JPH07321411A - Semiconductor device provided with v-groove structure - Google Patents
Semiconductor device provided with v-groove structureInfo
- Publication number
- JPH07321411A JPH07321411A JP11497794A JP11497794A JPH07321411A JP H07321411 A JPH07321411 A JP H07321411A JP 11497794 A JP11497794 A JP 11497794A JP 11497794 A JP11497794 A JP 11497794A JP H07321411 A JPH07321411 A JP H07321411A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- layer
- semiconductor device
- active layer
- clad layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000005530 etching Methods 0.000 claims description 17
- 239000012808 vapor phase Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 15
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の利用分野】本発明は半導体装置、好ましくは量
子効果を用いた半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, preferably a semiconductor device using the quantum effect.
【0002】[0002]
【従来の技術】量子井戸、量子細線、量子箱等の量子マ
イクロ構造を有する半導体装置は、特に半導体発光装置
として特に好適に用いられ、電子と正孔の量子化効果に
よって、低しきい値電流、高変調帯域、高コヒーレンス
特性等において、優れた特性が得られている。2. Description of the Related Art A semiconductor device having a quantum microstructure such as a quantum well, a quantum wire, and a quantum box is particularly preferably used as a semiconductor light emitting device, and has a low threshold current due to a quantization effect of electrons and holes. Excellent characteristics are obtained in high modulation band, high coherence characteristics, and the like.
【0003】そして量子細線の作成方法としては、量子
井戸構造を作っておいてから、電子線露光等による微細
なフォトリソグラフィー法とイオンビームによる垂直エ
ッチングを組み合わせて用いて細線を形成する方法や、
図4に示す基板上にV字形状の溝を設け、この後に断面
がV字になる溝(以下、「V溝」という)形状を有する
基板全面にダブルヘテロ構造を成長させる方法が行われ
ている。As a method of forming a quantum wire, a quantum well structure is formed and then a fine photolithography method by electron beam exposure or the like and vertical etching by an ion beam are used in combination to form a wire.
A method of forming a V-shaped groove on the substrate shown in FIG. 4 and then growing a double hetero structure on the entire surface of the substrate having a groove having a V-shaped cross section (hereinafter referred to as “V groove”) is performed. There is.
【0004】[0004]
【発明が解決すべき課題】しかしながら、前者の方法
は、加工による溝側壁の損傷が大きく、細線の品質は劣
ったものになりやすい。一方後者は、成長速度の方位依
存性を利用し、量子細線を選択的に行うことができる
が、V溝を形成しようとする部分の組成によっては、形
成したV溝の底が丸みを帯びてしまったり、あるいはウ
ェットエッチングのさいに、エッチング表面に酸化膜が
形成されてしまったり、不純物で汚染されてしまった
り、あるいはエッチングにより、V溝の底が丸まってし
まったりすることがある。However, in the former method, the side wall of the groove is largely damaged by the processing, and the quality of the fine wire tends to be inferior. On the other hand, in the latter, the quantum wire can be selectively formed by utilizing the orientation dependence of the growth rate, but the bottom of the formed V groove is rounded depending on the composition of the portion where the V groove is to be formed. In some cases, during wet etching, an oxide film is formed on the etching surface during wet etching, it is contaminated with impurities, or the bottom of the V groove is rounded due to etching.
【0005】このため、品質のよい量子細線を、容易に
得られる構造が望まれている。又、半導体装置の効率の
向上もまた現在の課題である。Therefore, there is a demand for a structure capable of easily obtaining a high quality quantum wire. In addition, improving the efficiency of semiconductor devices is also a current issue.
【0006】[0006]
【課題を解決するための手段】そこで本発明者らは、鋭
意研究の結果、かかる課題が、特定の構造により解決さ
れることを見いだし本発明に到達した。すなわち本発明
の目的は、品質のよい量子細線を有する半導体装置を提
供することであり、かかる目的は、 半導体基板又は半
導体基板上に成長させたエピタキシャル成長層の少なく
とも一部に断面がV字になる溝を有し、該V字になる溝
の底の部分に活性層を設けたことを特徴とする半導体装
置、より好ましくは該活性層が、クラッド層により挟み
込まれた構造を有する前記半導体装置、該活性層が、量
子井戸構造を有する前記半導体装置、該V字になる溝の
斜面で接しているV字構造の内側と外側のクラッド層を
有し、該外側のクラッド層のエネルギーギャップが、該
内側のクラッド層のエネルギーギャップより大きくなっ
ている構造を有する前記半導体装置、該V字になる溝の
斜面が、{111}B面である前記半導体装置、V字に
なる溝が、気相エッチングにより形成された前記半導体
装置等により、容易に達成される。The inventors of the present invention, as a result of intensive research, have found that such a problem can be solved by a specific structure, and have reached the present invention. That is, an object of the present invention is to provide a semiconductor device having a high-quality quantum wire, and an object thereof is to form a V-shaped cross section in at least a part of a semiconductor substrate or an epitaxial growth layer grown on the semiconductor substrate. A semiconductor device having a groove, wherein an active layer is provided at a bottom portion of the V-shaped groove, more preferably the semiconductor device having a structure in which the active layer is sandwiched by clad layers, The active layer has the semiconductor device having a quantum well structure, the inner and outer clad layers of the V-shaped structure that are in contact with each other at the slope of the V-shaped groove, and the energy gap of the outer clad layer is The semiconductor device having a structure that is larger than the energy gap of the inner clad layer, the semiconductor device in which the slope of the V-shaped groove is a {111} B plane, and the semiconductor device is V-shaped. The groove is easily achieved by the semiconductor device or the like formed by vapor phase etching.
【0007】以下に本発明を詳細に説明する。本発明の
半導体装置の構造は、III−V族化合物半導体、II−VI
族化合物半導体等に好適に使用できる。そして本発明の
構造は、活性領域内でのキャリアの伝導を利用した電子
素子として好適に用いられるが、特に好適には発光半導
体装置として用いられる。The present invention will be described in detail below. The structure of the semiconductor device of the present invention is III-V compound semiconductor, II-VI.
It can be suitably used for group compound semiconductors and the like. The structure of the present invention is preferably used as an electronic element utilizing the conduction of carriers in the active region, and particularly preferably used as a light emitting semiconductor device.
【0008】本発明の半導体装置の構造を、実施例で作
成したIII−V族の(100)面GaAs基板上に成長
させた図1の装置の説明図を用いて説明する。(10
0)面を用いたのは、V溝の対称性や直進性によって量
子井戸の対称性や直進性が影響を受けるため、この点で
最も有利である方位を選んだためであるが、極端に量子
井戸の対称性や直進性が影響を受けない限り、任意の方
向の基板を用いることができる。もちろんオフアングル
方向についても同様のことが言える。本発明のV溝は、
基板又は基板上に成長したエピタキシャル層に設けられ
る。そして、V溝の方向は、<110>方向から10°
以下が好ましく、より好ましくは5°以下である。10
°を越えて<110>方向からずれると、V溝の側面の
状態が、ギザギザの階段状になりやすくあまり好ましく
ない。The structure of the semiconductor device of the present invention will be described with reference to the explanatory view of the device of FIG. 1 grown on the III-V group (100) plane GaAs substrate prepared in the embodiment. (10
The (0) plane is used because the symmetry and straightness of the V-groove affect the symmetry and straightness of the quantum well. A substrate in any direction can be used as long as the symmetry and straightness of the quantum well are not affected. Of course, the same can be said for the off-angle direction. The V groove of the present invention is
It is provided on a substrate or an epitaxial layer grown on the substrate. The direction of the V groove is 10 ° from the <110> direction.
The following is preferable, and 5 ° or less is more preferable. 10
If it deviates from the <110> direction by more than °, the state of the side surface of the V groove is likely to be jagged and is not so preferable.
【0009】そして活性層は、このV溝の底の部分に設
けられる。活性層の厚さは、活性層として量子井戸構造
を用いる場合、量子細線として用いるためには20nm
以下が好ましいが、50nm程度までは使用することが
できる。活性層の組成や導電型については、通常使用さ
れる全てのものが使用でき、特に限定されない。本発明
においては、活性層をV溝の底に設けたため、より細い
量子細線を作成することができる。The active layer is provided at the bottom of the V groove. When the quantum well structure is used as the active layer, the thickness of the active layer is 20 nm for use as quantum wires.
The following is preferable, but it can be used up to about 50 nm. With respect to the composition and conductivity type of the active layer, any of those usually used can be used, and there is no particular limitation. In the present invention, since the active layer is provided on the bottom of the V-groove, it is possible to make a finer quantum wire.
【0010】本発明の好ましい態様としては、基板上に
エピタキシャル成長させたクラッド層を設け、これにV
溝を設けて活性層を設け、この活性層の上にさらに第2
のクラッド層を設けた構造である。そして本発明の好適
な構造の一つは、V溝の斜面で接しているV字構造の内
側と外側のクラッド層が、該外側のクラッド層のエネル
ギーギャップが、該内側のクラッド層のエネルギーギャ
ップより大きくなっている関係にあることであり、この
ような構造をとることで、電流をV溝の底にある活性層
に集中させることができるのでレーザダイオード等に特
に好適に用いられる。In a preferred embodiment of the present invention, a clad layer epitaxially grown on the substrate is provided and V
A groove is provided to provide an active layer, and a second layer is formed on the active layer.
This is a structure in which a clad layer is provided. One of preferred structures of the present invention is that the inner and outer clad layers of the V-shaped structure which are in contact with each other at the slope of the V groove, the energy gap of the outer clad layer, and the energy gap of the inner clad layer. It has a larger relationship, and by adopting such a structure, the current can be concentrated in the active layer at the bottom of the V groove, so that it is particularly preferably used for a laser diode or the like.
【0011】そしてこのV溝の斜面は、{111}B面
であることが好ましい。{111}B面とは、III−V
族化合物半導体であればV族のみが表面にならぶ{11
1}面になり、II−VI族化合物半導体であればVI族のみ
が表面にならぶ{111}面になる。これは、一般に
{111}B面上には、結晶成長が生じにくく、V溝の
底から成長を始めることが容易であるためである。The slope of the V groove is preferably the {111} B plane. The {111} B plane is III-V.
If it is a group compound semiconductor, only the group V has a surface {11
If the compound semiconductor is a II-VI group compound semiconductor, only the group VI becomes a {111} plane. This is because crystal growth generally does not easily occur on the {111} B plane, and it is easy to start growth from the bottom of the V groove.
【0012】そして本発明のV溝は、気相エッチングに
より形成することが好ましい。これは、従来のようにウ
ェットエッチングでV溝を作成すると、V溝の底が、丸
まった形状になりやすく、また、不純物がエッチング面
に残ったり、酸化膜が形成されたりすると、エッチング
面に接する形で活性層を設けても、品質のよい活性層を
得ることが困難になりやすいためである。The V groove of the present invention is preferably formed by vapor phase etching. This is because when the V groove is formed by wet etching as in the conventional case, the bottom of the V groove tends to have a rounded shape, and when impurities remain on the etching surface or an oxide film is formed on the etching surface, This is because it is difficult to obtain a high quality active layer even if the active layer is provided in contact with each other.
【0013】又、V溝は逆ピラミッド状のような、長手
方向の長さを持たないような構造でもよいことはいうま
でもない。本発明の構造の好ましい製造方法の1例とし
ては、まず基板上に第1クラッド層となる層をエピタキ
シャル成長させる。このとき用いる成長方法は、有機金
属気相成長法(MOCVD法)が好ましい。このエピタ
キシャルウェハ表面に、フォトリソグラフィー法等のパ
ターニングプロセスを用いてストライプ状の窒化シリコ
ン膜を形成する。このとき窒化シリコン膜のストライプ
の方向は、<110>方向であることが好ましい。この
後、有機金属気相成長(MOCVD)法用のリアクタ内
にエッチングガスを導入することにより、窒化シリコン
膜をマスクとした、第1クラッド層のin−situガ
スエッチングを行い、先端の鋭く尖ったV溝を形成し、
そのまま基板を空気中にさらすことなく連続的に量子細
線及び第2クラッド層をV溝内に成長させる。このとき
好適なエッチングガスとしては、HClが挙げられる。
又、この方法を用いると、不純物がエッチング面に残っ
たり、酸化膜が形成されたりすることがないので、エッ
チング面に直接活性層を成長させても、品質のよい活性
層をえることができる。Needless to say, the V-groove may have a structure having no length in the longitudinal direction, such as an inverted pyramid shape. As an example of a preferred method of manufacturing the structure of the present invention, first, a layer to be the first cladding layer is epitaxially grown on the substrate. The growth method used at this time is preferably a metal organic chemical vapor deposition method (MOCVD method). A stripe-shaped silicon nitride film is formed on the surface of the epitaxial wafer by using a patterning process such as a photolithography method. At this time, the stripe direction of the silicon nitride film is preferably the <110> direction. After that, by introducing an etching gas into the reactor for metal organic chemical vapor deposition (MOCVD) method, in-situ gas etching of the first cladding layer is performed using the silicon nitride film as a mask, and the tip is sharply pointed. Forming a V-groove,
The quantum wires and the second cladding layer are continuously grown in the V groove without exposing the substrate to the air as it is. At this time, HCl is a suitable etching gas.
Further, when this method is used, impurities are not left on the etching surface or an oxide film is not formed, so that a high-quality active layer can be obtained even if the active layer is directly grown on the etching surface. .
【0014】以下本発明を実施例を用いて更に詳細に説
明するが、本発明はその要旨を越えない限り、実施例に
限定されるものではない。 (実施例1)最初に、(100)GaAs基板上に、M
OCVD法にて、GaAs層(0.5μm)、Al0.5
Ga0.5 As(2μm)、GaAs層(20nm)をこ
の順に形成した。このエピ基板の表面に、窒化シリコン
をPCVD法で成膜し、これをフォトリソグラフィー法
で[011]方向に伸びる幅1μmの窒化シリコン膜
が、1μmおきに並ぶ形状にマスクした。このマスク済
のサンプルを再びMOCVD装置にセットした。セット
後、アルシン(AsH3 )雰囲気下で700℃まで昇温
し、それからHClガスを用いてエッチングを行い、
{111}B面を両側側面に有するV溝を形成した。エ
ッチングを停止した直後に温度を700℃に維持したま
ま、トリメチルガリウム(TMG)を供給し、V溝内に
4nmのGaAs活性層を形成し、さらにTMGと共に
トリメチルアルミニウム(TMA)も同時に供給し、1
μmのAl0.5 Ga0.5 Asクラッド層を作成し、再び
アルシンとTMGを供給し、0.1μmのGaAs層を
形成した。この製造プロセスの説明を図2に示す。この
とき、{111}B面上は、エピタキシャル成長が困難
であるため、V溝の側壁には成長が起こらず、結果とし
てV溝の底にGaAsの量子細線が、自己整合的に形成
される。又、成長中にもHClをIII族原料と同モル程
度の1sccm程度供給することにより、窒化シリコン
層上に、AlGaAsの多結晶の析出を防いだ。この成
長中にHClを供給する手法は、特にGaAlAs層の
アルミニウム組成が0.4以上の時に好適に用いられ、
そして高いアルミニウム組成を有するAlGaAsの選
択成長が可能となるので、活性層へのキャリアの閉じ込
めに効果がある。Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples as long as the gist thereof is not exceeded. (Example 1) First, on a (100) GaAs substrate, M
GaAs layer (0.5 μm), Al 0.5 by OCVD method
Ga 0.5 As (2 μm) and a GaAs layer (20 nm) were formed in this order. A silicon nitride film was formed on the surface of this epitaxial substrate by the PCVD method, and a silicon nitride film having a width of 1 μm extending in the [011] direction was masked by photolithography so as to be arranged at intervals of 1 μm. The masked sample was set again in the MOCVD apparatus. After setting, the temperature is raised to 700 ° C. in an arsine (AsH 3 ) atmosphere, and then etching is performed using HCl gas.
V-grooves having {111} B planes on both side surfaces were formed. Immediately after stopping the etching, while maintaining the temperature at 700 ° C., trimethylgallium (TMG) was supplied to form a 4 nm GaAs active layer in the V groove, and trimethylaluminum (TMA) was also supplied together with TMG. 1
A μm Al 0.5 Ga 0.5 As clad layer was formed, and arsine and TMG were supplied again to form a 0.1 μm GaAs layer. An explanation of this manufacturing process is shown in FIG. At this time, since epitaxial growth is difficult on the {111} B plane, no growth occurs on the sidewall of the V groove, and as a result, a GaAs quantum wire is formed in the bottom of the V groove in a self-aligned manner. Also, during the growth, by supplying HCl at about 1 sccm, which is about the same mol as the Group III raw material, precipitation of AlGaAs polycrystals on the silicon nitride layer was prevented. The method of supplying HCl during the growth is suitably used especially when the aluminum composition of the GaAlAs layer is 0.4 or more,
Then, it becomes possible to selectively grow AlGaAs having a high aluminum composition, which is effective in confining carriers in the active layer.
【0015】こうして成長させたサンプルをSEM観察
した。この様子を図1に模式的に示す。窒化シリコンの
マスクの下にエッチングが広がるアンダーエッチング現
象は起こっておらず、またV溝の先端部は非常にシャー
プに尖ったV溝が形成された。そしてこのV溝の底の部
分だけに、横幅20μmのGaAsの細線が埋め込まれ
ていた。このサンプルのPL(フォトルミネッセンス)
発光を調べたところ、77K、及び室温(300K)の
いずれも量子細線からの発光が顕著に見られた。このう
ち、室温でのデータを図3に示す。これらの結果は、損
傷の少ない高品質な量子細線を簡単に得ることができた
ことを示している。The sample thus grown was observed by SEM. This state is schematically shown in FIG. The under-etching phenomenon in which the etching spreads under the silicon nitride mask did not occur, and the V-groove had a sharp V-groove at the tip. A GaAs thin wire having a width of 20 μm was embedded only in the bottom of the V groove. PL (photoluminescence) of this sample
When light emission was examined, light emission from the quantum wire was remarkably observed at both 77K and room temperature (300K). Of these, the data at room temperature are shown in FIG. These results show that we could easily obtain high quality quantum wires with little damage.
【0016】(実施例2)埋め込みクラッド層の組成を
Al0.3 Ga0.7 Asにした以外は、実施例1と同様の
サンプルを作成し、発光強度を調べたところ、明らかに
発光強度の増加が認められた。これは、V溝の中のキャ
リアが、V溝側壁にエネルギー障壁があるため、V溝の
外に出られず、V溝の底にある活性層に集中した結果で
あると考えられる。このような効果は、レーザ素子等を
作成する場合、有利であると考えられる。Example 2 A sample similar to that of Example 1 was prepared except that the composition of the buried cladding layer was changed to Al 0.3 Ga 0.7 As, and the emission intensity was examined. As a result, the emission intensity was clearly increased. Was given. It is considered that this is because the carriers in the V-grooves cannot get out of the V-grooves and concentrate in the active layer at the bottom of the V-grooves because the side walls of the V-grooves have energy barriers. Such an effect is considered to be advantageous when manufacturing a laser device or the like.
【0017】[0017]
【発明の効果】本発明により、品質のよい量子細線を、
容易に得られ、又、半導体装置の効率をも向上させるこ
とができる。According to the present invention, a high-quality quantum wire is
It can be easily obtained, and the efficiency of the semiconductor device can be improved.
【図1】図1は本発明の、実施例1にて作成した1態様
を示す説明図である。FIG. 1 is an explanatory diagram showing one mode created in Example 1 of the present invention.
【図2】図2は本発明の、実施例1に用いた製造プロセ
スの説明図である。FIG. 2 is an explanatory diagram of a manufacturing process used in Example 1 of the present invention.
【図3】図3は本発明の、実施例1にて作成したサンプ
ルの室温でのPL発光の状態を示す図である。FIG. 3 is a diagram showing a state of PL light emission at room temperature of the sample prepared in Example 1 of the present invention.
【図4】図4は、従来の量子細線を用いた素子の典型を
示した説明図である。FIG. 4 is an explanatory diagram showing a typical example of a device using a conventional quantum wire.
Claims (6)
エピタキシャル成長層の少なくとも一部に断面がV字に
なる溝を有し、該V字になる溝の底の部分に活性層を設
けたことを特徴とする半導体装置。1. A semiconductor substrate or an epitaxial growth layer grown on a semiconductor substrate has a groove having a V-shaped cross section at least in part, and an active layer is provided at a bottom portion of the V-shaped groove. A semiconductor device characterized by:
た構造を有する請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the active layer has a structure sandwiched by clad layers.
1又は2記載の半導体装置。3. The semiconductor device according to claim 1, wherein the active layer has a quantum well structure.
造の内側と外側のクラッド層を有し、該外側のクラッド
層のエネルギーギャップが、該内側のクラッド層のエネ
ルギーギャップより大きくなっている構造を有する請求
項1乃至3のいずれかに記載の半導体装置。4. An inner and outer clad layer having a V-shaped structure that is in contact with the slope of the V-shaped groove, wherein the energy gap of the outer clad layer is greater than the energy gap of the inner clad layer. The semiconductor device according to claim 1, wherein the semiconductor device has an enlarged structure.
である請求項1乃至4のいずれかに記載の半導体装置。5. The semiconductor device according to claim 1, wherein the slope of the V-shaped groove is a {111} B plane.
形成された請求項1乃至5のいずれかに記載の半導体装
置。6. The semiconductor device according to claim 1, wherein the V-shaped groove is formed by vapor phase etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11497794A JP3446300B2 (en) | 1994-05-27 | 1994-05-27 | Semiconductor device having V-groove structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11497794A JP3446300B2 (en) | 1994-05-27 | 1994-05-27 | Semiconductor device having V-groove structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003102915A Division JP2003347680A (en) | 2003-04-07 | 2003-04-07 | Manufacturing method for semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07321411A true JPH07321411A (en) | 1995-12-08 |
JP3446300B2 JP3446300B2 (en) | 2003-09-16 |
Family
ID=14651310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11497794A Expired - Fee Related JP3446300B2 (en) | 1994-05-27 | 1994-05-27 | Semiconductor device having V-groove structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3446300B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100234001B1 (en) * | 1996-10-30 | 1999-12-15 | 박호군 | How to make a quantum wire laser diode |
WO2002080284A1 (en) * | 2001-03-29 | 2002-10-10 | National Institute Of Advanced Industrial Science And Technology | Negative-resistance field-effect device |
-
1994
- 1994-05-27 JP JP11497794A patent/JP3446300B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100234001B1 (en) * | 1996-10-30 | 1999-12-15 | 박호군 | How to make a quantum wire laser diode |
WO2002080284A1 (en) * | 2001-03-29 | 2002-10-10 | National Institute Of Advanced Industrial Science And Technology | Negative-resistance field-effect device |
US7221005B2 (en) | 2001-03-29 | 2007-05-22 | National Institute Of Advanced Industrial Science And Technology | Negative resistance field-effect device |
Also Published As
Publication number | Publication date |
---|---|
JP3446300B2 (en) | 2003-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3470623B2 (en) | Method for growing nitride III-V compound semiconductor, method for manufacturing semiconductor device, and semiconductor device | |
US6566231B2 (en) | Method of manufacturing high performance semiconductor device with reduced lattice defects in the active region | |
EP1104031A2 (en) | Nitride semiconductor, nitride semiconductor device, semiconductor light emiting device and method of fabricating the same | |
KR20030070094A (en) | Crystal film, crystal substrate and semiconductor device | |
JP3153153B2 (en) | Gallium nitride based semiconductor laser and method of manufacturing the same | |
US20060172513A1 (en) | Method for producing semiconductor light emitting device, method for producing semiconductor device, method for producing device, method for growing nitride type iii-v group compound semiconductor layer, method for growing semiconductor layer, and method for growing layer | |
EP0477013B1 (en) | Method of producing a semiconductor laser | |
JP2003229645A (en) | Quantum well structure, semiconductor device using the same, and method of manufacturing semiconductor device | |
US6589807B2 (en) | Semiconductor device and method for manufacturing the same | |
JP3988245B2 (en) | Nitride III-V compound semiconductor growth method and semiconductor device manufacturing method | |
US20010025989A1 (en) | Semiconductor device and method of manufacturing the same | |
JP2000223417A (en) | Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device | |
JPH08274411A (en) | Semiconductor laser device | |
US7893454B2 (en) | Method for producing structured substrate, structured substrate, method for producing semiconductor light emitting device, semiconductor light emitting device, method for producing semiconductor device, semiconductor device, method for producing device, and device | |
JP2001148543A (en) | Method of manufacturing iii nitride semiconductor, and method of manufacturing semiconductor device | |
JPH11103133A (en) | Semiconductor layer using selective growth method and method for growing the same, nitride semiconductor layer using selective growth method and method for growing the same, nitride semiconductor light emitting device and method for manufacturing the same | |
EP1005123B1 (en) | Semiconductor laser, semiconductor device and their manufacturing methods | |
JP3446300B2 (en) | Semiconductor device having V-groove structure | |
JP3446343B2 (en) | Semiconductor light emitting device having V-groove structure | |
JP3446344B2 (en) | Semiconductor light emitting device having V-groove structure | |
JPH08125277A (en) | Semiconductor device having v-grooved structure | |
JP2004007009A (en) | Manufacturing method of nitride semiconductor device | |
JP2003347680A (en) | Manufacturing method for semiconductor device | |
JP2003289047A (en) | Method for growing nitride system group iii-v compound semiconductor and method for manufacturing semiconductor device and semiconductor device | |
JPH10190152A (en) | Method for manufacturing group 3-5 compound semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080704 |
|
LAPS | Cancellation because of no payment of annual fees |