としては、セラミック材料の気孔
調節に有用なもので、既に公知の全ての物質が使用で
き、これに特別な制限はない。As the adhesive used in the present invention, any of the substances known in the art which are useful for curing ceramic materials can be used without any particular limitation. The molding stabilizer used in the present invention is useful for preventing a cylindrical foam (TubularFoam) of a ceramic material, and all the substances known in the art can be used without any particular limitation. As the active substance used in the present invention, any substance known in the art that is useful for controlling the pores of the ceramic material can be used, and there is no particular limitation.
【0020】製造された濾過材スラリーは、射出、圧出
等、セラミック材料成形に有用な既に公知の方法により
濾過体構造に成形され、これを25〜150℃で完全に
乾燥させた後、200〜1000℃で焼結して濾過材を
製造する。本発明の濾過材はセラミックフォーム、オー
プンフローハニカム、セラミックファイバフィルター、
セラミックハニカム、ウォールフローハニカムモノリス
等、ディーゼル車両の粒子状物質濾過に有用なもので、
既に公知の全ての三次元構造が使用でき、これに特別な
制限はない。The produced filter medium slurry is molded into a filter body structure by a known method useful for molding ceramic materials such as injection and extrusion, and is completely dried at 25 to 150 ° C. A filter medium is manufactured by sintering at ˜1000 ° C. The filter material of the present invention includes ceramic foam, open flow honeycomb, ceramic fiber filter,
Ceramic honeycomb, wall flow honeycomb monolith, etc. useful for filtering particulate matter in diesel vehicles,
All known three-dimensional structures can be used, without particular restrictions.
【0021】前記本発明の第三の目的を達成するため
の、ディーゼル車両粒子状物質除去用沈着支持体が沈着
された濾過体の製造方法は、 a)YK−R粉末単独又はYK−R粉末に既存の沈着支
持体粉末を混合して沈着支持体スラリーを製造する段階
と、 b)沈着支持体スラリーを既存濾過材構造に沈着させる
段階と、 c)b)段階の結果生成物を加熱して濾過体を製造する
段階とからなる。To achieve the third object of the present invention, a method for producing a filter body having a deposition support for removing particulate matter of a diesel vehicle deposited is as follows: a) YK-R powder alone or YK-R powder To prepare a deposited support slurry by mixing with the existing deposited support powder into b), b) depositing the deposited support slurry onto the existing filter media structure, and c) heating the resulting product of step b). To produce a filter body.
【0022】本発明では、既存の濾過材を使用してディ
ーゼル車両の粒子状物質を除去しようとする場合にも前
述したYK−Rで製造された濾過材と同様な優秀な性能
を奏する沈着支持体を提供する。本発明に使用された既
存の沈着支持体粉末はアルミナ、チタニア、シリカ等の
ゼオライトとして沈着支持体の製造原料として既に公知
の全ての物質が使用でき、これに特別な制限はない。
又、YK−R粉末と既存の沈着支持体粉末の混合組成
は、YK−R粉末の場合10〜100%が適当であり、
既存の沈着支持体の場合0〜90%が適当である。YK
−R粉末の含量が10%未満では前述した触媒物質の濃
度が小さくて活性が低下する。According to the present invention, even when the particulate matter of a diesel vehicle is to be removed by using the existing filter medium, the deposition support having the same excellent performance as that of the YK-R produced filter medium described above. Provide the body. The existing deposition support powder used in the present invention can be any substance known as a raw material for producing a deposition support, such as zeolite such as alumina, titania and silica, and there is no particular limitation.
In addition, the composition of the YK-R powder and the existing deposition support powder is preferably 10 to 100% in the case of the YK-R powder,
In the case of existing deposition supports, 0 to 90% is suitable. YK
When the content of -R powder is less than 10%, the concentration of the above-mentioned catalyst substance is small and the activity is lowered.
【0023】沈着支持体スラリーは前記YK−R粉末又
はYK−R粉末と沈着支持体粉末の混合物に水を添加し
て均一に混合した後、酸又は塩基を添加して粘度を40
0cps以下となるように調節して製造する。前記沈着
支持体スラリー中の沈着支持体粉末の組成は重量比で3
〜50%が適当である。前記スラリーにおいて、沈着支
持体粉末の含量が3%未満である時は前記触媒成分の含
量が少なくて触媒効果を奏しにくく、50%以上では沈
着支持体粉末が過多のため均一に分散され粘度の低い沈
着支持体スラリーを製造することが難しい。又、粘度が
400cps以上である場合には、濾過体に沈着支持体
を均一にコーティングすることが難しい。The depositing support slurry is prepared by adding water to the YK-R powder or a mixture of the YK-R powder and the depositing support powder and mixing them uniformly, and then adding an acid or a base to give a viscosity of 40.
It is manufactured by adjusting it to 0 cps or less. The composition of the deposition support powder in the deposition support slurry was 3 by weight.
-50% is suitable. In the slurry, when the content of the deposition support powder is less than 3%, the content of the catalyst component is small and it is difficult to exert a catalytic effect, and when the content of the deposition support powder is 50% or more, the deposition support powder is excessively dispersed and the viscosity is increased. It is difficult to produce low deposition support slurries. Further, when the viscosity is 400 cps or more, it is difficult to uniformly coat the deposition support on the filter body.
【0024】本発明に使用される濾過材の形態は、セラ
ミックフォーム、オープンフローハニカム、セラミック
ファイバフィルター、セラミックハニカム、メタルフォ
ーム、ウォールフローハニカムモノリス、メタルメッシ
ュ等、ディーゼル車両の粒子状物質濾過材として有用な
もので、既に公知の全ての三次元構造が使用でき、これ
に特別な制限はない。The form of the filter medium used in the present invention is ceramic foam, open flow honeycomb, ceramic fiber filter, ceramic honeycomb, metal foam, wall flow honeycomb monolith, metal mesh, etc., as a particulate matter filter medium for diesel vehicles. All three-dimensional structures which are useful and already known can be used without any special limitation.
【0025】前記沈着支持体スラリーを前述した濾過材
1リットル当たり5〜200gを濾過材に沈着されてか
ら乾燥させ、400〜1000℃に焼結して濾過体を製
造する。この際、沈着支持体スラリーの量が5g/リッ
トル以下では十分な表面積を提供できず触媒物質の濃度
が低くて触媒性能が低下し、200g/リットル以上で
は排気ガスの圧力を過度に高めるのでエンジンの運転効
率を低下させる。十分な表面積を提供するために、前述
したYK−Rで製造された前記濾過材に前記沈着支持体
を沈着させることも可能である。5 to 200 g of the deposited support slurry is deposited on the filter medium per liter of the filter medium, dried, and sintered at 400 to 1000 ° C. to produce a filter body. At this time, if the amount of the deposited support slurry is 5 g / liter or less, a sufficient surface area cannot be provided and the concentration of the catalyst substance is low, so that the catalytic performance is deteriorated, and if it is 200 g / liter or more, the exhaust gas pressure is excessively increased. Operation efficiency is reduced. It is also possible to deposit the deposition support on the YK-R-manufactured filter media described above to provide sufficient surface area.
【0026】前記本発明の第四の目的を達成するための
本発明のディーゼル車両粒子状物質除去用触媒体の製造
方法は、 a)前記第二及び第三の目的を達成するために製造され
た濾過材又は濾過体に触媒金属を担持させる段階と、 b)a)段階の生成物を焼成して触媒体を製造する段階
とからなる。 前記濾過材又は濾過体に触媒金属が含有された溶液を担
持させた後、例えば400〜800℃に加熱、焼成し
て、最終的に金属又は金属酸化物形態の触媒体を製造す
る。The method for producing a diesel vehicle particulate matter removing catalyst body of the present invention for achieving the fourth object of the present invention comprises: a) a method for producing the second and third objects. The step of supporting the catalyst metal on the filter material or the filter body, and the step of b) baking the product of the step a) to produce the catalyst body. After supporting the solution containing the catalytic metal on the filter material or the filter body, the catalyst material is heated to, for example, 400 to 800 ° C. and calcined to finally produce the metal or metal oxide form catalyst body.
【0027】本発明の触媒金属は白金、ロジウム又はパ
ラジウム等、白金族金属化合物から選択された少なくと
も一つの白金族金属溶液で、白金、ロジウム又はパラジ
ウムの含量は濾過材1リットル当たり、望ましくは白金
0〜7.07g、ロジウム0〜2g、パラジウム0〜
7.07gである(しかし、これら金属の総量は0より
大きい)。The catalyst metal of the present invention is a solution of at least one platinum group metal selected from platinum group metal compounds such as platinum, rhodium or palladium. The content of platinum, rhodium or palladium is preferably platinum per liter of the filter medium. 0-7.07 g, rhodium 0-2 g, palladium 0-
7.07 g (but the total amount of these metals is greater than 0).
【0028】又、白金、ロジウム及びパラジウムから選
択された少なくとも一つの貴金属が沈着支持体に沈着さ
れる量の比率(非金属/沈着支持体重量比)は0.00
1/1〜0.1/1の範囲が望ましい。前記貴金属が沈
着支持体に担持される量の比率が0.001/1以下で
は担持された貴金属の量があまり少なくて貴金属の触媒
効果が期待できず、0.1/1以上では貴金属の触媒効
果の増加が殆どなく貴金属の費用だけ増加させるので、
経済的にも資源の有効利用面でも不利である。Further, the ratio of the amount of at least one noble metal selected from platinum, rhodium and palladium deposited on the deposition support (nonmetal / deposition support weight ratio) is 0.00.
The range of 1/1 to 0.1 / 1 is desirable. If the ratio of the amount of the noble metal supported on the deposition support is 0.001 / 1 or less, the amount of the supported noble metal is too small to expect the catalytic effect of the noble metal, and if it is 0.1 / 1 or more, the catalyst of the noble metal is used. Since there is almost no increase in effect and only the cost of precious metals is increased,
It is disadvantageous both economically and effective use of resources.
【0029】[0029]
【実施例】以下、実施例に従って本発明の構成及び効果
に対して具体的に説明する。しかし、下記の実施例が本
発明の範囲を限定するのではない。EXAMPLES The constitution and effects of the present invention will be specifically described below with reference to examples. However, the following examples do not limit the scope of the invention.
【0030】[0030]
実施例1.触媒成分(YK−R)の製造方法 1−1.原触媒と廃触媒(YK−R)の組成分析 (株)油公の重質油分解施設中の水添脱硫工程で下記表
1のように触媒を充填して250日間工程を稼働した
後、排出された廃触媒中の2gを取ってICP(Induct
ion Coupled Plasma) で成分分析し、初期に充填した触
媒の組成に比較した結果を下記表2に示す。Example 1. Method for producing catalyst component (YK-R) 1-1. Composition analysis of raw catalyst and waste catalyst (YK-R) After the catalyst was filled in the hydrodesulfurization process in the heavy oil cracking facility of Yuko Co., Ltd. as shown in Table 1 below and the process was operated for 250 days, ICP (Induct)
The results are shown in Table 2 below, in which the components are analyzed by ion coupled plasma and compared with the composition of the catalyst initially filled.
【0031】[0031]
【表1】 [Table 1]
【0032】[0032]
【表2】 [Table 2]
【0033】1−2.加熱温度による比表面積の変化 前記廃触媒10gずつを取って下記表3のように加熱し
た後、比表面積を測定し、これを下記表3に示す。加熱
温度400℃以下では加熱が不充分で不純物が完全に除
去されず、1000℃以上では触媒成分の劣化により気
孔が破壊されたことがわかる。1-2. Change in Specific Surface Area with Heating Temperature After taking 10 g of each of the waste catalysts and heating them as shown in Table 3 below, the specific surface area was measured and shown in Table 3 below. It can be seen that when the heating temperature is 400 ° C. or lower, the heating is insufficient and impurities are not completely removed, and when the heating temperature is 1000 ° C. or higher, the pores are destroyed due to the deterioration of the catalyst component.
【0034】[0034]
【表3】 [Table 3]
【0035】1−3.触媒組成物(YK−R)粉末の製
造 前記廃触媒中の100kgを炉で20℃/分の加熱速度
で800℃まで加熱してから2時間加熱してから冷却
し、これを粉砕機で粉砕して200メッシュ粉末を製造
した。1-3. Production of catalyst composition (YK-R) powder 100 kg of the waste catalyst was heated in a furnace at a heating rate of 20 ° C./min to 800 ° C., heated for 2 hours, cooled, and then pulverized by a pulverizer. To produce 200 mesh powder.
【0036】実施例2.反応試験(YK−R組成物) 2−1.試料準備 前記実施例1−3で製造したYK−R粉末及びアルミ
ナ、チタニア各15gずつを取ってそれぞれ組成物1
(実施用)、組成物2,3(比較用)を準備した。 2−2.CO酸化反応 前記実施例2−1で製造した組成物試料1〜3に対して
それぞれ反応器に1gずつ充填して定着してから反応温
度に調節する。CO200ppmを含有した空気を空間
速度50,000/hで反応器に流入させながら反応器
出口でCOの濃度を時間分解結果で燃焼分析し転換率が
50%になる温度を調査する。Example 2. Reaction test (YK-R composition) 2-1. Sample Preparation 15 g each of the YK-R powder prepared in Example 1-3, alumina, and titania were taken and the composition 1 was prepared.
(For implementation) and Compositions 2 and 3 (for comparison) were prepared. 2-2. CO Oxidation Reaction Each of the composition samples 1 to 3 prepared in Example 2-1 was charged in a reactor in an amount of 1 g and fixed, and then the reaction temperature was adjusted. While allowing air containing 200 ppm of CO to flow into the reactor at a space velocity of 50,000 / h, the concentration of CO at the outlet of the reactor is subjected to combustion analysis based on the time-resolved results to investigate the temperature at which the conversion rate becomes 50%.
【0037】2−3.C3 H8 酸化反応 前記CO酸化反応試験と同方法で1000ppmのC3
H8 と空気の混合ガスを流入させながらC3 H8 の転換
率が50%である温度を測定する。 2−4.SO2 酸化反応 前記CO酸化反応試験と同方法で50ppmのSO2 と
空気の混合ガスを流入させながら450℃でSO2 の転
換率を測定する。2-3. C 3 H 8 Oxidation reaction Using the same method as the CO oxidation reaction test, 1000 ppm of C 3
The temperature at which the conversion of C 3 H 8 is 50% is measured while injecting a mixed gas of H 8 and air. 2-4. SO 2 Oxidation Reaction The SO 2 conversion rate is measured at 450 ° C. while introducing a mixed gas of 50 ppm SO 2 and air in the same manner as in the CO oxidation reaction test.
【0038】2−5.煤煙燃焼試験 前記実施例2−1で製造した組成物試料1〜3をそれぞ
れ煤煙中の粒子状物質1gと均一に混合してから反応器
に充填する。温度を分当たり10℃上昇させて200℃
に到達したら、分当たり1℃ずつ昇温させながら点火さ
れる温度(煤煙燃焼温度)を測定した。前記測定したC
OとC3 H8 の50%転換率、450℃でのSO2 転換
率及び煤煙燃焼温度を下記表4に示す。2-5. Soot combustion test Each of the composition samples 1 to 3 prepared in Example 2-1 was uniformly mixed with 1 g of the particulate matter in the smoke, and then charged into the reactor. Increase temperature by 10 ° C per minute to 200 ° C
When the temperature reached, the temperature at which ignition was performed (soot combustion temperature) was measured while increasing the temperature by 1 ° C. per minute. The measured C
Table 4 below shows the 50% conversion of O and C 3 H 8 , the SO 2 conversion at 450 ° C. and the soot burning temperature.
【0039】実施例3.高温での耐久性評価 前記実施例2−1で創造した触媒組成物1−3に対して
それぞれ5gずつを取って炉に入れた後、20℃/分の
加熱速度で800℃まで加熱してから5時間放置した。
この触媒組成物を実施例2と同方法でCO、C3 H8 、
SO2 酸化反応活性と煤煙燃焼温度を測定した結果を下
記表4に示す。Example 3. Durability Evaluation at High Temperature 5 g of each of the catalyst compositions 1-3 created in Example 2-1 was placed in a furnace and heated to 800 ° C. at a heating rate of 20 ° C./min. Left for 5 hours.
This catalyst composition was treated in the same manner as in Example 2 with CO, C 3 H 8 ,
The results of measuring the SO 2 oxidation reaction activity and the soot burning temperature are shown in Table 4 below.
【0040】実施例4.硫黄酸化物に対する化学的安定
性評価 前記実施例2−1で製造した触媒1−3に対して5gず
つを取って炉に入れた後、20℃/分の加熱速度で50
0℃に加熱し、SO3 100ppmを含有した窒素ガス
を2リットル/分で50時間流した。この触媒を実施例
2と同方法でCO、C3 H8 、SO2 酸化反応活性と煤
煙燃焼温度を測定した結果を下記表4に示す。Example 4. Evaluation of Chemical Stability to Sulfur Oxide After taking 5 g of each of the catalysts 1-3 produced in Example 2-1 and putting them in a furnace, 50 at a heating rate of 20 ° C./min.
The mixture was heated to 0 ° C., and nitrogen gas containing 100 ppm of SO 3 was flown at 2 liter / min for 50 hours. The results of measurement of CO, C 3 H 8 , SO 2 oxidation reaction activity and soot burning temperature of this catalyst by the same method as in Example 2 are shown in Table 4 below.
【0041】[0041]
【表4】 注)COは50%CO転換率での温度(℃)を意味す
る。HCは50%C3 H8 転換率での温度(℃)を意味
する。SO2 450℃でのSO2 転換率(%)を意味す
る。Tは煤煙燃焼温度(℃)を意味する。[Table 4] Note) CO means temperature (° C) at 50% CO conversion. HC means temperature (° C.) at 50% C 3 H 8 conversion. SO 2 means SO 2 conversion (%) at 450 ° C. T means a soot burning temperature (° C.).
【0042】前記表4に示したように、YK−R(廃触
媒組成物)粉末(試料1)は単独でも煤煙の燃焼性能が
優秀であるばかりでなく高温での熱的安定性と硫黄酸化
物による化学的安定性が卓越して、実際ディーゼル車両
の粒子状物質を除去する触媒組成物として優秀な耐久性
を有することがわかる。As shown in Table 4, YK-R (waste catalyst composition) powder (Sample 1) not only excels in soot combustion performance by itself, but also has high thermal stability at high temperature and sulfur oxidation. It can be seen that the chemical stability of the catalyst is excellent and that it actually has excellent durability as a catalyst composition for removing particulate matter of diesel vehicles.
【0043】実施例5.濾過材製造 5−1.フォーム(Foam) 形濾過材の製造 10ppiポリウレタンフォームを2cm×2cm×2
cmの大きさに切った後、水とメチルアルコールの重量
比が1:1である溶液に10分間担持させた後、乾燥さ
せた。Example 5. Manufacturing of filtration material 5-1. Manufacture of Foam filter media 2 cm x 2 cm x 2 of 10 ppi polyurethane foam
After being cut to a size of cm, the solution was allowed to stand for 10 minutes in a solution having a weight ratio of water and methyl alcohol of 1: 1 and then dried.
【0044】前記実施例1−3で製造されたYK−R1
00gにデキストリン15gをバインダーとして添加し
た後、モノエタノールアミン7gを成形安定剤として添
加する。次いで、水60gと活性物質であるエチレング
リコール6mlを添加してから攪拌してスラリーに入れ
て、フォームに十分に担持されるようにした後、フォー
ムに担持されたスラリー中の約80%程度を除去し乾燥
させる。このようにポリウレタンフォームにスラリーを
担持させる過程を3回繰り返して、全体重量が6gであ
るポリウレタンフォームにYK−Rが担持された物質を
得る。これを50℃で24時間乾燥した後、0.5℃/
分の加熱速度で300℃まで加熱してから3時間、1℃
/分の加熱速度で900℃まで加熱してから1時間焼結
してフォーム1(濾過材1)を製造する。コージアライ
ト粉末を単独で使用してフォーム2(濾過材2/比較
用)を製造した。YK-R1 produced in Examples 1-3 above
After adding 15 g of dextrin as a binder to 00 g, 7 g of monoethanolamine is added as a molding stabilizer. Then, 60 g of water and 6 ml of ethylene glycol, which is an active substance, were added, and the mixture was stirred and put into a slurry so that it was sufficiently supported on the foam, and about 80% of the slurry supported on the foam was added. Remove and dry. The process of supporting the slurry on the polyurethane foam is repeated three times to obtain a substance in which YK-R is supported on the polyurethane foam having a total weight of 6 g. After drying this at 50 ° C for 24 hours, 0.5 ° C /
3 hours after heating to 300 ℃ at a heating rate of 1 minute, 1 ℃
Form 1 (filter material 1) is manufactured by heating to 900 ° C. at a heating rate of 1 minute / minute and then sintering for 1 hour. Foam 2 (filter material 2 / comparative) was made using cordierite powder alone.
【0045】5−2.フロー−スロー形ハニカム(Flow
-Through Honeycomb) 濾過材の製造フロー−スローハニ
カム形濾過材は圧出法により製造し、その製造過程は次
のようである。YK−R粉末100gにメチルセルロー
ス4gをバインダーとして添加し、造孔材を15g加
え、1時間ボールミルで乾式粉砕及び混合する。混合さ
れた原料に水を適量加えて0.8〜1mg/mm2 の強
度を有するようにスラリーを製造する。このスラリーを
スクリュー圧出成形機に注入させながら直径5mmのハ
ニカムを成形した。成形された製品は70℃の乾燥炉で
36時間乾燥させた後、図1に示すように多段階に昇温
させながら焼結して完成した(濾過材3)。又、コージ
アライト粉末を単独で使用して濾過材4(比較用)を製
造した。5-2. Flow-slow honeycomb
-Through Honeycomb) Manufacturing Flow of Filter Media-The slow honeycomb filter media is manufactured by the extrusion method, and the manufacturing process is as follows. To 100 g of YK-R powder, 4 g of methyl cellulose is added as a binder, 15 g of a pore-forming material is added, and dry pulverization and mixing are performed with a ball mill for 1 hour. An appropriate amount of water is added to the mixed raw materials to produce a slurry having a strength of 0.8 to 1 mg / mm 2 . While injecting this slurry into a screw extrusion molding machine, a honeycomb having a diameter of 5 mm was molded. The molded product was dried in a drying oven at 70 ° C. for 36 hours, and then sintered while being heated in multiple stages as shown in FIG. 1 to complete (filter material 3). In addition, filter medium 4 (for comparison) was manufactured by using cordierite powder alone.
【0046】5−3.ウォールフローハニカム(Wall-F
low Honeycomb)形濾過材の製造 前記実施例5−2でYK−Rを原料として製造されたフ
ロースロー形ハニカムに、米国特許第4,411,85
6号のような方法のイージーキャスタブルポリマー(Ea
sy Castable Polymer)で製作されたマスクを用いてハニ
カムと同材質のスラリーを押し入れて選択的に孔を塞ぐ
方法によりウォールフローハニカム形濾過材5を製造し
た。又、前記YK−Rとコージアライト粉末を1:1に
混合し、前述した方法と同方法で濾過材6を製造し、コ
ージアライト粉末を単独で使用してウォールフォローハ
ニカム形濾過材7(比較用)を製造した。5-3. Wall Flow Honeycomb (Wall-F
Production of low honey comb) type filter medium The flow-throw type honeycomb produced from YK-R as a raw material in Example 5-2 was prepared according to US Pat. No. 4,411,85.
Easy castable polymer (Ea
A wall-flow honeycomb filter material 5 was manufactured by a method in which a slurry made of the same material as that of the honeycomb was pressed in using a mask made of sy Castable Polymer) to selectively close the holes. The YK-R and cordierite powder were mixed in a ratio of 1: 1 to prepare a filter medium 6 by the same method as described above. (For comparison) was manufactured.
【0047】実施例6.濾過体の製造 400cpiのセラミックハニカムモノリスを2cm×
2cm×2cmの大きさに切る。YK−R粉末1000
gと水900gを混合した後、粉砕機でスラリー状態に
24時間粉砕した。このスラリーを攪拌槽に移してから
攪拌しながら濃酢酸とアンモニア水を添加してpH4.
5、粘度95cpsに調節した。ここに準備したセラミ
ックハニカムモノリスを浸してから、40psiの圧縮
空気で吹き出し、20℃/分の加熱速度で120℃まで
加熱してから10時間、500℃で2時間加熱して、Y
K−R沈着支持体が1.3g担持された濾過体8を製造
した。又、前記YK−Rとアルミナ粉末を1:1混合し
て、前述した方法と同方法で濾過体9を製造し、アルミ
ナ粉末とチタニア粉末を単独で使用してそれぞれ濾過体
10,11(比較用)を製造した。Example 6. Manufacture of filter body 2 cm x 400 cpi ceramic honeycomb monolith
Cut into 2 cm x 2 cm pieces. YK-R powder 1000
g and 900 g of water were mixed and then pulverized into a slurry state by a pulverizer for 24 hours. The slurry was transferred to a stirring tank, concentrated acetic acid and aqueous ammonia were added thereto with stirring, and the pH was adjusted to 4.
5, the viscosity was adjusted to 95 cps. The ceramic honeycomb monolith prepared here is dipped, blown with compressed air of 40 psi, heated to 120 ° C. at a heating rate of 20 ° C./min, heated for 10 hours, and heated at 500 ° C. for 2 hours, and then Y
A filter body 8 carrying 1.3 g of KR deposition support was produced. Also, the YK-R and alumina powder were mixed in a ratio of 1: 1 to manufacture a filter body 9 by the same method as described above, and the alumina powder and titania powder were used alone to obtain filter bodies 10 and 11 (comparative). Manufactured).
【0048】実施例7.反応試験(濾過材及び濾過体) 7−1.CO酸化反応 前記実施例5と6で製造した濾過材及び濾過体1〜11
をそれぞれ反応器に装着した後、反応温度に調節する。
CO200ppmを含有した空気を空間速度50,00
0/hで反応器に流入させながら反応器の出口でのCO
濃度を時間分解結果で燃焼分析して転換率が50%とな
る温度を調査する。 7−2.C3 H8 酸化反応 前記CO酸化反応試験と同方法で100ppmのC3 H
8 と空気の混合ガスを流入させながらC3 H8 の転換率
が50%である温度を測定した。Example 7. Reaction test (filter material and filter body) 7-1. CO oxidation reaction Filter media and filters 1 to 11 produced in Examples 5 and 6 above.
After each was attached to the reactor, the reaction temperature was adjusted.
Air containing 200 ppm CO was passed through a space velocity of 50,000
CO at the outlet of the reactor while flowing into the reactor at 0 / h
Combustion analysis is performed on the concentration based on the time-resolved result to investigate the temperature at which the conversion rate becomes 50%. 7-2. C 3 H 8 oxidation reaction 100 ppm of C 3 H in the same manner as the CO oxidation reaction test
The temperature at which the C 3 H 8 conversion rate was 50% was measured while introducing a mixed gas of 8 and air.
【0049】7−3.SO2 酸化反応 前記CO酸化反応試験と同方法で50ppmのSO2 と
空気の混合ガスを流入させながら450℃でSO2 の転
換率を測定する。 7−4.煤煙燃焼試験 前記実施例5と6で製造した濾過材1〜7及び濾過体8
〜11をそれぞれ煤煙1gと均一に充填してから反応器
に装着する。温度を分当たり10℃ずつ上昇して200
℃に到達したら、分当たり1℃ずつ昇温させて点火温度
(煤煙燃焼温度)を測定した。前記測定したCOとC3
H8 の50%転換率、450℃でのSO2 転換率及び煤
煙燃焼温度を下記表5に示す。7-3. SO 2 Oxidation Reaction The SO 2 conversion rate is measured at 450 ° C. while introducing a mixed gas of 50 ppm SO 2 and air in the same manner as in the CO oxidation reaction test. 7-4. Soot burning test Filter media 1 to 7 and filter body 8 produced in Examples 5 and 6 above.
1 to 11 g of soot are evenly charged and then loaded into the reactor. Increase the temperature by 10 ° C per minute to 200
When the temperature reached 0 ° C, the temperature was raised by 1 ° C per minute and the ignition temperature (soot combustion temperature) was measured. The measured CO and C 3
Table 5 below shows 50% conversion of H 8 , SO 2 conversion at 450 ° C. and soot burning temperature.
【0050】実施例8.高温での耐久性評価 前記実施例5と6で製造した濾過材1〜7及び濾過体8
〜11を炉に入れた後、20℃/分の加熱速度で800
℃まで加熱してから5時間放置した。この触媒を実施例
7と同方法でCO、C3 H8 、SO2 酸化反応活性と煤
煙燃焼温度を測定した結果を下記表5に示す。Example 8. Durability evaluation at high temperature Filter media 1 to 7 and filter body 8 produced in Examples 5 and 6 above.
After putting ~ 11 into the furnace, 800 at a heating rate of 20 ° C / min
After heating to ℃, it was left for 5 hours. The results of measurement of CO, C 3 H 8 , SO 2 oxidation reaction activity and soot combustion temperature of this catalyst by the same method as in Example 7 are shown in Table 5 below.
【0051】実施例9.硫黄酸化物に対する化学的安定
性評価 前記実施例5と6で製造した触媒1〜7及び濾過体8〜
11を炉に入れた後、20℃/分の加熱速度で500℃
に加熱し、SO3 1,000ppmを含有した窒素ガス
を2リットル/分で50時間流した。この触媒を実施例
7と同方法でCO、C3 H8 、SO2 酸化反応活性と煤
煙燃焼温度を測定した結果を下記表5に示す。Example 9. Evaluation of chemical stability against sulfur oxides Catalysts 1 to 7 and filters 8 to 8 produced in Examples 5 and 6 above
After putting 11 in the furnace, 500 ℃ at a heating rate of 20 ℃ / min
After heating, nitrogen gas containing 1,000 ppm of SO 3 was passed at 2 liters / minute for 50 hours. The results of measurement of CO, C 3 H 8 , SO 2 oxidation reaction activity and soot combustion temperature of this catalyst by the same method as in Example 7 are shown in Table 5 below.
【0052】[0052]
【表5】 注)COは50%CO転換率での温度(℃)を意味す
る。HCは50%C3 H8 転換率での温度(℃)を意味
する。SO2 450℃でのSO2 転換率(%)を意味す
る。Tは煤煙燃焼温度(℃)を意味する。[Table 5] Note) CO means temperature (° C) at 50% CO conversion. HC means temperature (° C.) at 50% C 3 H 8 conversion. SO 2 means SO 2 conversion (%) at 450 ° C. T means a soot burning temperature (° C.).
【0053】前記表5に示したように、YK−Rで製造
された濾過材又は濾過体は単独でも既存の濾過材又は濾
過体より煤煙の燃焼性能が優秀であるばかりでなく、高
温で熱的安定性と硫黄酸化物による化学的安定性が卓越
して、実際ディーゼル車両の粒子状物質を除去する触媒
として優秀な耐久性を有することがわかる。As shown in Table 5, the YK-R-made filter medium or filter body not only excels in the soot-smoke combustion performance as compared with the existing filter medium or filter body, but also heat at high temperature. The chemical stability and chemical stability due to sulfur oxides are excellent, and it can be seen that it actually has excellent durability as a catalyst for removing particulate matter of diesel vehicles.
【0054】実施例10.YK−Rから触媒体の製造 前記実施例5と6で製造された濾過材1〜7及び濾過体
8〜11に対してそれぞれ塩化白金酸水溶液を用いて、
触媒金属含量が1wt%となるように担持した後、12
0℃で12時間乾燥してから、20℃/分の加熱速度で
500℃まで2時間焼成して触媒体12〜22を製造し
た。Example 10. Production of catalyst body from YK-R Using chloroplatinic acid aqueous solution for each of the filtration media 1 to 7 and the filtration media 8 to 11 produced in Examples 5 and 6,
After supporting the catalyst metal content to be 1 wt%, 12
After being dried at 0 ° C. for 12 hours and then calcined at a heating rate of 20 ° C./min to 500 ° C. for 2 hours, catalyst bodies 12 to 22 were manufactured.
【0055】実施例11.反応試験(触媒体) 前記実施例10で製造した触媒体12〜22についてそ
れぞれ実施例7と同方法で、CO、C3 H8 及びSO2
転換率及び煤煙燃焼温度を測定し、その結果を下記表8
に示す。Example 11. Reaction test (catalyst body) With respect to the catalyst bodies 12 to 22 produced in Example 10, CO, C 3 H 8 and SO 2 were produced in the same manner as in Example 7.
The conversion rate and the soot burning temperature were measured, and the results are shown in Table 8 below.
Shown in.
【0056】実施例12.高温での耐久性評価(触媒
体) 前記実施例10で製造した触媒材12〜22を600℃
で7日間空気中で焼成した。これら触媒体を実施例7と
同方法でCO、C3 H8 及びSO2 の酸化反応と煤煙燃
焼試験を実施し、その結果を下記表6に示す。Example 12 Durability evaluation at high temperature (catalyst body) The catalyst materials 12 to 22 produced in Example 10 were treated at 600 ° C.
Baked in air for 7 days. These catalysts were subjected to a CO, C 3 H 8 and SO 2 oxidation reaction and a soot combustion test in the same manner as in Example 7, and the results are shown in Table 6 below.
【0057】実施例13.硫黄酸化物に対する化学的安
定性評価(触媒体) 前記実施例10で製造した触媒体12〜22を400℃
で7日間SO2 200ppmが包含された乾燥空気中で
焼成した。これら触媒を実施例7と同方法でCO、C3
H8 、SO2 酸化反応と煤煙燃焼試験を実施し、その結
果を下記表6に示す。Example 13. Evaluation of chemical stability to sulfur oxides (catalyst body) The catalyst bodies 12 to 22 produced in Example 10 were heated to 400 ° C.
Calcination in dry air containing 200 ppm SO 2 for 7 days. Using these catalysts in the same manner as in Example 7, CO, C 3
H 8 and SO 2 oxidation reaction and soot combustion test were conducted, and the results are shown in Table 6 below.
【0058】[0058]
【表6】 注)COは50%CO転換率での温度(℃)を意味す
る。HCは50%C3 H8 転換率での温度(℃)を意味
する。SO2 450℃でのSO2 転換率(%)を意味す
る。Tは煤煙燃焼温度(℃)を意味する。[Table 6] Note) CO means temperature (° C) at 50% CO conversion. HC means temperature (° C.) at 50% C 3 H 8 conversion. SO 2 means SO 2 conversion (%) at 450 ° C. T means a soot burning temperature (° C.).
【0059】前記表6に示したように、廃触媒から製造
された濾過材又は沈着支持体を用いて製造された触媒体
は従来の触媒体に比べて大変低い温度でも粒子状物質を
燃焼させて濾過材を再生させる優秀な触媒効果を奏し、
さらに高温での熱的安定性と硫黄酸化物に対する化学的
安定性が卓越することがわかる。As shown in Table 6 above, the catalyst body produced by using the filter medium or the deposition support produced from the waste catalyst burns the particulate matter at a much lower temperature than the conventional catalyst body. It has an excellent catalytic effect to regenerate the filter material by
It can be seen that the thermal stability at high temperatures and the chemical stability against sulfur oxides are excellent.
【0060】実施例14.エンジン試験用触媒体の製造 米国コーニング社の商品名EX−54セラミック単一体
濾過機に下記表7に示したような沈着支持体を1リット
ル当たり100gずつ沈着させた後、メタル含量が沈着
支持体を基準として1wt%となるように触媒金属を担
持した。これを120℃12時間乾燥した後、500℃
空気中で2時間焼成して1〜6の六つの触媒体を製造し
た。触媒体の耐久性を評価するために触媒体2,4に対
して800℃で7日間老化させ、SO2 被毒抵抗性を調
査するために触媒体3,5及び6を200℃出7日間2
00ppmのSO2 に露出させた。Example 14 Manufacture of catalyst body for engine test After depositing 100 g / l of the deposition support as shown in Table 7 below on EX-54 ceramic single-body filter manufactured by Corning Incorporated in the United States, the metal support was deposited. The catalyst metal was supported so as to be 1 wt% based on the above. This is dried at 120 ℃ for 12 hours, then 500 ℃
It was calcined in air for 2 hours to produce six catalyst bodies 1-6. The catalyst bodies 2 and 4 were aged at 800 ° C. for 7 days to evaluate the durability of the catalyst bodies, and the catalyst bodies 3, 5 and 6 were exposed to 200 ° C. for 7 days to investigate the SO 2 poisoning resistance. Two
Exposed to 00 ppm SO 2 .
【0061】[0061]
【表7】 [Table 7]
【0062】実施例15.触媒体の再生性能評価 前記実施例14で製造した触媒体をそれぞれ英国、ペタ
ース社(Petters Ltd.) のペターAV−B(Petter AV-
B)スーパーチャージド単一シリンダディーゼルエンジン
に装着した後、運転速度2250rpm、冷却水温度1
00℃、オイル温度90℃、オイル圧力2.5bar、
空気投入圧力2230mbar、電算運転条件でエンジ
ンのバイパスバルブを閉め、濾過トラップバルブを開け
る。スロットルを少し開け、再生現象が起こらない場
合、スロットルをさらに開けて排気温度を上昇させなが
ら触媒体の再生を実験した。再生が起こる時は、捕集さ
れた粒子状物質が触媒発火により燃焼して、エンジン排
気管の背圧は減少し濾過トラップ後端の温度は上昇す
る。Example 15. Evaluation of Regeneration Performance of Catalyst Body Each of the catalyst bodies produced in Example 14 was putter AV-B (Petter AV-B) manufactured by Petters Ltd.
B) After installed in a supercharged single cylinder diesel engine, operating speed 2250 rpm, cooling water temperature 1
00 ° C, oil temperature 90 ° C, oil pressure 2.5 bar,
The bypass valve of the engine is closed and the filtration trap valve is opened under the operation conditions of air input of 2230 mbar and computer operation. When the throttle was slightly opened and the regeneration phenomenon did not occur, the catalyst was regenerated while the exhaust temperature was raised by further opening the throttle. When regeneration occurs, the collected particulate matter burns due to catalyst ignition, the back pressure of the engine exhaust pipe decreases, and the temperature at the rear end of the filter trap rises.
【0063】又、排気ガス中の硫黄三酸化物の含量はイ
ソプロピルアルコールと水の容積比が60:40である
混合溶液に一定量の排気ガスを真空ポンプで2分間捕集
しイオン液相クロマトグラフィー法で標準溶液と比較、
分析した。以上の試験方法で、前記実施例14で製造さ
れた六つの触媒体に対して再生温度の硫黄三酸化物排出
量を測定して下記表8に示す。The sulfur trioxide content in the exhaust gas was measured by ionic liquid phase chromatography by collecting a certain amount of exhaust gas with a vacuum pump for 2 minutes in a mixed solution having a volume ratio of isopropyl alcohol and water of 60:40. Compared with standard solution by chromatography,
analyzed. By the above test method, the emission amount of sulfur trioxide at the regeneration temperature was measured for the six catalyst bodies produced in Example 14, and the results are shown in Table 8 below.
【0064】[0064]
【表8】 [Table 8]
【0065】前記表8で、触媒体1、2、3を比較して
見ると、YK−R−1から製造された触媒体は高温又は
硫黄酸化物に長時間露出されても触媒体の活性が減少し
ない卓越した耐久性を有することがわかる。又、触媒体
2、4を比較して見ると、高温で長時間露出された時、
YK−R−1から製造された触媒体2がチタニアから製
造された触媒体4に比べて低い再生温度と硫黄酸化物排
出量を有することがわかる。Comparing the catalyst bodies 1, 2, and 3 in Table 8 above, it can be seen that the catalyst bodies prepared from YK-R-1 have the activity of the catalyst bodies even when exposed to high temperature or sulfur oxide for a long time. It can be seen that it has excellent durability that does not decrease. Also, comparing the catalyst bodies 2 and 4, when exposed at high temperature for a long time,
It can be seen that the catalyst body 2 made from YK-R-1 has a lower regeneration temperature and lower sulfur oxide emissions than the catalyst body 4 made from titania.
【0066】又、触媒体3、5、6を比較して見ると、
硫黄酸化物に長時間露出された時、YK−R−1から製
造された触媒体3がアルミナから製造された触媒体5、
6に比べて低い再生温度と硫黄酸化物排出量を有するこ
とがわかる。このように、YK−R−1から製造された
触媒体は、従来の触媒体に比べて大変低い温度でも粒子
状物質を燃焼させて濾過材を再生させる優秀な触媒効果
を奏し、高温での熱的安定性と硫黄酸化物に対する化学
的安定性が卓越して、実際ディーゼル車両の運転条件で
も粒子状物質を除去する触媒として長期間にも優秀な性
能を発揮することがわかる。Further, comparing the catalyst bodies 3, 5, and 6,
When exposed to sulfur oxides for a long time, the catalyst body 3 made of YK-R-1 becomes a catalyst body 5 made of alumina,
It can be seen that it has a lower regeneration temperature and sulfur oxide emission amount as compared with No. 6. As described above, the catalyst body produced from YK-R-1 has an excellent catalytic effect of regenerating the filter medium by burning the particulate matter even at a very low temperature as compared with the conventional catalyst body, and at a high temperature. It can be seen that the thermal stability and the chemical stability with respect to sulfur oxides are excellent, and the catalyst exhibits excellent performance for a long time as a catalyst for removing particulate matter even under the operating conditions of diesel vehicles.
【0067】[0067]
【発明の効果】以上のような方法によりYK−Rで製造
された濾過材又は濾過体が含有された触媒体を濾過装置
に装着し、ディーゼル車両の粒子状物質を除去する場
合、粒子状物質に対する燃焼性能が優秀であるとともに
高温での熱的安定性とディーゼル燃焼時に発生する硫黄
酸化物に対する化学的安定性が卓越して、ディーゼル車
両の粒子状物質を除去する性能を長期間維持させ得るの
で、ディーゼル車両粒子状物質の除去に適合する。[Effects of the Invention] When the filter medium or the catalyst body containing the filter body produced by YK-R by the above-mentioned method is mounted on the filter device to remove the particulate matter of the diesel vehicle, the particulate matter is removed. It has excellent combustion performance with respect to diesel fuel and has excellent thermal stability at high temperatures and chemical stability against sulfur oxides generated during diesel combustion, which makes it possible to maintain the diesel particulate matter removal performance for a long period of time. So it is suitable for the removal of diesel vehicle particulate matter.
【図1】 実施例5の濾過材3の製造時の焼結条件を示
す。1 shows the sintering conditions at the time of manufacturing the filter medium 3 of Example 5. FIG.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/94 B01J 23/88 ZAB A 23/96 ZAB A (72)発明者 キム ヨンウー 大韓民国、ダエジェゥン、スーグ、サムチ ュンドン、ドンスン・ククァ・アパート 1−505 (72)発明者 チョイ ヨンタェク 大韓民国、ダエジェゥン、ユスング、ジュ ンミンドン 460−1、サムソン・プル ン・アパート 113−503 (72)発明者 リー キホ 大韓民国、ダエジェゥン、ユスング、ジュ ンミンドン 460−1、サムソン・プル ン・アパート 113−501 (72)発明者 ミン キョンチョル 大韓民国、ダエジェゥン、スーグ、ウェル ピョンドン・ドンサン 285−2 ブロッ ク、サエビル・アパート 102−307 (72)発明者 ウン ジャエウーン 大韓民国、ダエジェゥン、ユスング、アエ ウンドン、ハンビット・アパート 118− 104Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B01D 53/94 B01J 23/88 ZAB A 23/96 ZAB A (72) Inventor Kim Yong Woo South Korea, Dae Jeong, Sugu, Samsung-dong, Dong-sung Kwa Apartment 1-505 (72) Inventor Choi Yong-taek, Republic of Korea, Daejeung, Yusung, Jun-min Dong 460-1, Samsung Plung Apartment 113-503 (72) Inventor Lee Ki-ho, Republic of Korea, Daejeung, Yousung, Jun Min Dong 460-1, Samsung Prung Apartment 113-501 (72) Inventor Min Kyung Chul Republic of Korea, Daejeung, Sugu, Well Pyeong Dong Dong San 285-2 Block, Saeville Apartment 102-307 (72) Invention Eun Jae Eun Korea, Dae Jeung, Yu Sung, Ae Eun Dong, Hanbit A Part 118-104
Claims (30)
%以下、ニッケル20%以下、コバルト30%以下、ア
ルミナ99%以下、及び通常の原油精製時に包含される
微量不純物からなることを特徴とするディーゼルエンジ
ン粒子状物質除去用廃触媒組成物。1. Vanadium 80% or less, molybdenum 80
% Of nickel, 20% or less of nickel, 30% or less of cobalt, 99% or less of alumina, and trace impurities contained during ordinary crude oil refining, and used catalyst composition for removing particulate matter of diesel engine.
前処理した後、これを粉砕してバナジウム80%以下、
モリブデン80%以下、ニッケル20%以下、コバルト
30%以下、アルミナ99%以下、及び通常の原油精製
時に包含される微量不純物からなる廃触媒組成物を製造
することを特徴とするディーゼルエンジンの粒子状物質
除去のための廃触媒組成物の製造方法。2. A waste catalyst used as a raw material is heated and pretreated, and then crushed to obtain 80% or less of vanadium,
Particulates of a diesel engine characterized by producing a waste catalyst composition consisting of 80% or less of molybdenum, 20% or less of nickel, 30% or less of cobalt, 99% or less of alumina, and trace impurities contained during ordinary crude oil refining. A method for producing a waste catalyst composition for removing a substance.
0℃であることを特徴とする請求項2記載のディーゼル
エンジンの粒子状物質除去のための廃触媒組成物の製造
方法。3. The heating temperature of the waste catalyst is 400 to 100.
The method for producing a waste catalyst composition for removing particulate matter of a diesel engine according to claim 2, wherein the temperature is 0 ° C.
0メッシュに粉砕することを特徴とする請求項2記載の
ディーゼルエンジンの粒子状物質除去のための廃触媒組
成物の製造方法。4. The particle size of the waste catalyst is 100-80.
The method for producing a waste catalyst composition for removing particulate matter of a diesel engine according to claim 2, which is pulverized to 0 mesh.
%以下、ニッケル20%以下、コバルト30%以下、ア
ルミナ99%以下、及び通常の原油精製時に包含される
微量不純物からなる廃触媒組成物を単独で、又はこの廃
触媒組成物を既存の濾過材粉末の混合物質を原料として
濾過材スラリーを製造した後、これを濾過材構造に成形
し、これを焼却して製造することを特徴とするディーゼ
ルエンジン粒子状物質除去用濾過材の製造方法。5. Vanadium 80% or less, molybdenum 80
% Or less, nickel 20% or less, cobalt 30% or less, alumina 99% or less, and a trace amount of impurities contained in a usual crude oil refining alone, or the waste catalyst composition is used as an existing filter medium. A method for producing a filter material for removing particulate matter of a diesel engine, which comprises producing a filter medium slurry by using a mixed substance of powders as a raw material, molding this into a filter medium structure, and incinerating this.
ら粉砕して製造されることを特徴とする請求項5記載の
ディーゼルエンジンの粒子状物質除去用濾過材の製造方
法。6. The method for producing a particulate matter removing filter material for a diesel engine according to claim 5, wherein the waste catalyst composition is produced by heating the waste catalyst and then pulverizing the waste catalyst.
0℃であることを特徴とする請求項6記載のディーゼル
エンジンの粒子状物質除去用濾過材の製造方法。7. The heating temperature of the waste catalyst is 400 to 100.
It is 0 degreeC, The manufacturing method of the filter material for particulate matter removal of the diesel engine of Claim 6 characterized by the above-mentioned.
0メッシュに粉砕することを特徴とする請求項6記載の
ディーゼルエンジンの粒子状物質除去用濾過材の製造方
法。8. The particle size of the waste catalyst is 100-80.
The method for producing a filter material for removing particulate matter of a diesel engine according to claim 6, wherein the filter material is pulverized to 0 mesh.
ライト、ジルコニア、シリカ等であることを特徴とする
請求項5記載のディーゼルエンジンの粒子状物質除去用
濾過材の製造方法。9. The method for producing a particulate matter removing filter material for a diesel engine according to claim 5, wherein the existing filtering material powder is cordierite, mullite, zirconia, silica or the like.
廃触媒組成物10〜100%と既存の濾過材粉末0〜9
0%で構成されることを特徴とする請求項5記載のディ
ーゼルエンジンの粒子状物質除去用濾過材の製造方法。10. The composition of the filtering medium slurry is 10 to 100% by weight of the waste catalyst composition and 0 to 9 of the existing filtering medium powder.
The method for producing a particulate matter removing filter material for a diesel engine according to claim 5, wherein the method comprises a content of 0%.
オープンフローハニカム、セラミックファイバフィルタ
ー、セラミックハニカム、ウォールフローハニカムモノ
リス等であることを特徴とする請求項5記載のディーゼ
ルエンジンの粒子状物質除去用濾過材の製造方法。11. The form of the filter medium is ceramic foam,
The method for producing a particulate matter removing filter material for a diesel engine according to claim 5, which is an open flow honeycomb, a ceramic fiber filter, a ceramic honeycomb, a wall flow honeycomb monolith, or the like.
により製造されることを特徴とするディーゼルエンジン
粒子状物質除去用濾過材。12. A filter material for removing particulate matter from a diesel engine, which is manufactured by the method according to any one of claims 5 to 11.
0%以下、ニッケル20%以下、コバルト30%以下、
アルミナ99%以下、及び通常の原油精製時に包含され
る微量不純物からなる廃触媒組成物を単独で、又はこの
廃触媒組成物と既存の沈着支持体粉末の混合物質を原料
として製造された沈着支持体スラリーを製造した後、こ
れを濾過材の表面に沈着させてから焼成して製造される
ことを特徴とするディーゼルエンジン粒子状物質除去用
沈着支持体が沈着された濾過体の製造方法。13. Vanadium 80% or less, molybdenum 8
0% or less, nickel 20% or less, cobalt 30% or less,
Deposition support produced by using a waste catalyst composition consisting of 99% or less of alumina and a trace amount of impurities usually included in the refining of crude oil alone, or a mixed substance of the waste catalyst composition and an existing deposition support powder as a raw material. A method for producing a filter body on which a deposition support for removing particulate matter of a diesel engine is deposited, which is produced by producing a body slurry, depositing it on the surface of a filter medium, and then firing it.
から粉砕して製造されることを特徴とする請求項13記
載のディーゼルエンジン粒子状物質除去用沈着支持体が
沈着された濾過体の製造方法。14. The filter body having the deposition support for removing diesel engine particulate matter according to claim 13, wherein the waste catalyst composition is produced by heating the waste catalyst and then pulverizing the waste catalyst. Manufacturing method.
00℃であることを特徴とする請求項14記載のディー
ゼルエンジンの粒子状物質除去用沈着支持体が沈着され
た濾過体の製造方法。15. The heating temperature of the waste catalyst is 400 to 10
The method for producing a filter body having a deposition support for removing particulate matter of a diesel engine according to claim 14, wherein the temperature is 00 ° C.
00メッシュに粉砕することを特徴とする請求項14記
載のディーゼルエンジンの粒子状物質除去用沈着支持体
が沈着された濾過体の製造方法。16. The particle size of the spent catalyst is 100-8.
The method for producing a filter body according to claim 14, wherein the filter body has a deposition support for removing particulate matter of a diesel engine, which is pulverized to a size of 00 mesh.
タニア、シリカ等のゼオライトであることを特徴とする
請求項13記載のディーゼルエンジンの粒子状物質除去
用沈着支持体が沈着された濾過体の製造方法。17. The filter body having a deposition support for removing particulate matter of a diesel engine according to claim 13, wherein the existing deposition support powder is a zeolite such as alumina, titania or silica. Production method.
対比廃触媒組成物10〜100%と既存の沈着支持体粉
末0〜90%で構成されることを特徴とする請求項13
記載のディーゼルエンジンの粒子状物質除去用沈着支持
体が沈着された濾過体の製造方法。18. The composition of the deposition support slurry comprises 10 to 100% by weight of the waste catalyst composition and 0 to 90% of the existing deposition support powder.
A method for producing a filter body on which a deposition support for removing particulate matter of a diesel engine described above is deposited.
00℃であることを特徴とする請求項13記載のディー
ゼルエンジンの粒子状物質除去用沈着支持体が沈着され
た濾過体の製造方法。19. The firing temperature of the filter is 400 to 10
The method for producing a filter body having a deposition support for removing particulate matter of a diesel engine according to claim 13, wherein the temperature is 00 ° C.
オープンフローハニカム、セラミックファイバフィルタ
ー、セラミックハニカム、メタルメッシュ、メタルフォ
ーム、ウォームフローハニカムモノリス等であることを
特徴とする請求項13記載のディーゼルエンジンの粒子
状物質除去用沈着支持体が沈着された濾過体の製造方
法。20. The form of the filter medium is ceramic foam,
The filter with deposited support for removing particulate matter of a diesel engine according to claim 13, which is an open flow honeycomb, a ceramic fiber filter, a ceramic honeycomb, a metal mesh, a metal foam, a worm flow honeycomb monolith, or the like. Body manufacturing method.
濾過材1リットル当たり5〜200gであることを特徴
とする請求項13記載のディーゼルエンジンの粒子状物
質除去用沈着支持体が沈着された濾過体の製造方法。21. The deposition support for removing particulate matter of a diesel engine according to claim 13, wherein the deposition support deposited on the filter medium is 5 to 200 g per liter of the filter medium. A method for manufacturing a filter body.
方法により製造されることを特徴とするディーゼルエン
ジン粒子状物質除去用沈着支持体が沈着された濾過体。22. A filter body having a deposition support for removing particulate matter of a diesel engine deposited by the method according to any one of claims 13 to 21.
0%以下、ニッケル20%以下、コバルト30%以下、
アルミナ99%以下、及び通常の原油精製時の包含され
る微量不純物からなる廃触媒組成物を原料として製造さ
れた濾過材又は沈着支持体が沈着された濾過体表面に白
金、パラジウム、ロジウム等白金族金属から選択された
少なくとも一つの白金族金属を担持してから焼成して製
造されることを特徴とするディーゼルエンジン粒子状物
質除去用触媒体の製造方法。23. Vanadium 80% or less, molybdenum 8
0% or less, nickel 20% or less, cobalt 30% or less,
Platinum, palladium, rhodium, or other platinum on the surface of a filter material on which a filter material or a deposition support is deposited, which is produced by using a waste catalyst composition containing 99% or less of alumina and trace impurities contained in ordinary crude oil refining as a raw material. A method for producing a catalyst body for removing particulate matter of a diesel engine, which comprises producing at least one platinum group metal selected from the group metals and then firing it.
から粉砕して製造されることを特徴とする請求項23記
載のディーゼルエンジンの粒子状物質除去用触媒体の製
造方法。24. The method for producing a particulate matter removing catalyst body for a diesel engine according to claim 23, wherein the waste catalyst composition is produced by heating the waste catalyst and then pulverizing the waste catalyst.
00℃であることを特徴とする請求項24記載のディー
ゼルエンジンの粒子状物質除去用触媒体の製造方法。25. The heating temperature of the waste catalyst is 400 to 10
The method for producing a particulate matter removing catalyst body for a diesel engine according to claim 24, wherein the temperature is 00 ° C.
00メッシュに粉砕することを特徴とする請求項24記
載のディーゼルエンジンの粒子状物質除去用触媒体の製
造方法。26. The particle size of the waste catalyst is 100-8.
25. The method for producing a catalyst body for removing particulate matter of a diesel engine according to claim 24, wherein the catalyst body is pulverized to 00 mesh.
前記濾過材又は濾過体1リットル当たり0〜7.07g
の白金、0〜7.07gのパラジウム及び0〜2gのロ
ジウムを包含し、これらの総量が0より大きいことを特
徴とする請求項23記載のディーゼルエンジンの粒子状
物質除去用触媒体の製造方法。27. At least one metal selected is
0 to 7.07 g per liter of the filter medium or filter body
24. Platinum of 0, 7.07 g of palladium and 0-2 g of rhodium are contained, and the total amount of these is greater than 0. .
(白金族金属/沈着支持体)が0.001/1〜0.1
/1であることを特徴とする請求項23記載のディーゼ
ルエンジンの粒子状物質除去用触媒体の製造方法。28. The weight ratio of the platinum group metal to the deposition support (platinum group metal / deposition support) is 0.001 / 1 to 0.1.
24. The method for producing a particulate matter removing catalyst body for a diesel engine according to claim 23, wherein
0℃であることを特徴とする請求項23記載のディーゼ
ルエンジンの粒子状物質除去用触媒体の製造方法。29. The calcination temperature of the catalyst body is 400-80.
The method for producing a particulate matter removing catalyst body for a diesel engine according to claim 23, wherein the temperature is 0 ° C.
法により製造されることを特徴とするディーゼルエンジ
ン粒子状物質除去用触媒体。30. A catalyst body for removing diesel engine particulate matter, which is produced by the method according to any one of claims 23 to 29.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940011904A KR100389126B1 (en) | 1994-05-30 | 1994-05-30 | Preparation Method of Catalyst Composition for the Removal of Particulate Materials in the Exhaust of Diesel Vehicles |
KR94-11904 | 1994-05-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07328445A true JPH07328445A (en) | 1995-12-19 |
JP3800349B2 JP3800349B2 (en) | 2006-07-26 |
Family
ID=19384141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13154595A Expired - Fee Related JP3800349B2 (en) | 1994-05-30 | 1995-05-30 | Catalyst composition for removing particulate matter from diesel vehicles |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3800349B2 (en) |
KR (1) | KR100389126B1 (en) |
DE (1) | DE19519137A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602818B2 (en) * | 2000-09-27 | 2003-08-05 | Sk Corporation | Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides |
KR100632591B1 (en) * | 2000-12-16 | 2006-10-09 | 에스케이 주식회사 | Catalyst composition for dioxin removal and preparation method thereof |
CN1223404C (en) * | 2001-02-13 | 2005-10-19 | Sk株式会社 | Catalyst for selective catalytic reduction of nitrogen oxides and preparing method |
JP2004299966A (en) * | 2003-03-31 | 2004-10-28 | Ngk Insulators Ltd | Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter |
DE102004054845A1 (en) * | 2004-11-12 | 2006-06-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Coated particle trap with nitrogen dioxide regeneration |
CN113209983B (en) * | 2021-05-19 | 2023-08-29 | 一重集团大连工程建设有限公司 | Low-cost and high-efficiency flue gas desulfurization and denitrification catalyst and preparation method thereof |
-
1994
- 1994-05-30 KR KR1019940011904A patent/KR100389126B1/en not_active IP Right Cessation
-
1995
- 1995-05-30 DE DE19519137A patent/DE19519137A1/en not_active Withdrawn
- 1995-05-30 JP JP13154595A patent/JP3800349B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR950031233A (en) | 1995-12-18 |
KR100389126B1 (en) | 2003-11-01 |
JP3800349B2 (en) | 2006-07-26 |
DE19519137A1 (en) | 1995-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950002223B1 (en) | Catalyst for purification of exhausted gas from diesel engine | |
CN100406096C (en) | Catalytic filter for removing soot particles from diesel engine exhaust and method for manufacturing the same | |
CN1630556B (en) | Catalyst for clarifying exhaust emission from internal combustion engine, method for preparation thereof and method for clarifying exhaust emission from internal combustion engine | |
JP2736099B2 (en) | Diesel engine exhaust gas purification catalyst | |
JP2863567B2 (en) | Exhaust gas purifying material and exhaust gas purifying method | |
KR20080045596A (en) | Platinum-bismuth catalyst for treating engine exhaust | |
CN109589960B (en) | A kind of wall-flow catalyst with low noble metal content, preparation method and application thereof | |
JP2009509742A (en) | Method for obtaining a homogeneous filtration structure for catalyst application | |
US5763352A (en) | Catalyst composition for the purification of the exhaust of diesel vehicles, catalyst using the same and preparing methods thereof | |
KR960003793B1 (en) | Catalyst body for removing particulate matter from diesel vehicles and its manufacturing method | |
JP3800349B2 (en) | Catalyst composition for removing particulate matter from diesel vehicles | |
CN102470350A (en) | Particulate combustion catalyst | |
CN105056970A (en) | Preparation method of catalyzed diesel particulate filter (CDPF) | |
JP2016500331A (en) | Zoned diesel oxidation catalyst | |
JP5502885B2 (en) | Oxidation catalyst suitable for burning light oil components | |
US9393522B2 (en) | Method for combusting diesel exhaust gas | |
JP3823528B2 (en) | Exhaust gas purification material and exhaust gas purification apparatus using the same | |
KR101933917B1 (en) | Method for coating catalyst on surface inside channels of diesel particulate filter | |
JPS61129030A (en) | Filter for collecting and purifying fine particles | |
JP2016131918A (en) | Method for producing exhaust gas purification filter, exhaust gas purification filter, and exhaust gas purification device | |
JPH05138026A (en) | Catalyst for purifying exhaust gas of diesel engine | |
JP3096466B2 (en) | Purification method of diesel engine exhaust gas | |
JPH07313882A (en) | Diesel engine exhaust gas purifying catalyst and its production | |
JPH03505836A (en) | Decreasing the ignition temperature of diesel soot | |
JPS61249542A (en) | Catalyst for purifying exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060419 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |