[go: up one dir, main page]

JPH07326357A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPH07326357A
JPH07326357A JP6137781A JP13778194A JPH07326357A JP H07326357 A JPH07326357 A JP H07326357A JP 6137781 A JP6137781 A JP 6137781A JP 13778194 A JP13778194 A JP 13778194A JP H07326357 A JPH07326357 A JP H07326357A
Authority
JP
Japan
Prior art keywords
electrode
carbon
weight
based material
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6137781A
Other languages
Japanese (ja)
Other versions
JP3429561B2 (en
Inventor
Minoru Noguchi
実 野口
Atsushi Demachi
敦 出町
Kenji Sato
健児 佐藤
Naohiko Oki
尚彦 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP13778194A priority Critical patent/JP3429561B2/en
Publication of JPH07326357A publication Critical patent/JPH07326357A/en
Application granted granted Critical
Publication of JP3429561B2 publication Critical patent/JP3429561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrode without any deterioration of the function of a carbon material, even if the oil absorption thereof is large, and further provide an electrode having a large size. CONSTITUTION:An organic high molecular compound having large oil absorption is baked and a carbon material of reduced ring aromatic and order-less lamination structure is thereby prepared. Then, the same organic high molecular compound is further added to the material and hot pressed, thereby forming an electrode material. Also, the electrode material is obtainable by adding the fine fiber of polytetrafluoroethylene and a binder soluble in other solvents than electrolytic liquid to a carbon material similar to the above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池の電
極材料に関し、さらに詳細には吸油量の多い炭素系材料
を用いた場合に好適なリチウム二次電池用電極材料に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material for a lithium secondary battery, and more particularly to an electrode material for a lithium secondary battery suitable when a carbonaceous material having a large oil absorption is used.

【0002】[0002]

【従来の技術】近年、電子機器の小型化が進み、これに
伴い電池の高エネルギー密度化が求められ、種々の非水
電解液電池が提案されている。例えば、従来より非水電
解液電池用負極として、リチウムを吸脱着するものとし
て、リチウムの炭素層間化合物が電気化学的に容易にで
きることを利用した炭素負極を用いることも提案されて
いる。このような炭素負極としては、多種・多様なもの
があり、例えば結晶セルロースを焼成して得られる炭素
物質(特開平3−176963号公報)、石炭ピッチあ
るいは石油ピッチを黒鉛化処理したもの(特開平2−8
2466号公報)、2,000℃を超える高温で処理さ
れたグラファイト化の進んだものなどが用いられてい
る。
2. Description of the Related Art In recent years, miniaturization of electronic devices has progressed, and along with this demand for higher energy density of batteries, various non-aqueous electrolyte batteries have been proposed. For example, as a negative electrode for a non-aqueous electrolyte battery, it has been conventionally proposed to use a carbon negative electrode that adsorbs and desorbs lithium and that utilizes a carbon intercalation compound of lithium that can be electrochemically facilitated. There are various kinds of such carbon negative electrodes, for example, a carbon material obtained by firing crystalline cellulose (Japanese Patent Laid-Open No. 176963/1993), a coal pitch or a petroleum pitch graphitized (special Kaihei 2-8
No. 2466), a highly graphitized material treated at a high temperature of over 2,000 ° C., and the like are used.

【0003】このような炭素材料を電極に成型する方法
としては、ポリビニリデンジフロライドのような有機バ
インダーをN−メチル−ピロリドンのような有機溶剤に
溶かし、電極活物質、すなわち炭素系材料と混練りしス
ラリーを得て、これをドクターブレード法などにより銅
箔などの集電体に塗布し乾燥する方法、あるいは電極活
物質とバインダーとしての有機重合体を圧粉成型する方
法などが知られている。
As a method of molding such a carbon material into an electrode, an organic binder such as polyvinylidene difluoride is dissolved in an organic solvent such as N-methyl-pyrrolidone to prepare an electrode active material, that is, a carbon-based material. Known methods include kneading to obtain a slurry, applying it to a collector such as a copper foil by a doctor blade method, and drying it, or compacting an electrode active material and an organic polymer as a binder. ing.

【0004】しかしながら、このような負極でも、高電
流密度での充放電においては充分なサイクル安定性は得
られておらず、炭素の種類によっては、充放電のほとん
どできないものや、理論容量(充電時にLiC6 の状態
を最大容量と仮定)と比較して容量が極端に低いものが
多い。また、初期容量は比較的大きくても、充放電を繰
り返すことで劣化し、急激に容量が低下したり、従来の
炭素負極では、満足すべき性能の負極は得られていな
い。
However, even with such a negative electrode, sufficient cycle stability is not obtained in charging / discharging at a high current density, and depending on the type of carbon, almost no charging / discharging or theoretical capacity (charging) can be performed. In many cases, the capacity is extremely low compared to the LiC 6 state (assuming the maximum capacity). Further, even if the initial capacity is relatively large, it deteriorates due to repeated charging and discharging, and the capacity drops sharply, and a conventional carbon negative electrode has not provided a negative electrode with satisfactory performance.

【0005】そこで、本発明らは、アルカリ金属の吸蔵
量が大きく、アルカリ金属を吸脱着する化合物の構造変
化が無く、吸蔵放出反応速度も大きい優れたアルカリ金
属吸蔵炭素系材料を得ることを目的とし、積層構造の発
達していない無秩序積層構造を持った炭素系材料が電極
として非常に優れていることを見出しており、既に特許
出願も行っている(特願平5−202860号明細書、
特願平5−278884号明細書など)。ところが、こ
のような炭素系材料は、吸油量が多く、従来の電極成型
方法では電極に成型することが難しいという問題があ
る。
Therefore, the present invention aims to obtain an excellent alkali metal-occluding carbon-based material which has a large amount of alkali metal absorbed, has no structural change in the compound that adsorbs and desorbs the alkali metal, and has a large rate of absorption-desorption reaction. It has been found that a carbon-based material having a disordered laminated structure in which the laminated structure is not developed is very excellent as an electrode, and a patent application has already been filed (Japanese Patent Application No. 5-202860,
Japanese Patent Application No. 5-278884, etc.). However, such a carbon-based material has a problem that it has a large oil absorption amount and is difficult to be molded into an electrode by a conventional electrode molding method.

【0006】[0006]

【発明が解決しようとする課題】電極成型方法の一つで
あるスラリー法においては、吸油量の多い炭素系粉末を
用いて電極を成型する場合、スラリー化するためには多
量の溶剤を必要とする。このため、溶剤を乾燥する際
に、体積収縮が大きいため電極にクラックが入ったり割
れたりしやすく、特に大きい電極を成型できないという
問題があった。また、一方、圧粉により電極を成型する
場合、炭化する前の有機高分子化合物を圧粉成形あるい
はバインダーを加え圧粉成型してから炭化のための加熱
を行うと、圧粉時に樹脂に規則性が出てしまい、得られ
た炭素系材料は積層構造が発達しているものとなってし
まい、無秩序積層構造を持った炭素系材料を得ることが
できない。
In the slurry method, which is one of the electrode molding methods, when a carbon-based powder having a large oil absorption is used to mold an electrode, a large amount of solvent is required to form a slurry. To do. Therefore, when the solvent is dried, the volume shrinkage is large and the electrode is easily cracked or broken, and there is a problem that a particularly large electrode cannot be molded. On the other hand, in the case of molding the electrode by compaction, if the organic polymer compound before carbonization is compacted or a binder is added and compacted and then heating for carbonization is performed, the resin is regularly formed during compaction. Since the resulting carbon-based material has a developed laminated structure, a carbon-based material having a disordered laminated structure cannot be obtained.

【0007】本発明者らは、既に積層構造の発達してい
ない無秩序積層構造を持った炭素系材料が電極として非
常に優れていることを見出しているが、この炭素系材料
にこのような方法は適用できない。本発明は、このよう
な従来の技術的課題を背景になされたものであり、吸油
量の多い炭素系粉末を用いた電極、さらにサイズの大き
い電極を得ることを目的とし、これにより、高容量でサ
イクル安定性に優れ、高出力(高電流密度)の充放電に
も対応できる二次電池用の電極材料を得ることを目的と
する。
The present inventors have found that a carbon-based material having a disordered laminated structure, in which the laminated structure has not yet been developed, is very excellent as an electrode. Is not applicable. The present invention has been made against the background of such conventional technical problems, and an object thereof is to obtain an electrode using a carbon-based powder having a large amount of oil absorption, and an electrode having a larger size, thereby providing a high capacity. It is an object of the present invention to obtain an electrode material for a secondary battery, which has excellent cycle stability and can be used for high output (high current density) charging / discharging.

【0008】[0008]

【課題を解決するための手段】本発明の第1は、有機高
分子化合物を焼成して得られた炭素系材料に、該有機高
分子化合物を加えホットプレスしてなることを特徴とす
る電極材料を提供するものである。
The first aspect of the present invention is to provide an electrode comprising hot-pressing a carbon-based material obtained by firing an organic polymer compound and adding the organic polymer compound. It provides the material.

【0009】本発明の電極材料においては、電極として
吸油量の多い炭素系材料を用いる場合に非常に有効であ
る。課題の項で述べたように、吸油量の多い炭素系材料
は、従来の技術では電極材料を成型することが出来ない
からである。このような吸油量の多い炭素系材料として
は、有機高分子化合物を焼成して得られる炭素系材料
で、縮環芳香族構造を有し、かつその構造は無秩序積層
構造となっているものが挙げられる。ここで、無秩序積
層構造とは、縮芳香族環平面の配向が全く無秩序である
か、もしくは4枚、好ましくは3枚を超えての配向を有
しない構造をいう。無秩序積層構造でなく、積層構造が
発達しているものは、アルカリイオンのみを層間にイン
ターカレートしてしまい、共有結合性を有するアルカリ
金属やアルカリイオンを炭素−炭素原子間に吸蔵せず、
好ましくない。
The electrode material of the present invention is very effective when a carbon material having a large oil absorption amount is used as the electrode. This is because, as described in the section of the problem, a carbon-based material having a large oil absorption amount cannot form an electrode material by the conventional technique. As such a carbon-based material having a large oil absorption amount, a carbon-based material obtained by firing an organic polymer compound and having a condensed aromatic structure and having a disordered laminated structure is used. Can be mentioned. Here, the disordered laminated structure refers to a structure in which the condensed aromatic ring planes are completely disordered or have no more than four, preferably more than three, orientations. What has a developed laminated structure, not a disordered laminated structure, intercalates only alkali ions between layers, and does not occlude covalently bonding alkali metals or alkali ions between carbon-carbon atoms,
Not preferable.

【0010】有機高分子化合物としては、本質的に易黒
鉛化材料である有機高分子に積層を阻害する要因を導入
したものが挙げられる。本質的に黒鉛化材料である有機
化合物としては、芳香族構造を有していればどのような
ものでもよいが、例えばポリフェニレン、ポリフェニレ
ンビニレン、ポリフェニレンキシレン、ポリスチレン、
ノボラック樹脂などが挙げられる。積層構造を阻害する
因子としては、屈曲構造(o−,m−位構造)、分岐構
造、架橋構造などが挙げられる。また、これらの有機化
合物には、5員間、7員間を持つ有機化合物を含んでい
てもよい。本発明に使用される炭素系材料は、これらの
有機高分子化合物をあまり高温でなく、電気伝導性の生
じるのに限界の低い温度、通常、300〜1,000℃
で焼成すればよい。
Examples of the organic polymer compound include compounds obtained by introducing a factor that inhibits lamination into an organic polymer which is essentially a graphitizable material. The organic compound which is essentially a graphitizing material may be any as long as it has an aromatic structure, for example, polyphenylene, polyphenylene vinylene, polyphenylene xylene, polystyrene,
Examples include novolac resins. Examples of the factor that inhibits the laminated structure include a bent structure (o-, m-position structure), a branched structure, and a crosslinked structure. In addition, these organic compounds may include organic compounds having 5 members or 7 members. The carbon-based material used in the present invention is not so high in temperature as these organic polymer compounds, and has a low limit at which electrical conductivity occurs, usually 300 to 1,000 ° C.
It may be fired at.

【0011】なお、本発明に使用される炭素系材料の水
素/炭素原子比(H/C)は、0.05〜0.6、好ま
しくは0.15〜0.6である。0.05未満では、グ
ラファイト構造が発達し、充放電にともなうリチウムの
ドープ・脱ドープ反応時の結晶の膨張収縮により結晶構
造が破壊され、サイクル安定性が低下し、一方0.6を
超えると放電容量が著しく低下する。
The carbon-based material used in the present invention has a hydrogen / carbon atomic ratio (H / C) of 0.05 to 0.6, preferably 0.15 to 0.6. If it is less than 0.05, the graphite structure will develop, and the crystal structure will be destroyed by the expansion and contraction of the crystal during the lithium doping / de-doping reaction during charge / discharge, and the cycle stability will decrease, while if it exceeds 0.6, The discharge capacity is significantly reduced.

【0012】次に、本発明において適用されるこのよう
な炭素系材料を製造する方法について具体的に説明す
る。まず、本発明に使用される炭素系材料は、縮環芳香
族構造を有する有機化合物、すなわち積層構造の発達を
阻害する因子(屈曲、分岐、架橋など)を導入した、芳
香族を主鎖にもつ有機高分子化合物を、通常、アルゴ
ン、ヘリウム、チッ素などの不活性ガス、あるいは水素
などの還元性ガス中で300〜1,000℃、好ましく
は600〜800℃の温度で、0〜6時間、好ましくは
0〜1時間熱処理することにより得られる。
Next, the method for producing such a carbon-based material applied in the present invention will be specifically described. First, the carbon-based material used in the present invention is an organic compound having a condensed aromatic structure, that is, an aromatic compound having a main chain in which a factor that inhibits the development of a laminated structure (bending, branching, crosslinking, etc.) is introduced. The organic polymer compound is usually contained in an inert gas such as argon, helium, or nitrogen, or a reducing gas such as hydrogen at a temperature of 300 to 1,000 ° C., preferably 600 to 800 ° C. It is obtained by heat treatment for a time, preferably 0 to 1 hour.

【0013】この具体的な熱処理方法としては、熱分析
において、原料の有機高分子化合物の重量減少開始温度
まではどのような昇温速度でもよく、重量減少開始温度
から熱処理温度までは5℃/時間〜200℃/時間、好
ましくは20℃/時間〜100℃/時間の昇温速度で昇
温する方法が挙げられる。ここで、熱処理温度とは、熱
分析において、重量が減少しなくなるまで減少した重量
に対し、70〜95重量%の重量減少を示す温度をい
う。
As a specific heat treatment method, in the thermal analysis, any heating rate may be used up to the weight reduction start temperature of the organic polymer compound as a raw material, and the temperature decrease rate from the weight reduction start temperature to the heat treatment temperature may be 5 ° C. / A method of raising the temperature at a temperature rising rate of time to 200 ° C./hour, preferably 20 ° C./hour to 100 ° C./hour can be mentioned. Here, the heat treatment temperature refers to a temperature at which a weight reduction of 70 to 95% by weight is shown with respect to the weight reduced until the weight does not decrease in thermal analysis.

【0014】このようにして得られる熱処理物は、通
常、粉体または固体であり、この炭素系材料を機械的に
粉砕し、優れた電極材料を得ることができる。この電極
材料を用いて負極を作製する場合、電極材料の粒径は必
ずしも制限されるものではないが、平均粒径が5μm以
下にものを用いることにより高性能の負極を作ることが
できる。
The heat-treated product thus obtained is usually a powder or a solid, and an excellent electrode material can be obtained by mechanically pulverizing this carbonaceous material. When a negative electrode is manufactured using this electrode material, the particle size of the electrode material is not necessarily limited, but a high performance negative electrode can be manufactured by using a material having an average particle size of 5 μm or less.

【0015】本発明の電極材料は、このようにして焼成
して得られた炭素系材料に、この炭素系材料を得るため
に用いた焼成する前の出発原料である有機高分子化合物
を加え、ホットプレスして得られる。なお、有機高分子
化合物は、出発原料と異なるものでも構わない。有機高
分子化合物の量は、炭素系材料100重量部に対し3〜
50重量部が好ましく、さらに好ましくは10〜30重
量部である。ホットプレスは、300〜1,000℃
で、前記炭化温度を超えない温度で、前記炭化時と同様
の昇温速度で昇温し、10〜500kg/cm2 の圧力
で行うのが好ましい。
The electrode material of the present invention is obtained by adding the organic polymer compound, which is a starting material before firing used for obtaining the carbon-based material, to the carbon-based material obtained by firing as described above. Obtained by hot pressing. The organic polymer compound may be different from the starting material. The amount of the organic polymer compound is 3 to 100 parts by weight of the carbonaceous material.
The amount is preferably 50 parts by weight, more preferably 10 to 30 parts by weight. Hot press is 300-1,000 ℃
Then, it is preferable to raise the temperature at a temperature rise rate similar to that at the time of the carbonization at a temperature not exceeding the carbonization temperature and to carry out at a pressure of 10 to 500 kg / cm 2 .

【0016】ここにおいて、有機高分子化合物は熱可塑
性があり、炭素系材料のバインダーとして働いている。
従来のポリエチレンバインダーなどを用いて得られた電
極は強度がなく、大きいものを得ることができなかった
が、本発明の有機高分子化合物をバインダーとして用い
た電極は強度が大きく、大きい電極を成型することが可
能である。また、有機高分子化合物を用いると、他のバ
インダーに比べバインダー部分の充放電に伴う体積変化
が少なく、充放電を繰り返しても電極が割れることがな
い。さらに、ホットプレス時の加熱により、焼成と同じ
効果が得られ炭素系材料が形成されるため、バインダー
部分も充放電に関与するという利点もあり、電極重量当
たり放電容量が大きくなる。また、一度焼成した炭素系
材料は、圧力をかけても規則性が生じることはない。
Here, the organic polymer compound has thermoplasticity and works as a binder for the carbonaceous material.
The electrode obtained using a conventional polyethylene binder or the like has no strength and a large one cannot be obtained, but the electrode using the organic polymer compound of the present invention as a binder has a large strength and a large electrode is formed. It is possible to Further, when the organic polymer compound is used, the volume change due to charge / discharge of the binder portion is smaller than that of other binders, and the electrode is not cracked even when charge / discharge is repeated. Further, heating during hot pressing has the same effect as firing and forms a carbon-based material, so that there is also an advantage that the binder portion also participates in charging and discharging, and the discharge capacity per electrode weight increases. In addition, the carbonaceous material once fired does not have regularity even when pressure is applied.

【0017】次に、本発明の第2は、吸油量の多い炭素
系材料に好適な、もう一つ他の電極材料を提供するもの
である。すなわち、本発明の第2は、炭素系材料に微細
繊維と電解質液以外の溶剤に可溶なバインダーを加えて
なることを特徴とする電極材料である。
Next, a second aspect of the present invention is to provide another electrode material suitable for a carbon-based material having a large oil absorption amount. That is, a second aspect of the present invention is an electrode material comprising a carbon-based material and a fine fiber and a binder soluble in a solvent other than the electrolyte solution.

【0018】このような電極材料において、炭素系材料
としては、前述した炭素系材料が好ましい。微細繊維
は、線径が好ましくは100〜10,000Å、さらに
好ましくは200〜300Å、長さが好ましくは1〜
1,000μm、さらに好ましくは10〜100μmで
ある。このような微細繊維としては、フッ素樹脂、脂肪
族ポリアミド(ナイロン)、ガラス、天然セルロース、
ポリエステル、全芳香族ポリアミド、炭素などからなる
微細繊維が挙げられるが、これらに限定されるものでは
ない。この微細繊維としては、充放電に対して安定で、
電解質に溶けず安定なものであればどのようなものでも
よいが、好ましいのはフッ素樹脂、特にポリテトラフル
オロエチレンである。また、微細繊維は、有機溶剤に溶
解しないものが好ましい。微細繊維の添加量は、炭素系
材料100重量部に対して0.1〜5重量部が好まし
く、0.6〜2.4重量部がさらに好ましい。0.1重
量部未満では効果が無く、一方5重量部を超えると微細
繊維を加えたことによりスラリー化するための溶剤量が
増加し、乾燥時に割れる場合があり、また割れなくて
も、重量当たりのエネルギー密度が低下する。
In such an electrode material, the carbon-based material described above is preferable as the carbon-based material. The fine fiber preferably has a wire diameter of 100 to 10,000Å, more preferably 200 to 300Å, and a length of 1 to 10.
The thickness is 1,000 μm, more preferably 10 to 100 μm. Examples of such fine fibers include fluororesin, aliphatic polyamide (nylon), glass, natural cellulose,
Examples include fine fibers made of polyester, wholly aromatic polyamide, carbon, etc., but are not limited thereto. As this fine fiber, it is stable against charge and discharge,
Any material may be used as long as it does not dissolve in the electrolyte and is stable, but preferred is a fluororesin, particularly polytetrafluoroethylene. Further, the fine fibers are preferably those that do not dissolve in an organic solvent. The amount of the fine fibers added is preferably 0.1 to 5 parts by weight, more preferably 0.6 to 2.4 parts by weight, based on 100 parts by weight of the carbon-based material. If the amount is less than 0.1 parts by weight, there is no effect. On the other hand, if the amount exceeds 5 parts by weight, the amount of the solvent for making a slurry increases due to the addition of fine fibers, which may cause cracking during drying. The energy density per hit decreases.

【0019】このような微細繊維は、電極中に分散させ
ると、少量でも補強効果があり、これを用いることによ
って吸油量の多い炭素系材料を用いた場合でも、従来の
方法と同様にしてドクターブレード法にて簡単に電極を
成型することができる。本発明において、バインダー
は、電解質液以外の溶剤に可溶なものが用いられる。こ
れは、スラリー化する際に、バインダーが均一に分散す
ることが必要だからである。
If such a fine fiber is dispersed in the electrode, it has a reinforcing effect even in a small amount. By using this, even when a carbon-based material having a large oil absorption is used, a doctor can be used in the same manner as in the conventional method. The electrode can be easily formed by the blade method. In the present invention, a binder that is soluble in a solvent other than the electrolyte solution is used. This is because the binder needs to be uniformly dispersed when the slurry is formed.

【0020】このような電解質液以外の溶剤に可溶なバ
インダーとしては、有機、無機いずれのバインダーも使
用することができる。有機バインダーとしては、エチレ
ン−アクリル酸(塩)共重合体、アクリル系重合体、ビ
ニル系重合体、スチレン−ブタジエンゴムなどの10μ
m以下の粒子を含む水性分散媒への分散体、ポリテトラ
フルオロエチレン、ポリフッ化ビニリデンなどのフッ素
樹脂、ポリ塩化ビニル、カルボキシメチルセルロース、
スチレン・ブタジエンゴムなどの多くのバインダーを使
用することができる。また、無機バインダーとしては、
ケイ素ガラスなどのケイ素系バインダーが使用できる
が、この場合もバインダーとしての性能を発揮させるた
めに融点を超えた温度での熱処理が必要である。
As the binder soluble in a solvent other than the electrolyte solution, both organic and inorganic binders can be used. As the organic binder, 10 μm of ethylene-acrylic acid (salt) copolymer, acrylic polymer, vinyl polymer, styrene-butadiene rubber, etc.
A dispersion in an aqueous dispersion medium containing particles of m or less, a fluororesin such as polytetrafluoroethylene or polyvinylidene fluoride, polyvinyl chloride, carboxymethyl cellulose,
Many binders such as styrene-butadiene rubber can be used. Further, as the inorganic binder,
A silicon-based binder such as silicon glass can be used, but in this case as well, heat treatment at a temperature exceeding the melting point is necessary in order to exert the performance as a binder.

【0021】バインダーの量は、炭素系材料100重量
部に対して3〜30重量部が好ましい。また、バインダ
ーを溶解する溶剤としては、水、N−メチル−2−ピロ
リドンなどが挙げられる。このような電極を製造する方
法としては、従来より行われているスラリー法が挙げら
れる。例えば、炭素系材料に微細繊維、バインダー、そ
の他必要な成分を加え、分散媒を用いスラリーとし、こ
れを塗布して得ることができる。分散媒としては、前述
のバインダーを溶解する溶剤が用いられる。また、塗布
方法としては、どのような方法でもよいが、ドクターブ
レード法が好ましく、ブレードギャップを0.3〜0.
7mmとして得られる電極が好ましい。
The amount of the binder is preferably 3 to 30 parts by weight with respect to 100 parts by weight of the carbonaceous material. In addition, examples of the solvent that dissolves the binder include water and N-methyl-2-pyrrolidone. As a method of manufacturing such an electrode, a slurry method which has been conventionally used can be mentioned. For example, it can be obtained by adding fine fibers, a binder, and other necessary components to a carbon-based material, making a slurry using a dispersion medium, and applying the slurry. As the dispersion medium, a solvent that dissolves the binder is used. The coating method may be any method, but the doctor blade method is preferable, and the blade gap is 0.3 to 0.
Electrodes obtained as 7 mm are preferred.

【0022】このようにして得られる負極体は、これに
リチウムまたはリチウムを主体とするアルカリ金属を担
持させて、リチウム電池用負極とすることができる。担
持させる方法としては、リチウム箔を接触させ熱拡散さ
せたり、リチウム塩溶液中で電気化学的にリチウムをド
ープさせたり、あるいは溶融リチウムに浸漬させ炭素中
にリチウムを拡散させるなど、従来より行われているど
のような方法でもよい。本発明の電極材料は、リチウム
電池の負極として広範囲に使用でき、各種の正極、例え
ば二酸化マンガン、五酸化バナジウムなどの酸化物やポ
リピロールなどの有機高分子を用いた正極などと組み合
わせて使用することができる。
The negative electrode body thus obtained can be used as a negative electrode for a lithium battery by supporting lithium or an alkali metal mainly containing lithium thereon. As a method of supporting, a lithium foil is contacted for thermal diffusion, or lithium is electrochemically doped in a lithium salt solution, or it is immersed in molten lithium to diffuse lithium in carbon, which has been conventionally performed. Any method is available. INDUSTRIAL APPLICABILITY The electrode material of the present invention can be widely used as a negative electrode of a lithium battery, and should be used in combination with various positive electrodes such as manganese dioxide and oxides such as vanadium pentoxide and positive electrodes using organic polymers such as polypyrrole. You can

【0023】また、本発明の電極材料を用いた電池に使
用する非水系の電解質としては、正極材料および負極材
料に対して化学的に安定であり、かつリチウムイオンが
正極活物質と電気化学反応をするために移動できる非水
物質であればどのようなものでも使用でき、特にカチオ
ンとアニオンの組み合わせよりなる化合物であって、カ
チオンとしてはLi+ 、またアニオンの例としてはPF
6 - 、AsF6 - 、SbF6 - のようなVa族元素のハ
ロゲン化物アニオン、I- 、I3 - 、Br- 、Cl-
ようなハロゲンアニオン、ClO4 - のような過塩素酸
アニオン、HF2 - 、CF3 SO3 - 、SCN- などの
アニオンを有する化合物を挙げることができるが、必ず
しもこれらのアニオンに限定されるものではない。この
ようなカチオン、アニオンを持つ電解質の具体例として
は、LiPF6 、LiAsF6 、LiSbF6 、LiB
4 、LiClO4 、LiI、LiBr、LiCl、L
iAlCl4 、LiHF2 、LiSCN、LiCF3
3 などが挙げられる。これらのうちでは、特にLiP
6 、LiAsF6 、LiSbF6 、LiBF4 、Li
ClO4 、LiCF3 SO3 が好ましい。
The non-aqueous electrolyte used in the battery using the electrode material of the present invention is chemically stable with respect to the positive electrode material and the negative electrode material, and lithium ions are electrochemically reacted with the positive electrode active material. Any non-aqueous substance that can be transferred to do so can be used, in particular, a compound consisting of a combination of a cation and an anion, Li + as a cation, and PF as an example of an anion.
6 -, AsF 6 -, SbF 6 - halide anion such Va group element as, I -, I 3 -, Br -, Cl - halogen anion, ClO 4, such as - perchlorate anion such as, HF 2 -, CF 3 SO 3 -, SCN - can be exemplified compounds having an anion such as, but not necessarily limited to these anions. Such cation, specific examples of the electrolyte with anion, LiPF 6, LiAsF 6, LiSbF 6, LiB
F 4 , LiClO 4 , LiI, LiBr, LiCl, L
iAlCl 4 , LiHF 2 , LiSCN, LiCF 3 S
O 3 and the like can be mentioned. Among these, especially LiP
F 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , Li
ClO 4 and LiCF 3 SO 3 are preferred.

【0024】なお、非水系の電解質は、通常、溶媒に溶
解された状態で使用され、この場合、溶媒は特に限定さ
れないが、比較的極性の大きい溶媒が良好に用いられ
る。具体的にはプロピレンカーボネート、エチレンカー
ボネート、ブチレンカーボネート、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、ジオキソラン、ジ
オキサン、ジメトキシエタン、ジエチレングリコールジ
メチルエーテルなどのグライム類、γ−ブチロラクトン
などのラクトン類、トリエチルホスフェートなどのリン
酸エステル類、ホウ酸トリエチルなどのホウ酸エステル
類、スルホラン、ジメチルスルホキシドなどのイオウ化
合物、アセトニトリルなどのニトリル類、ジメチルホル
ムアミド、ジメチルアセトアミドなどのアミド類、硫酸
ジメチル、ニトロメタン、ニトロベンゼン、ジクロロエ
タンなどの1種または2種以上の混合物を挙げることが
できる。これらのうちでは、特にプロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、ジ
オキサン、ジメトキシエタン、ジオキソランおよびγ−
ブチロラクトンから選ばれた1種または2種以上の混合
物が好適である。
The non-aqueous electrolyte is usually used in a state of being dissolved in a solvent. In this case, the solvent is not particularly limited, but a solvent having a relatively large polarity is preferably used. Specifically, glymes such as propylene carbonate, ethylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, diethylene glycol dimethyl ether, lactones such as γ-butyrolactone, and phosphoric acid esters such as triethyl phosphate. , Boric acid esters such as triethyl borate, sulfur compounds such as sulfolane and dimethyl sulfoxide, nitriles such as acetonitrile, amides such as dimethylformamide and dimethylacetamide, dimethyl sulfate, nitromethane, nitrobenzene, dichloroethane and the like, or two or more. Mention may be made of mixtures of more than one species. Of these, especially propylene carbonate, ethylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, dimethoxyethane, dioxolane and γ-.
One or a mixture of two or more selected from butyrolactone is suitable.

【0025】さらに、この非水電解質としては、前記非
水電解質を、例えばポリエチレンオキサイド、ポリプロ
ピレンオキサイド、ポリエチレンオキサイドのイソシア
ネート架橋体、エチレンオキサイドオリゴマーを側鎖に
持つホスファゼンポリマーなどの重合体に含浸させた有
機固体電解質、Li3 N、LiBCl4 などの無機イオ
ン誘導体、Li4 SiO4 、Li3 BO3 などのリチウ
ムガラスなどの無機固体電解質を用いることもできる。
Further, as the non-aqueous electrolyte, the non-aqueous electrolyte is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, an isocyanate cross-linked product of polyethylene oxide, or a phosphazene polymer having an ethylene oxide oligomer as a side chain. It is also possible to use an organic solid electrolyte, an inorganic ion derivative such as Li 3 N or LiBCl 4 , or an inorganic solid electrolyte such as lithium glass such as Li 4 SiO 4 or Li 3 BO 3 .

【0026】本発明の電極材料を使用したリチウム二次
電池を、図面を参照してさらに詳細に説明する。すなわ
ち、本発明の電極材料を負極に使用したリチウム二次電
池は、図7に示すように開口部10aが負極蓋板20で
密閉されたボタン形の正極ケース10内を微細孔を有す
るセパレータ30で区画し、区画された正極側空間内に
正極集電体40を正極ケース10側に配置した正極50
が収納される一方、負極側空間内に負極集電体60を負
極蓋板20側に配置した負極70が収納されたものであ
る。
The lithium secondary battery using the electrode material of the present invention will be described in more detail with reference to the drawings. That is, as shown in FIG. 7, the lithium secondary battery using the electrode material of the present invention as the negative electrode has a separator 30 having fine holes inside the button-shaped positive electrode case 10 in which the opening 10 a is sealed with the negative electrode cover plate 20. A positive electrode 50 in which the positive electrode current collector 40 is arranged on the positive electrode case 10 side in the divided positive electrode side space.
On the other hand, the negative electrode 70 in which the negative electrode current collector 60 is arranged on the negative electrode cover plate 20 side is stored in the negative electrode side space.

【0027】なお、セパレータ30としては、多孔質で
電解液を通したり含んだりすることのできる、例えばポ
リテトラフルオロエチレン、ポリプロピレンやポリエチ
レンなどの合成樹脂製の不織布、織布および編布などを
使用することができる。また、正極50に用いられる正
極材料としては、リチウム含有五酸化バナジウム、リチ
ウム含有二酸化マンガンなどの焼成体粒子を使用するこ
とができる。なお、符号80は、正極ケース10の内周
面に周設されて負極蓋板20を絶縁支持するポリエチレ
ン製の絶縁パッキンである。
As the separator 30, a non-woven fabric, a woven fabric or a knitted fabric, which is porous and capable of passing or containing an electrolytic solution, such as polytetrafluoroethylene, polypropylene or polyethylene, is used. can do. Further, as the positive electrode material used for the positive electrode 50, burned particles such as lithium-containing vanadium pentoxide and lithium-containing manganese dioxide can be used. Reference numeral 80 denotes a polyethylene insulating packing that is provided around the inner peripheral surface of the positive electrode case 10 to insulate and support the negative electrode cover plate 20.

【0028】[0028]

【作用】本発明の電極材料は、吸油量の多い炭素系材料
を電極に成型するにあたって、一つの方法として、スラ
リー法でなく、炭素系材料に有機高分子化合物を加えホ
ットプレスして得られたものである。ここにおいて、有
機高分子化合物は、熱可塑性があり、バインダーとして
働いている。他のバインダーに比べ有機高分子化合物を
用いると強度の大きい電極を得ることができるので、大
きいサイズの電極を得ることができ、またバインダー部
分の充放電に伴う体積変化が少なく、充放電を繰り返し
ても電極が割れることがない。さらに、ホットプレス時
の加熱により、焼成と同じ効果が得られ有機高分子化合
物が焼成し炭素材料となるため、バインダー部分も充放
電に関与するという利点もある。また、炭素系材料が積
層構造の発達したものになることもない。
The electrode material of the present invention is obtained by hot pressing an organic polymer compound to a carbon-based material, not a slurry method, as one method for forming a carbon-based material having a large oil absorption into an electrode. It is a thing. Here, the organic polymer compound has thermoplasticity and functions as a binder. The use of an organic polymer compound compared to other binders makes it possible to obtain electrodes with greater strength, so it is possible to obtain electrodes of a larger size, and the volume change due to charging / discharging of the binder part is small, and charging / discharging is repeated. However, the electrode does not break. Further, by heating during hot pressing, the same effect as firing is obtained, and the organic polymer compound is fired to become a carbon material, so that there is also an advantage that the binder portion also participates in charging and discharging. Further, the carbon-based material does not have a developed laminated structure.

【0029】さらに、もう一つの電極材料は、微細繊維
を加えてスラリー法にて成型して得られたものである。
このような微細繊維は、電極中に分散させると補強効果
があり、これを用いることによって吸油量の多い炭素系
材料を用いた場合でも、従来の方法と同様にしてドクタ
ーブレード法にて簡単に大きいサイズの電極でも成型す
ることができるのである。
Further, another electrode material is obtained by adding fine fibers and molding by a slurry method.
Such fine fibers have a reinforcing effect when dispersed in the electrode, and even if a carbon-based material having a large oil absorption amount is used by using this, the doctor blade method can be easily used in the same manner as the conventional method. Even large size electrodes can be molded.

【0030】[0030]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明するが、本発明は、これらの実施例に限定される
ものではない。 実施例1 コバチック法(Kovacic)により合成したポリ
(p−フェニレン)を窒素気流下700℃で焼成して炭
素系材料を得た。得られた炭素系材料は、粉末状であっ
た。この炭素粉末に重量比で20%のコバチック法で合
成したポリ(p−フェニレン)を加え、ボールミルで3
0分混合した。これを等方性黒鉛で作られた圧粉治具に
入れ、150kg/cm2 の圧力を加えたままで、室温
から500℃まで2時間で、500℃から700℃まで
5時間で昇温し、700℃で2時間保持してから圧力を
開放し、室温まで自然冷却し、炭素成型体を得た。この
成型体を40×40×0.6mmに加工して電極を得
た。この電極を以下の条件で評価した。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Example 1 Poly (p-phenylene) synthesized by the Kovacic method was fired at 700 ° C. under a nitrogen stream to obtain a carbon-based material. The obtained carbon-based material was in powder form. 20% by weight of poly (p-phenylene) synthesized by the Cobatic method was added to this carbon powder, and the mixture was mixed with a ball mill at 3%.
Mix for 0 minutes. This is put into a dusting jig made of isotropic graphite, and the temperature is raised from room temperature to 500 ° C. in 2 hours and from 500 ° C. to 700 ° C. in 5 hours with a pressure of 150 kg / cm 2 being applied, The temperature was maintained at 700 ° C. for 2 hours, the pressure was released, and the mixture was naturally cooled to room temperature to obtain a carbon molded body. This molded body was processed into 40 × 40 × 0.6 mm to obtain an electrode. This electrode was evaluated under the following conditions.

【0031】対極および参照極としてリチウム金属を、
電解液として、EC(エチレンカーボネート)とDME
(ジメチルエーテル)(体積比=1:1)の溶媒に、L
iPF6 を1モル/lの濃度で溶解したものを用いて、
充放電電流密度1.6mA/cm2 、300mA/g充
電し、放電終止電位3Vの条件で充放電を繰り返した。
結果を図1に示す。
Lithium metal is used as the counter electrode and the reference electrode,
EC (ethylene carbonate) and DME as electrolyte
In a solvent of (dimethyl ether) (volume ratio = 1: 1), L
Using iPF 6 dissolved at a concentration of 1 mol / l,
Charge / discharge current density was 1.6 mA / cm 2 , 300 mA / g, and charging / discharging was repeated under the condition of discharge end potential of 3V.
The results are shown in Fig. 1.

【0032】比較例1 コバチック法により合成したポリ(p−フェニレン)を
窒素気流下700℃で焼成して炭素系材料を得た。得
られた炭素系材料は、粉末状であった。この炭素粉末に
重量比で30%のポリエチレンバインダーを加え、50
0kg/cm2の圧力で圧粉成型した。ポリエチレンバ
インダーでは電極の強度が低いため、φ10×0.3m
m程度の電極より大きな電極の成型は困難であった。φ
10×0.3mmに成型した電極を実施例1と同様に評
価した。炭素粉末正味の放電容量を図1に示す。
Comparative Example 1 Poly (p-phenylene) synthesized by the Kovactic method was fired at 700 ° C. in a nitrogen stream to obtain a carbon-based material. The obtained carbon-based material was in powder form. Add 30% by weight of polyethylene binder to this carbon powder,
The powder was compacted at a pressure of 0 kg / cm 2 . With polyethylene binder, the strength of the electrode is low, so φ10 × 0.3m
It was difficult to mold an electrode larger than an electrode of about m. φ
The electrode molded to 10 × 0.3 mm was evaluated in the same manner as in Example 1. The discharge capacity of the carbon powder is shown in FIG.

【0033】比較例2 コバチック法により合成したポリ(p−フェニレン)を
窒素気流下700℃で焼成して炭素系材料を得た。得
られた炭素系材料は、粉末状であった。この炭素粉末に
重量比で30%のポリエチレンバインダーを加え、50
0kg/cm2の圧力で圧粉成型し、φ10×0.3m
mの電極を得て、実施例1と同様に評価した。電極重量
当たりの放電容量を図1に示す。図1より、本発明の電
極材料は、その炭素系粉末の性能を損なうことなく、電
極成型が可能であり、バインダー成分も活物質として機
能していることが明らかである。
Comparative Example 2 A carbonaceous material was obtained by firing poly (p-phenylene) synthesized by the Cobatic method at 700 ° C. in a nitrogen stream. The obtained carbon-based material was in powder form. Add 30% by weight of polyethylene binder to this carbon powder,
Powder compacted at a pressure of 0 kg / cm 2 , φ10 x 0.3 m
m electrodes were obtained and evaluated in the same manner as in Example 1. The discharge capacity per electrode weight is shown in FIG. From FIG. 1, it is clear that the electrode material of the present invention can be formed into an electrode without impairing the performance of the carbon-based powder, and the binder component also functions as an active material.

【0034】実施例2 700℃で焼成したポリ(p−フェニレン)100重量
部に対し、ポリビニリデンジフロライド(アルドリッチ
社製)10重量部、テフロン30J(三井フロロケミカ
ル社製、フッ素樹脂微細繊維)0.6重量部、N−メチ
ル−2−ピロリドン400重量部を加え、ボールミルで
2時間混合しスラリーを得た。これをドクターブレード
装置(津川精器社製、DW−150)にて銅箔上にキャ
スティングしてフィルムを得た。これを所定の大きさに
切り出し負極とした。実施例1と同様にして、充放電を
繰り返した。結果を図2に示す。
Example 2 100 parts by weight of poly (p-phenylene) baked at 700 ° C., 10 parts by weight of polyvinylidene difluoride (manufactured by Aldrich), Teflon 30J (manufactured by Mitsui Fluorochemicals, fluororesin fine fiber) ) 0.6 parts by weight and 400 parts by weight of N-methyl-2-pyrrolidone were added and mixed by a ball mill for 2 hours to obtain a slurry. This was cast on a copper foil with a doctor blade device (DW-150 manufactured by Tsugawa Seiki Co., Ltd.) to obtain a film. This was cut into a predetermined size to obtain a negative electrode. Charge and discharge were repeated in the same manner as in Example 1. The results are shown in Figure 2.

【0035】実施例3 テフロン30Jの量を1.2重量部とした以外は、実施
例2と同様にして、電極を作製し、評価した。結果を図
3に示す。
Example 3 An electrode was prepared and evaluated in the same manner as in Example 2 except that the amount of Teflon 30J was 1.2 parts by weight. The results are shown in Fig. 3.

【0036】実施例4 テフロン30Jの量を1.8重量部とした以外は実施例
2と同様にして、電極を作製し、評価した。結果を図4
に示す。
Example 4 An electrode was prepared and evaluated in the same manner as in Example 2 except that the amount of Teflon 30J was 1.8 parts by weight. The result is shown in Figure 4.
Shown in.

【0037】実施例5 テフロン30Jの量を2.4重量部とした以外は実施例
2と同様にして、電極を作製し、評価した。結果を図5
に示す。
Example 5 An electrode was prepared and evaluated in the same manner as in Example 2 except that the amount of Teflon 30J was changed to 2.4 parts by weight. The results are shown in Figure 5.
Shown in.

【0038】参考例 ポリ(p−フェニレン)焼成体粉末にポリエチレンバイ
ンダーを30重量%加え、1t/cm2 で圧粉成型し、
負極とした。評価は実施例2と同様に行った。結果を図
6に示す。ただし、ポリエチレンバインダーは電解液に
対して安定であるが接着強度が低いためφ20程度の成
型体を作るのが限界であり、大型の電極を成型すること
ができなかった。なお、図6の結果は、炭素系粉末だけ
の特性を示したものである。実施例2〜5はこの参考例
と同等の結果を示しており、微細繊維を添加したことに
より、何ら悪影響がなく、いずれも炭素系粉末と同等の
安定性を示すことが分かる。
Reference Example 30% by weight of a polyethylene binder was added to the powder of the fired poly (p-phenylene), and the powder was compacted at 1 t / cm 2 ,
It was used as the negative electrode. The evaluation was performed in the same manner as in Example 2. Results are shown in FIG. However, the polyethylene binder is stable with respect to the electrolytic solution, but its adhesive strength is low, so that it is limited to make a molded body of about φ20, and a large electrode could not be molded. The results of FIG. 6 show the characteristics of only the carbon-based powder. Examples 2 to 5 show results equivalent to those of this reference example, and it can be seen that the addition of fine fibers has no adverse effect and shows the same stability as the carbon-based powder.

【0039】実施例6 微細繊維、すなわちテフロン30Jの添加量を表1の所
定量〔ポリ(p−フェニレン)焼成体粉末に対する重量
%〕として実施例1と同様にしてスラリーを得、これを
ドクターブレードにて、ブレートギャップを表1に示す
所定の幅にしてフィルムを作り、フィルム形成性を調べ
た。ブレートギャップを変えた時の微細繊維の添加量と
乾燥後のフィルムの状態を表1に示す。微細繊維の添加
量が1.8重量%までは添加量が増えるに従い、厚いフ
ィルムでもクラックが入りにくくなる。2.4重量%に
なると微細繊維を添加したことによりスラリー粘度が上
昇し、更に溶剤を増やさなければ、混合、キャスティン
グができない状態になった。そこで、さらに溶剤を加え
たために、クラックの入る厚さの限界が薄くなったこと
が分かる。
Example 6 A slurry was obtained in the same manner as in Example 1 except that the addition amount of fine fibers, that is, Teflon 30J was set to a predetermined amount in Table 1 [% by weight relative to the powder of the poly (p-phenylene) fired product], and a slurry was obtained. A film was formed with a blade having a blade plate with a predetermined width shown in Table 1, and the film formability was examined. Table 1 shows the amount of fine fibers added when the plate gap was changed and the state of the film after drying. As the amount of fine fibers added increases up to 1.8% by weight, cracks are less likely to occur even in a thick film. When the amount was 2.4% by weight, the slurry viscosity increased due to the addition of fine fibers, and mixing and casting became impossible unless the solvent was further increased. Therefore, it is understood that the limit of the thickness at which cracks enter is thinned by further adding the solvent.

【0040】[0040]

【表1】 [Table 1]

【0041】○:乾燥後にフィルム形状を保持してい
る。 △:キャスト時に表面張力によりフィルムにならない。 ×:乾燥時にクラックが入る。
◯: The film shape is retained after drying. Δ: The film does not become a film due to surface tension during casting. X: Cracks occur when dried.

【0042】[0042]

【発明の効果】本発明の電極材料により、炭素系材料の
吸油量が多くても、炭素系材料の性能が損なわれず電極
を得ることができ、さらにサイズの大きい電極を得るこ
とができる。そこで、この電極材料を用いることによっ
て、高容量で、サイクル安定性に優れ、しかも高電流密
度の充放電に耐え得る二次電池を得ることができる。
With the electrode material of the present invention, an electrode can be obtained without impairing the performance of the carbon-based material even if the carbon-based material has a large oil absorption amount, and an electrode having a larger size can be obtained. Therefore, by using this electrode material, it is possible to obtain a secondary battery having high capacity, excellent cycle stability, and capable of withstanding charge / discharge with a high current density.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、比較例1〜2における評価結果を示
す図である。
FIG. 1 is a diagram showing evaluation results in Example 1 and Comparative Examples 1 and 2.

【図2】実施例2における評価結果を示す図である。FIG. 2 is a diagram showing an evaluation result in Example 2.

【図3】実施例3における評価結果を示す図である。FIG. 3 is a diagram showing an evaluation result in Example 3.

【図4】実施例4における評価結果を示す図である。FIG. 4 is a diagram showing an evaluation result in Example 4.

【図5】実施例5における評価結果を示す図である。FIG. 5 is a diagram showing an evaluation result in Example 5.

【図6】参考例における評価結果を示す図である。FIG. 6 is a diagram showing an evaluation result in a reference example.

【図7】本発明の炭素系材料を負極に用いたリチウム二
次電池の一部断面図を含む正面図である。
FIG. 7 is a front view including a partial cross-sectional view of a lithium secondary battery using the carbon-based material of the present invention as a negative electrode.

【符号の説明】[Explanation of symbols]

30 セパレータ 50 正極 70 負極 30 Separator 50 Positive electrode 70 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖 尚彦 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naohiko Oki 1-4-1 Chuo, Wako, Saitama Stock Company Honda R & D Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機高分子化合物を焼成して得られた炭
素系材料に、該有機高分子化合物を加えホットプレスし
てなることを特徴とする電極材料。
1. An electrode material comprising a carbon-based material obtained by firing an organic polymer compound, and adding the organic polymer compound thereto and hot pressing.
【請求項2】 炭素系材料に微細繊維と電解質液以外の
溶剤に可溶なバインダーを加えてなることを特徴とする
電極材料。
2. An electrode material comprising a carbon-based material and a fine fiber and a binder soluble in a solvent other than an electrolyte solution.
【請求項3】 微細繊維がポリテトラフルオロエチレン
である請求項2記載の電極材料。
3. The electrode material according to claim 2, wherein the fine fibers are polytetrafluoroethylene.
【請求項4】 炭素系材料100重量部に対してポリテ
トラフルオロエチレンを0.6〜2.4重量部加える請
求項3記載の電極材料。
4. The electrode material according to claim 3, wherein 0.6 to 2.4 parts by weight of polytetrafluoroethylene is added to 100 parts by weight of the carbonaceous material.
【請求項5】 ドクターブレード法にて、ブレードギャ
ップを0.3〜0.7mmとして成型して得られる請求
項2〜4の何れか1項に記載の電極材料。
5. The electrode material according to claim 2, which is obtained by molding by a doctor blade method with a blade gap of 0.3 to 0.7 mm.
JP13778194A 1994-05-30 1994-05-30 Electrode materials for lithium secondary batteries Expired - Fee Related JP3429561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13778194A JP3429561B2 (en) 1994-05-30 1994-05-30 Electrode materials for lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13778194A JP3429561B2 (en) 1994-05-30 1994-05-30 Electrode materials for lithium secondary batteries

Publications (2)

Publication Number Publication Date
JPH07326357A true JPH07326357A (en) 1995-12-12
JP3429561B2 JP3429561B2 (en) 2003-07-22

Family

ID=15206700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13778194A Expired - Fee Related JP3429561B2 (en) 1994-05-30 1994-05-30 Electrode materials for lithium secondary batteries

Country Status (1)

Country Link
JP (1) JP3429561B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299105A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Manufacture of electrode for lithium ion secondary battery
WO2011033707A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
JP2015526873A (en) * 2012-11-21 2015-09-10 エルジー・ケム・リミテッド Lithium secondary battery
JP2015220152A (en) * 2014-05-20 2015-12-07 本田技研工業株式会社 Negative electrode active material, alkaline ion secondary battery and electric capacitor
US9853288B2 (en) 2012-11-21 2017-12-26 Lg Chem, Ltd. Lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299105A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Manufacture of electrode for lithium ion secondary battery
WO2011033707A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
JP2015526873A (en) * 2012-11-21 2015-09-10 エルジー・ケム・リミテッド Lithium secondary battery
US9660266B2 (en) 2012-11-21 2017-05-23 Lg Chem, Ltd. Lithium secondary battery
US9853288B2 (en) 2012-11-21 2017-12-26 Lg Chem, Ltd. Lithium secondary battery
JP2015220152A (en) * 2014-05-20 2015-12-07 本田技研工業株式会社 Negative electrode active material, alkaline ion secondary battery and electric capacitor

Also Published As

Publication number Publication date
JP3429561B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
EP1148570B1 (en) Nonaqueous electrolyte secondary battery
JP3956384B2 (en) Secondary battery
EP0567658B1 (en) Carbon-based material
JP2005038720A (en) Method of manufacturing negative electrode and method of manufacturing battery
CN114514638A (en) Spheroidized carbonaceous negative electrode active material, method for producing the same, and negative electrode and lithium secondary battery comprising the same
JP2005005115A (en) Electrolyte and battery using it
EP2722923A1 (en) Nonaqueous electrolyte secondary battery
KR100578869B1 (en) Anode for a lithium secondary battery and a lithium secondary battery comprising the same
JPH10154531A (en) Secondary battery
JP4336087B2 (en) Lithium polymer battery and manufacturing method thereof
JP3239302B2 (en) Organic electrolyte secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JP3429561B2 (en) Electrode materials for lithium secondary batteries
JP2005197175A (en) Positive electrode, negative electrode, electrolyte and battery
JP3552377B2 (en) Rechargeable battery
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JP2002198036A (en) Negative electrode, nonaqueous electrolyte cell and their manufacturing method
JP4186463B2 (en) Nonaqueous electrolyte secondary battery
JP3973170B2 (en) Lithium ion secondary battery and method for producing electrode for lithium secondary battery
JP2002083602A (en) Nonaqueous electrolytic solution secondary battery and its manufacturing method
JPH07235327A (en) Non-aqueous electrolyte secondary battery
JP3863514B2 (en) Lithium secondary battery
JP3322962B2 (en) Alkali ion adsorption / desorption material
JP4080110B2 (en) Non-aqueous electrolyte battery
JP2005197174A (en) Battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees