JPH07321353A - Photovoltaic element and manufacture - Google Patents
Photovoltaic element and manufactureInfo
- Publication number
- JPH07321353A JPH07321353A JP6108113A JP10811394A JPH07321353A JP H07321353 A JPH07321353 A JP H07321353A JP 6108113 A JP6108113 A JP 6108113A JP 10811394 A JP10811394 A JP 10811394A JP H07321353 A JPH07321353 A JP H07321353A
- Authority
- JP
- Japan
- Prior art keywords
- photovoltaic element
- electrode
- conductive adhesive
- terminal member
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000000853 adhesive Substances 0.000 claims abstract description 95
- 230000001070 adhesive effect Effects 0.000 claims abstract description 95
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 239000004332 silver Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000002952 polymeric resin Substances 0.000 claims description 4
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims 1
- 229910001111 Fine metal Inorganic materials 0.000 abstract description 2
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 34
- 239000010408 film Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 16
- 239000000758 substrate Substances 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 230000007774 longterm Effects 0.000 description 9
- 229920006397 acrylic thermoplastic Polymers 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000010248 power generation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光起電力素子に関する。
特に、光電変換をするための半導体層を有する光起電力
素子において、電極と電力取り出しのための端子部材と
の接続方法に関する。FIELD OF THE INVENTION This invention relates to photovoltaic devices.
In particular, the present invention relates to a method for connecting an electrode and a terminal member for extracting electric power in a photovoltaic element having a semiconductor layer for photoelectric conversion.
【0002】[0002]
【従来の技術】従来、電力の主たる供給源であった火力
発電は、地球温暖化防止の観点から問題であり、近年
は、よりCO2排出量の少ないエネルギー源が求められ
ている。一方、CO2を排出しない原子力発電では、放
射性物質による重大な環境汚染の可能性が指摘されてい
る。このような側面から、無公害かつ安全なエネルギー
源の早急な開発が求められつつある。2. Description of the Related Art Thermal power generation, which has been a main source of electric power in the past, is problematic from the viewpoint of preventing global warming, and in recent years, an energy source with a smaller amount of CO 2 emission has been demanded. On the other hand, it has been pointed out that nuclear power generation that does not emit CO 2 may cause serious environmental pollution due to radioactive substances. From this aspect, urgent development of a pollution-free and safe energy source is being demanded.
【0003】将来期待されているクリーンなエネルギー
源の中でも、光起電力素子からなる太陽電池は無公害
性、安全性に加えて、取扱い易さという面から非常に注
目されている。Among the clean energy sources that are expected in the future, solar cells composed of photovoltaic elements have attracted a great deal of attention because of their pollution-free property, safety, and ease of handling.
【0004】現在、光起電力素子が普及しないのは、光
起電力素子への購入投資に見合うユーザーメリットが得
られにくいためである。具体的には、次の2つの理由に
よる。At present, photovoltaic devices are not popular because it is difficult to obtain user merits commensurate with investment in purchasing photovoltaic devices. Specifically, it is due to the following two reasons.
【0005】(イ)光起電力素子の製造コストがなかな
か削減できず、購入価格が高い。 (ロ)光起電力素子の信頼性が未だ充分ではないため、
長期間の使用による購入投資の還元が行いきれない場合
がある。(A) The manufacturing cost of the photovoltaic element cannot be reduced easily and the purchase price is high. (B) Since the reliability of the photovoltaic element is not yet sufficient,
There may be cases where the purchase investment cannot be fully returned due to long-term use.
【0006】まず、上記(イ)の製造コストが高いとい
う観点から以下に状況を述べる。一般に、製造コストが
比較的低いといわれている非晶質シリコンの光起電力素
子でも、依然として広く普及するにたる価格に至っては
いない。現在、光起電力素子の製造コストを下げるとい
う観点からは、以下のようなアプローチがなされてい
る。First, the situation will be described below from the viewpoint that the manufacturing cost of (a) above is high. Generally, even amorphous silicon photovoltaic devices, which are said to have relatively low manufacturing costs, have not yet reached the price of widespread use. At present, the following approaches are taken from the viewpoint of reducing the manufacturing cost of photovoltaic elements.
【0007】(1)半導体層の製造費用の低減。例え
ば、非晶質シリコンの採用による使用材料の削減や大面
積、高速の成膜。 (2)半導体層の発電効率向上による単位発電量あたり
価格の低減。 (3)製品化工程のコストダウン。例えば、使用材料の
低価格化、使用量の削減や組立工程の簡略化。 (4)製品化工程に伴う損失の削減による単位発電量あ
たり価格の低減。(1) Reduction of manufacturing cost of semiconductor layers. For example, the use of amorphous silicon reduces the amount of materials used and enables large-area film formation at high speed. (2) The price per unit amount of power generation is reduced by improving the power generation efficiency of the semiconductor layer. (3) Cost reduction of the commercialization process. For example, lowering the price of materials used, reducing the amount used, and simplifying the assembly process. (4) Reduction of the price per unit of power generation by reducing the loss associated with the commercialization process.
【0008】また、上記(ロ)の長期信頼性を確保する
という観点からは、以下のようなアプローチがなされて
いる。Further, from the viewpoint of ensuring the above-mentioned (b) long-term reliability, the following approach is taken.
【0009】(5)防湿性の高い被覆材料(例えばガラ
ス等)を使用して、光起電力素子に有害な湿度の侵入を
抑制する。 (6)電極部材や端子部材の接続部分を高信頼性を有す
る方法にて形成する。(5) Use of a highly moisture-proof coating material (eg, glass) to suppress entry of harmful humidity into the photovoltaic element. (6) The connection portion of the electrode member and the terminal member is formed by a method having high reliability.
【0010】本発明の目的は、上記6項目のうち(3)
と(6)を改善することである。特に、製品化工程のコ
ストダウンを図るためには、工程そのものを省略可能と
する技術を開発することで、製造装置の削減をすること
が重要である。The object of the present invention is (3) out of the above 6 items.
And (6) are to be improved. In particular, in order to reduce the cost of the commercialization process, it is important to reduce the number of manufacturing devices by developing a technology that allows the process itself to be omitted.
【0011】また、電極部材や端子部材の接続部分を簡
素化することにより、上記コストダウンを実施できるば
かりか、接続部分の高信頼性化も達成し、初期投資に見
合うだけの長寿命を得ることも大切である。Further, by simplifying the connecting portion of the electrode member and the terminal member, not only the cost can be reduced but also the reliability of the connecting portion can be improved, and a long life corresponding to the initial investment can be obtained. Things are also important.
【0012】図4は、従来の光起電力素子を表す模式図
であり、光起電力素子を表(受光面)側からみたもので
ある。図4の光起電力素子は、該光起電力素子全体を支
える導電性基体と、該基体の表面上に順次形成された非
晶質半導体層、電極層、集電電極および取り出し端子と
から構成されている。上記の導電性基体はステンレス等
の金属材料であり、上記の半導体層は、最下層から順に
裏面反射層、p型半導体層、i型半導体層、n型半導体
層からなる。ここで、p型半導体層、i型半導体層、n
型半導体層は、CVD(Chemical Vaper Deposition)
法等の成膜方法にて積層形成され、光を効率よく取り込
み、かつ電力に効率よく変換できるように構成されてい
る。また、上記の電極層としては、反射防止手段と集電
手段を兼ねて酸化インジウム等の透明導電膜が形成して
ある。FIG. 4 is a schematic view showing a conventional photovoltaic element, which is the photovoltaic element viewed from the front (light receiving surface) side. The photovoltaic element of FIG. 4 is composed of a conductive substrate that supports the entire photovoltaic element, an amorphous semiconductor layer, an electrode layer, a collecting electrode, and a lead terminal that are sequentially formed on the surface of the substrate. Has been done. The conductive substrate is made of a metal material such as stainless steel, and the semiconductor layer is composed of a back surface reflection layer, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer in order from the bottom layer. Here, p-type semiconductor layer, i-type semiconductor layer, n
Type semiconductor layer is formed by CVD (Chemical Vaper Deposition)
The films are laminated by a film forming method such as a method so that light can be efficiently taken in and efficiently converted into electric power. Further, as the above-mentioned electrode layer, a transparent conductive film of indium oxide or the like is formed to serve as both antireflection means and current collecting means.
【0013】上記透明導電膜は、FeCl3,AlCl3
等を含むエッチングペーストをスクリーン印刷等の方法
で塗布後、加熱することによって形成される。また、エ
ッチングライン401は、該透明導電膜が線状に除去さ
れている部分である。上記透明導電膜の一部除去の目的
は、上記基板と上記透明導電膜との短絡による影響を上
記光起電力素子の有効受光範囲に及ぼさないことであ
る。例えば、このような短絡は、上記光起電力素子の外
周切断時に発生することがある。The transparent conductive film is made of FeCl 3 , AlCl 3
It is formed by applying an etching paste containing the above by a method such as screen printing and then heating. Further, the etching line 401 is a portion where the transparent conductive film is linearly removed. The purpose of partially removing the transparent conductive film is to prevent the influence of the short circuit between the substrate and the transparent conductive film from affecting the effective light receiving range of the photovoltaic element. For example, such a short circuit may occur when the outer circumference of the photovoltaic element is cut off.
【0014】また、上記光起電力素子の表面には、発電
された電力を効率よく集電するための集電電極402が
形成されている。該集電電極402は、銅等の低抵抗の
金属細線を芯材として用い、該金属細線の外周に接着を
目的とした導電性接着剤を塗布し乾燥した後、所定の長
さに切断、整列させてから、全体を熱圧着することによ
って上記の有効受光範囲表面に固定される。A collector electrode 402 for efficiently collecting the generated electric power is formed on the surface of the photovoltaic element. The collector electrode 402 uses a thin metal wire having a low resistance such as copper as a core material, and a conductive adhesive for adhesion is applied to the outer periphery of the thin metal wire and dried, and then cut into a predetermined length, After being aligned, they are fixed to the surface of the effective light receiving area by thermocompression bonding.
【0015】さて、上述の集電電極402にて集められ
た電力は、外部への取り出しを行うために両側に用意さ
れた取り出し端子403へと受け渡される。取り出し端
子403は、銅等の低抵抗の金属を素材とした箔体であ
って、絶縁部材404が最下層に設けられているため、
上記光起電力素子の表面から絶縁されている。The electric power collected by the above-mentioned current collecting electrode 402 is transferred to the takeout terminals 403 provided on both sides for taking out to the outside. The take-out terminal 403 is a foil body made of a low resistance metal such as copper, and the insulating member 404 is provided in the lowermost layer.
It is insulated from the surface of the photovoltaic element.
【0016】一方、上記集電電極402と上記取り出し
端子403との接続部分は、導電性接着剤405により
スポット状に塗布され、接合の信頼性を確保している。On the other hand, the connecting portion between the current collecting electrode 402 and the takeout terminal 403 is coated in a spot shape with a conductive adhesive 405 to ensure the reliability of bonding.
【0017】[0017]
【発明が解決しようとする課題】上述した従来の方法に
は、以下に示すような課題がある。The above-mentioned conventional method has the following problems.
【0018】(1)導電性接着剤をスポット状に塗布す
るための工程、上記導電性接着剤を硬化する熱処理工程
等が必要であり、作業回数が多いことから処理時間も長
くなる。また、これら工程を実現するための製造装置も
複雑化する。(1) A process for applying the conductive adhesive in spots, a heat treatment process for curing the conductive adhesive, and the like are required, and the processing time is long because the number of operations is large. Further, the manufacturing apparatus for realizing these steps is complicated.
【0019】(2)導電性接着剤の材料費がかかり、製
造コストがかさむ。(2) The material cost of the conductive adhesive is high and the manufacturing cost is high.
【0020】(3)スポット状に塗布された導電性接着
剤は、凸状の形態であるため表面被覆材の厚みを大きく
する必要が生じる。それ故、その材料費もかさむ。(3) Since the conductive adhesive applied in spots has a convex shape, it is necessary to increase the thickness of the surface coating material. Therefore, the material cost is also increased.
【0021】(4)導電性接着剤の塗布以前に上記光起
電力素子が受ける製造過程での熱プロセスによって、銅
等の素材で形成されている端子部材の表面が酸化等によ
って劣化し、上記導電性接着剤の塗布によっても充分低
い接続抵抗が得られにくい。また、同様の理由から信頼
性も低い。(4) The surface of the terminal member made of a material such as copper is deteriorated by oxidation due to the thermal process in the manufacturing process which the photovoltaic element receives before the application of the conductive adhesive, It is difficult to obtain a sufficiently low connection resistance even by applying a conductive adhesive. Further, the reliability is low for the same reason.
【0022】[0022]
【課題を解決するための手段】本発明の光起電力素子
は、光電変換をするための半導体層と該半導体層での発
生電力を集電するための電極を有する光起電力素子にお
いて、該電極は、予め少なくとも1種類の第1の導電性
接着剤を塗布し乾燥させた金属細線を圧着、熱圧着もし
くは加熱により該光起電力素子の受光面の表面上に固定
したものであり、該光起電力素子の表面上には該電極に
て集電された電力を素子外に送電するための端子部材を
有し、該電極は、該光起電力素子の受光面の表面上に固
定されるとともに該端子部材の表面上にも固定され、該
端子部材の少なくとも該電極が固定される部分には第2
の導電性接着剤が予め塗布されていることを特徴とす
る。The photovoltaic element of the present invention is a photovoltaic element having a semiconductor layer for photoelectric conversion and an electrode for collecting the electric power generated in the semiconductor layer. The electrode is one in which at least one kind of first conductive adhesive is applied and dried in advance and fixed to the surface of the light receiving surface of the photovoltaic element by pressure bonding, thermocompression bonding or heating. A terminal member for transmitting the electric power collected by the electrode to the outside of the photovoltaic element is provided on the surface of the photovoltaic element, and the electrode is fixed on the surface of the light receiving surface of the photovoltaic element. And also fixed on the surface of the terminal member, and at least a portion of the terminal member to which the electrode is fixed has a second
It is characterized in that the conductive adhesive is applied in advance.
【0023】[0023]
【作用】本発明では、電極を、予め少なくとも1種類の
第1の導電性接着剤を塗布し乾燥させた金属細線を圧着
もしくは熱圧着もしくは加熱により該光起電力の受光面
表面に固定したものとし、端子部材の少なくとも電極が
固定される部分に第2の導電性接着剤を予め塗布して設
けたため、以下の4項目が実現可能となった。In the present invention, the electrode is obtained by fixing at least one kind of the first conductive adhesive and drying the fine metal wire on the surface of the light receiving surface of the photovoltaic by pressure bonding, thermocompression bonding or heating. Since the second conductive adhesive is applied in advance to at least the portion of the terminal member where the electrodes are fixed, the following four items can be realized.
【0024】(1)従来必要であった上記電極を形成し
た後に導電性接着剤を塗布する工程が省略できる。その
結果、製品化工程のコストダウンを大幅に達成できる。
勿論、上記端子部材上に導電性接着剤を塗布する工程は
(オフラインで)必要であるが、上記工程は、広幅の材
料に一括して行えるため、上記半導体素子毎に行う必要
はなく、総工数は大幅に削減できる。また、接続方法が
熱圧着によるため、後続の熱処理工程も省略できる。(1) The step of applying a conductive adhesive after forming the above-mentioned electrodes, which is conventionally required, can be omitted. As a result, it is possible to significantly reduce the cost of the manufacturing process.
Needless to say, the step of applying the conductive adhesive on the terminal member is necessary (off-line), but since the step can be collectively performed on a wide material, it is not necessary to perform it for each semiconductor element. Man-hours can be significantly reduced. Further, since the connection method is thermocompression bonding, the subsequent heat treatment step can be omitted.
【0025】(2)上記方法によれば、導電性接着剤の
薄い膜で機能するため、従来より導電性接着剤の使用量
を削減できる。(2) According to the above method, since the thin film of the conductive adhesive functions, the amount of the conductive adhesive used can be reduced as compared with the conventional method.
【0026】(3)上記端子部材上に塗布された導電性
接着剤は上記電極より高くなることはないので、表面被
覆材の厚みを必要以上に増加させる必要はない。(3) Since the conductive adhesive applied on the terminal member is not higher than the electrode, it is not necessary to increase the thickness of the surface coating material more than necessary.
【0027】(4)上記方法によれば、従来例と同様に
接続面にAg等の腐食しにくい金属を含んだ導電性接着
剤を使用できるため、長期にわたる信頼性を確保でき
る。また同時に、銅等の酸化しやすい金属で形成されて
いる端子部材を全面に渡って保護できるため、製造工程
中の熱処理による酸化や、製造後の酸化による悪影響を
防止することができ、従来技術で得られている以上の信
頼性を確保できる。(4) According to the above method, since a conductive adhesive containing a metal such as Ag which is not easily corroded can be used for the connection surface as in the conventional example, long-term reliability can be secured. At the same time, since the terminal member formed of a metal such as copper that is easily oxidized can be protected over the entire surface, oxidation due to heat treatment during the manufacturing process and adverse effects due to oxidation after manufacturing can be prevented. You can secure more reliability than that obtained in.
【0028】また、本発明では、電極を、金属細線へ予
め少なくとも1種類の第1の導電性接着剤を塗布し乾燥
する工程と、該金属細線を圧着、熱圧着もしくは加熱に
より該光起電力素子の受光面の表面上に固定する工程
と、該光起電力素子の受光面の表面上に固定するととも
に、該光起電力素子の表面上にある該電極にて集電され
た電力を素子外に送電するための端子部材の表面上にも
固定する工程にて製造し、該端子部材を、少なくとも該
電極を固定する部分へ第2の導電性接着剤を予め塗布す
る工程にて製造することとしたため、以下の2項目が実
現可能となった。Further, in the present invention, the step of applying at least one kind of first conductive adhesive to the metal thin wire in advance and drying the electrode, and the photovoltaic power generation by pressure bonding, thermocompression bonding or heating of the metal thin wire. Fixing on the surface of the light receiving surface of the element, and fixing on the surface of the light receiving surface of the photovoltaic element, and collecting the power collected by the electrode on the surface of the photovoltaic element It is manufactured in the step of fixing also on the surface of the terminal member for transmitting electric power to the outside, and the terminal member is manufactured in the step of applying the second conductive adhesive in advance to at least the portion fixing the electrode. As a result, the following two items became feasible.
【0029】(1)上記電極を形成する工程とは切り離
して、上記端子部材上に導電性接着剤を塗布する工程を
オフラインで設けることが可能となった。その結果、単
位時間当たりの作業効率を上げることができるため、製
品化工程のコストダウンを図ることが可能となる。(1) The step of applying a conductive adhesive on the terminal member can be provided off-line, separately from the step of forming the electrode. As a result, the work efficiency per unit time can be increased, and the cost of the commercialization process can be reduced.
【0030】(2)上記方法によれば、個々の電極は、
同時に一括処理にて光起電力素子の受光面の表面上に固
定されるため、各接点部の固定度合いは均一化されるこ
とから、接点部に対する信頼性も高くなる。また、上記
方法により組立工程の簡略化も達成できるため、低コス
ト化も図れる。(2) According to the above method, the individual electrodes are
At the same time, since they are fixed on the surface of the light receiving surface of the photovoltaic element by batch processing, the fixing degree of each contact portion is made uniform, and the reliability of the contact portions is also increased. Further, since the assembling process can be simplified by the above method, the cost can be reduced.
【0031】以上のように、本発明によれば、光起電力
素子の製造工程を簡略化でき、製造装置を簡単にできる
とともに、導電性接着剤、表面被覆材等の使用材料を削
減できるので、製造コストを低減できる。また、初期投
資に見合う長期使用を可能とする高信頼性を実現でき
る。As described above, according to the present invention, the manufacturing process of the photovoltaic element can be simplified, the manufacturing apparatus can be simplified, and the materials used such as the conductive adhesive and the surface coating material can be reduced. The manufacturing cost can be reduced. In addition, high reliability that enables long-term use commensurate with initial investment can be realized.
【0032】[0032]
【実施態様例】以下に本発明の実施態様例を説明する。Embodiments Embodiments of the present invention will be described below.
【0033】(半導体層)半導体層は、非晶質半導体、
結晶半導体、化合物半導体等の光起電力を発生すること
が可能な材料であればよく、特に限定はされない。(Semiconductor Layer) The semiconductor layer is an amorphous semiconductor,
The material is not particularly limited as long as it is a material capable of generating a photoelectromotive force such as a crystalline semiconductor or a compound semiconductor.
【0034】(端子部材)端子部材としては、体積抵抗
率が低い金属を用いるのがよく、例えば銅、銀、アルミ
ニウム、ニッケル等が使用可能である。特に、銅を成分
とする金属を用いるのが好ましい。その理由は、低抵抗
な端子部材が安価に形成でき、送電に伴う損失を極限ま
で小さくできるため、少ない面積で大きな出力を得るこ
とができるとともに、製造コストを抑制できるためであ
る。(Terminal Member) As the terminal member, a metal having a low volume resistivity is preferably used, and for example, copper, silver, aluminum, nickel or the like can be used. In particular, it is preferable to use a metal containing copper as a component. The reason is that the low-resistance terminal member can be formed inexpensively, and the loss accompanying power transmission can be minimized, so that a large output can be obtained with a small area and the manufacturing cost can be suppressed.
【0035】(第1の導電性接着剤)第1の導電性接着
剤としては、カーボン、低抵抗金属、金属酸化物等を含
む導電性接着剤が使用可能である。特に、高分子材料に
カーボン粉体を添加したものを用いるのが好ましい。そ
の理由は、上記光起電力素子との間にオーミック接続を
形成でき、低い接触抵抗による低い抵抗損失を実現でき
るためである。(First Conductive Adhesive) As the first conductive adhesive, a conductive adhesive containing carbon, low resistance metal, metal oxide or the like can be used. Particularly, it is preferable to use a polymer material to which carbon powder is added. The reason is that an ohmic connection can be formed with the photovoltaic element, and low resistance loss due to low contact resistance can be realized.
【0036】(第2の導電性接着剤)第2の導電性接着
剤としては、カーボン、低抵抗金属、金属酸化物等を含
む導電性接着剤が使用可能である。特に、高分子樹脂に
銀を主成分にした粉体もしくは金属あるいは合金の表面
に銀をコートした粉体を添加したものを用いるのが好ま
しい。その理由は、低抵抗な接続が可能になるととも
に、酸化等の劣化を起こしにくい接続が形成できるため
である。また、上述したように、端子部材には銅を成分
とする金属を、第1の導電性接着剤にはカーボンを含む
高分子樹脂を用いた場合には、その接触界面において銅
表面の電気化学的酸化劣化(陽極酸化)が発生しやす
い。しかし、第2の導電性接着剤として、高分子樹脂に
銀を主成分にした粉体もしくは金属あるいは合金の表面
に銀をコートした粉体を添加したものを用いることによ
り、上記の銅表面における酸化劣化は、防止することが
できる。(Second Conductive Adhesive) As the second conductive adhesive, a conductive adhesive containing carbon, low resistance metal, metal oxide or the like can be used. Particularly, it is preferable to use a polymer resin to which a powder containing silver as a main component or a powder obtained by coating the surface of a metal or alloy with silver is added. The reason is that it is possible to form a connection that has low resistance and is resistant to deterioration such as oxidation. Further, as described above, when a metal containing copper as a component is used for the terminal member and a polymer resin containing carbon is used for the first conductive adhesive, the electrochemical reaction of the copper surface at the contact interface is performed. Oxidative deterioration (anodic oxidation) is likely to occur. However, by using as the second conductive adhesive a powder containing silver as a main component or a powder obtained by coating the surface of metal or alloy with silver is used as the second conductive adhesive, Oxidative deterioration can be prevented.
【0037】[0037]
【実施例】以下本発明の実施例を、図1〜図3を参照し
て説明する。Embodiments of the present invention will be described below with reference to FIGS.
【0038】(実施例1)本例は、第1の導電性接着剤
としてウレタン樹脂にカーボン粉体を分散させたもの
を、第2の導電性接着剤としてエポキシ樹脂に銀粉体を
分散させたものを用いた場合であり、図1にその光起電
力素子の外観を示す。(Embodiment 1) In this example, a carbon powder is dispersed in a urethane resin as a first conductive adhesive, and a silver powder is dispersed in an epoxy resin as a second conductive adhesive. FIG. 1 shows the appearance of the photovoltaic element.
【0039】図中の光起電力素子101は、基体、光電
変換の役割を担う非晶質半導体、電極層としての透明導
電膜から構成されている。エッチングライン102は該
透明導電膜に刻まれた線状の凹部であり、集電電極10
3は該光起電力素子で発電された電力を集電するための
電極である。端子部材104は、該集電電極が最終的に
電力を受け渡しするため、隣接する光起電力素子と電気
的接続をするとき、もしくは該光起電力素子の外部へ電
力を取り出すために使われる。また、絶縁部材105
は、該端子部材104を該光起電力素子の表面から電気
的に絶縁するために設けた。さらに、該光起電力素子の
他方の極をなす端子部材106は、接点106aにおい
て、該光起電力素子の導電性基板と機械的および電気的
に接続している。The photovoltaic element 101 in the figure comprises a substrate, an amorphous semiconductor which plays a role of photoelectric conversion, and a transparent conductive film as an electrode layer. The etching line 102 is a linear recess cut in the transparent conductive film,
Reference numeral 3 is an electrode for collecting electric power generated by the photovoltaic element. The terminal member 104 is used for making electrical connection with an adjacent photovoltaic element or for extracting electric power to the outside of the photovoltaic element, because the current collecting electrode finally delivers the electric power. In addition, the insulating member 105
Are provided to electrically insulate the terminal member 104 from the surface of the photovoltaic element. Further, the terminal member 106 forming the other pole of the photovoltaic element is mechanically and electrically connected to the conductive substrate of the photovoltaic element at the contact 106a.
【0040】上記のエッチングライン102は、前記従
来技術の項で述べた通り、上記光起電力素子の外周切断
時に発生する上記基体と上記透明導電膜との短絡の影響
を、該光起電力素子の有効受光範囲に及ぼさない目的で
形成されている。該エッチングライン102は、例えば
透明導電膜の表面上にFeCl3,AlCl3等を含むエ
ッチングペーストをスクリーン印刷等の方法で塗布し、
加熱することによって該透明導電膜を除去して形成し
た。As described in the section of the prior art, the etching line 102 is affected by the short circuit between the substrate and the transparent conductive film, which occurs when the outer circumference of the photovoltaic element is cut off. It is formed for the purpose of not reaching the effective light receiving range of. The etching line 102 is formed by applying an etching paste containing FeCl 3 , AlCl 3 or the like on the surface of a transparent conductive film by a method such as screen printing,
It was formed by removing the transparent conductive film by heating.
【0041】上記集電電極103は、直径100μmの
銅線の外周に後述の第1の導電性接着剤を厚み約15μ
mで塗布し乾燥したものであり、図1に示した配置で整
列させた後、加熱と加圧を加えることにより該光起電力
素子の表面および該端子部材104に固定された。The collector electrode 103 has a first conductive adhesive, which will be described later, on the outer periphery of a copper wire having a diameter of 100 μm and a thickness of about 15 μm.
It was applied and dried at m, and after being aligned in the arrangement shown in FIG. 1, it was fixed to the surface of the photovoltaic element and the terminal member 104 by applying heat and pressure.
【0042】上記第1の導電性接着剤は、ウレタン樹脂
中に粒径が数千Åのカーボン粉体を重量比35%で添加
し、シェイカーで充分な時間をかけて分散させたものを
用いた。The first conductive adhesive used is one in which carbon powder having a particle diameter of several thousand liters is added to urethane resin at a weight ratio of 35% and dispersed by a shaker for a sufficient time. I was there.
【0043】図2は、図1におけるX−X’部分の断面
図であり、図3は、図1におけるY−Y’部分の断面図
である。FIG. 2 is a sectional view taken along the line XX 'in FIG. 1, and FIG. 3 is a sectional view taken along the line YY' in FIG.
【0044】図2に於いて、基体201は光起電力素子
全体を支える厚み125μmのステンレス板である。該
基板201の表面上には裏面反射層が、該裏面反射層の
表面上には非晶質シリコン層からなる半導体層202が
形成してある。該裏面反射層は、スパッタ法によりA
l,ZnOをそれぞれ数千Åの厚みにて順次堆積して形
成される。また、非晶質シリコン層からなる半導体層2
02は、プラズマCVD法により、基板側よりn型、i
型、p型、n型、i型、p型の各層を順次堆積して形成
した。厚みはそれぞれ150Å、4000Å、100
Å、100Å、800Å、100Åであった。また、透
明導電膜203は、電極層として機能する膜である。抵
抗加熱法にてO2雰囲気中でInを蒸着することによ
り、厚み700Åの酸化インジウム薄膜が形成された。In FIG. 2, the base 201 is a stainless steel plate having a thickness of 125 μm that supports the entire photovoltaic element. A back surface reflection layer is formed on the surface of the substrate 201, and a semiconductor layer 202 made of an amorphous silicon layer is formed on the surface of the back surface reflection layer. The back surface reflection layer is formed by sputtering method A
It is formed by sequentially depositing l and ZnO each with a thickness of several thousand Å. In addition, the semiconductor layer 2 made of an amorphous silicon layer
02 is an n-type, i
And p-type, n-type, i-type, and p-type layers were sequentially deposited. Thickness is 150Å, 4000Å, 100 respectively
It was Å, 100 Å, 800 Å, 100 Å. The transparent conductive film 203 is a film that functions as an electrode layer. By depositing In in an O 2 atmosphere by a resistance heating method, an indium oxide thin film having a thickness of 700 Å was formed.
【0045】その後、前記透明導電膜20Зの表面上に
は、前記絶縁部材105が貼付され、さらに該絶縁部材
105の表面上には、前記端子部材104が設けられ
る。該絶縁部材105としては、裏面に粘着加工された
厚み数十μm程度のポリエステルテープを用いた。ま
た、該端子部材としては、裏面に粘着加工を施した厚み
125μm、幅5.5mmの銅箔を用いた。ここで、該
端子部材の表面には、エポキシ樹脂中に粒径1〜3μm
程度の銀粉体を分散させた上記第2の導電性接着剤20
4を厚み約10μmが塗布してあり、上記エポキシ樹脂
の硬化開始温度(約150℃)より充分低い80℃にて
乾燥させてある。After that, the insulating member 105 is attached on the surface of the transparent conductive film 20. Further, the terminal member 104 is provided on the surface of the insulating member 105. As the insulating member 105, a polyester tape having a thickness of about several tens of μm, which is adhesively processed on the back surface, was used. Moreover, as the terminal member, a copper foil having a thickness of 125 μm and a width of 5.5 mm, the back surface of which was subjected to adhesive processing, was used. Here, the surface of the terminal member has a particle size of 1 to 3 μm in the epoxy resin.
The second conductive adhesive 20 in which about a silver powder is dispersed
4 is applied to a thickness of about 10 μm and dried at 80 ° C., which is sufficiently lower than the curing start temperature (about 150 ° C.) of the epoxy resin.
【0046】上記の塗布工程および乾燥工程は、上記端
子部材104を500mm程度の広幅にて粘着処理を行
う際に同時に行い、そののち所定幅(5.5mm)にス
リット、巻き取りを行ってリールを作製する。上記光起
電力素子の製造工程では、上記リールより所定の長さを
切り取り、既に記載した位置に貼付して使用した。The above-mentioned coating step and drying step are carried out at the same time when the terminal member 104 is subjected to an adhesive treatment with a width of about 500 mm, and then slit and wound into a predetermined width (5.5 mm) and reeled. To make. In the manufacturing process of the photovoltaic element, a predetermined length was cut from the reel and attached to the position already described before use.
【0047】一方、上記透明導電膜203の表面および
上記端子部材105上の導電性接着剤の表面に、前述の
集電電極103を前記熱圧着工程によって連続的に形成
して上記透明導電膜203と上記導電性部材103との
電気的接続を成立させた。On the other hand, the transparent conductive film 203 is formed by continuously forming the collector electrode 103 on the surface of the transparent conductive film 203 and the surface of the conductive adhesive on the terminal member 105 by the thermocompression bonding process. And electrical connection with the conductive member 103 were established.
【0048】上記集電電極103は従来技術と同様に、
直径100μmの銅線205の外周に膜厚約15μmの
第1の導電性接着剤206を塗布し、上記導電性接着剤
206の硬化開始温度150℃より充分低い温度80℃
にて乾燥させ、所定の長さだけボビンに巻き上げたもの
を使用した。上記第1の導電性接着剤206はウレタン
樹脂中に粒径が数千Åのカーボン粉体を重量比35%で
分散させたものを用いた。The collector electrode 103 has the same structure as in the prior art.
A first conductive adhesive 206 having a film thickness of about 15 μm is applied to the outer circumference of a copper wire 205 having a diameter of 100 μm, and the temperature is sufficiently lower than the curing start temperature 150 ° C. of the conductive adhesive 206 of 80 ° C.
The product was dried in, and wound on a bobbin for a predetermined length. The first conductive adhesive 206 used was a urethane resin in which carbon powder having a particle diameter of several thousand liters was dispersed at a weight ratio of 35%.
【0049】さて、上記集電電極を所定の長さだけボビ
ンより切り出し、図1に示すような位置に適切ピッチで
整列させた後、加熱するとともに全体を真空プレスで熱
圧着した。このとき、上記加熱温度は上記第1の導電性
接着剤206、第2の導電性接着剤204の軟化点以上
とするとともに、上記2つの導電性接着剤の硬化温度以
上とした。具体的には150℃にて2分間の加熱と、真
空吸引法による加圧(1kgf/cm2)を加えた。そ
れによって、上記2つの導電性接着剤は、図3に示され
るように互いに溶けあった後硬化し、低抵抗で信頼性の
高い機械的および電気的接合を形成することができた。Then, the current collecting electrodes were cut out from the bobbin by a predetermined length, aligned at the positions shown in FIG. 1 at an appropriate pitch, and then heated and thermocompression bonded to the whole by a vacuum press. At this time, the heating temperature was set to be equal to or higher than the softening point of the first conductive adhesive 206 and the second conductive adhesive 204, and equal to or higher than the curing temperature of the two conductive adhesives. Specifically, heating at 150 ° C. for 2 minutes and pressurization (1 kgf / cm 2 ) by a vacuum suction method were applied. As a result, the two conductive adhesives were able to form a low resistance and reliable mechanical and electrical bond after being melted and cured as shown in FIG.
【0050】また、図2に示すように、他方の極の端子
部材106は、エッチングライン102よりも外側の領
域にて、上記透明導電膜203と半導体層202を貫通
して導電性基体201と、接点106aにおいて接合さ
れている。該接点106aの接合方法としては、超音波
溶接、抵抗溶接、アーク溶接等の方法が取りうるが、本
実施例では超音波溶接を用いた。Further, as shown in FIG. 2, the terminal member 106 of the other pole penetrates the transparent conductive film 203 and the semiconductor layer 202 in the region outside the etching line 102 to form the conductive substrate 201. , Contact points 106a are joined together. As a method of joining the contacts 106a, ultrasonic welding, resistance welding, arc welding, or the like can be used, but ultrasonic welding was used in this embodiment.
【0051】光起電力素子を上述の構成としたことによ
り、上記集電電極103は、上記半導体層202にて発
生した電力を光起電力素子表面のあらゆる場所から上記
透明導電膜203を通して集電し、上記端子部材104
に効率よく搬送することが可能となった。By configuring the photovoltaic element as described above, the collector electrode 103 collects the electric power generated in the semiconductor layer 202 from any place on the surface of the photovoltaic element through the transparent conductive film 203. Then, the terminal member 104
It has become possible to efficiently transport the material.
【0052】さて、表1は、従来の光起電力素子Aと本
例の光起電力素子Bに対して、太陽電池として必要な電
気的初期特性を測定した結果である。Table 1 shows the results of measuring the electrical initial characteristics required for a solar cell for the conventional photovoltaic element A and the photovoltaic element B of this example.
【0053】[0053]
【表1】 従来の光起電力素子Aにおいては、実効効率ηが7.7
0%、直列抵抗が28.3Ωcm2であるのに対して、
本例の光起電力素子Bにおいては、実効効率ηが 7.
82%、直列抵抗が25.1Ωcm2であった。実効効
率は高いほど、直列抵抗は低いほど好ましいことから、
初期の素子特性としては、本例の光起電力素子Bの方が
優れていることがわかった。この事から、本例にて示し
た組み合わせの2つの導電性接着剤を持つ光起電力素子
は、初期の素子特性のついては問題ないと判断される。[Table 1] In the conventional photovoltaic device A, the effective efficiency η is 7.7.
0%, series resistance is 28.3 Ωcm 2 , while
In the photovoltaic device B of this example, the effective efficiency η is 7.
The resistance was 82% and the series resistance was 25.1 Ωcm 2 . The higher the effective efficiency and the lower the series resistance, the more preferable,
It was found that the photovoltaic element B of this example was superior in initial element characteristics. From this, it is judged that the photovoltaic element having the two conductive adhesives in the combination shown in this example has no problem with the initial element characteristics.
【0054】また、上記の各素子に対して、米国SER
I規格等に提示されているような温湿度サイクル試験を
施した。両方の素子とも、規格である20サイクル経過
後では、劣化率はほぼ0で差異は見られなかった。しか
し、規格を大きく上回る80サイクル経過後では、従来
の光起電力素子Aの劣化率が3.6%であるのに対し
て、本例の光起電力素子Bの劣化率は1.3%であり、
劣化率は大幅に改善することができた。この事から、本
例にて示した組み合わせの2つの導電性接着剤を持つ光
起電力素子は、長期信頼性も十分あることが確認でき
た。For each of the above elements, the US SER
A temperature / humidity cycle test as presented in the I standard etc. was performed. In both devices, the deterioration rate was almost zero after 20 cycles, which was the standard, and no difference was observed. However, after 80 cycles, which greatly exceeds the standard, the deterioration rate of the conventional photovoltaic element A is 3.6%, whereas the deterioration rate of the photovoltaic element B of this example is 1.3%. And
The deterioration rate could be improved significantly. From this, it has been confirmed that the photovoltaic element having the two conductive adhesives in the combination shown in this example has sufficient long-term reliability.
【0055】尚、本例では集電電極の芯材として銅を用
いたが、本発明の意図を損なわない範囲の体積抵抗率を
有する金属であればよく、例えば銀、ニッケル等の金属
細線を用いることは構わない。In this example, copper was used as the core material of the current collecting electrode, but any metal having a volume resistivity within the range not impairing the intention of the present invention may be used. For example, a thin metal wire such as silver or nickel may be used. You can use it.
【0056】また、本例では上記銅線の外周に一種類の
導電性接着剤を塗布したが、これが2またはそれ以上の
導電性接着剤を重ねて塗布したものであってもよい。In this example, one kind of conductive adhesive is applied to the outer circumference of the copper wire, but two or more kinds of conductive adhesive may be applied in layers.
【0057】(実施例2)本例では、実施例1における
第1の導電性接着剤の材料と第2の導電性接着剤の材料
を代えて、光起電力素子Cを形成した。他の点は実施例
1と同様とした。Example 2 In this example, the photovoltaic element C was formed by replacing the material of the first conductive adhesive and the material of the second conductive adhesive in Example 1. The other points were the same as in Example 1.
【0058】第1の導電性接着剤としては、アクリル系
の熱可塑性樹脂中に、粒径数百nmのカーボンブラック
を重量比30%で添加し、さらに粘度調整のためにME
Kを少量添加したものをシェイカーで充分な時間分散さ
せたものを用いた。該第1の導電性接着剤を直径100
μmの銅ワイヤーの周辺に塗布し、80℃の温度で乾燥
することにより、集電電極は形成された。As the first conductive adhesive, 30% by weight of carbon black having a particle diameter of several hundred nm was added to an acrylic thermoplastic resin, and ME was added for viscosity adjustment.
A small amount of K was added and dispersed by a shaker for a sufficient time. The first conductive adhesive has a diameter of 100
A current collecting electrode was formed by applying it around a copper wire of μm and drying it at a temperature of 80 ° C.
【0059】また、第2の導電性接着剤としては、第1
の導電性接着剤で用いたのと同様のアクリル系熱可塑性
樹脂中に、粒径5μm程度の銀の粉末を分散させた銀ペ
ーストを用いた。該第2の導電性接着剤は、端子部材で
ある銅箔表面に100μmの厚みで塗布した後、80℃
で乾燥させた。The second conductive adhesive is the first
A silver paste in which a silver powder having a particle size of about 5 μm was dispersed in the same acrylic thermoplastic resin as that used in the conductive adhesive of was used. The second conductive adhesive is applied at a thickness of 100 μm on the surface of the copper foil, which is a terminal member, and then at 80 ° C.
Dried.
【0060】上記集電電極は、熱圧着過程により電極形
成面と、第2の導電性接着剤が塗布された端子部材に接
続される。その際、1kgf/cm2の圧力を加えなが
ら150℃で2分間加熱したところ、端子部材の部分で
はアクリル樹脂どうしが互いに溶けあうように硬化し、
低抵抗で信頼性の高い機械的および電気的接合を形成す
ることができた。The current collecting electrode is connected to the electrode forming surface and the terminal member coated with the second conductive adhesive by a thermocompression bonding process. At that time, when it was heated at 150 ° C. for 2 minutes while applying a pressure of 1 kgf / cm 2 , the acrylic resin in the terminal member portion was cured so as to melt each other,
It was possible to form low resistance and reliable mechanical and electrical junctions.
【0061】本例にて示した組み合わせの2つの導電性
接着剤を持つ光起電力素子Cにおいては、初期で実効効
率ηが7.90%、直列抵抗が24.1Ωcm2という
結果が得られた(表1)。すなわち、第1の導電性接着
剤を、アクリル系の熱可塑性樹脂中にカーボンブラック
を添加したものとし、第2の導電性接着剤を、アクリル
系熱可塑性樹脂中に銀の粉末を分散させた銀ペーストに
代えても、初期の素子特性については問題ないと判断さ
れる。また、本例の光起電力素子Cに対して、実施例1
と同様の温湿度サイクル試験をした結果、80サイクル
経過後の劣化率は0.8%に抑えられた。従って、長期
信頼性という面から、非常に優れた接続が達成できたと
判断した。In the photovoltaic device C having the two conductive adhesives in the combination shown in this example, the initial efficiency η was 7.90% and the series resistance was 24.1 Ωcm 2. (Table 1). That is, the first conductive adhesive was carbon black added to an acrylic thermoplastic resin, and the second conductive adhesive was a silver powder dispersed in the acrylic thermoplastic resin. It is judged that there is no problem with the initial device characteristics even if the silver paste is replaced. In addition, for the photovoltaic element C of this example, Example 1
As a result of performing the same temperature-humidity cycle test as described above, the deterioration rate after 80 cycles was suppressed to 0.8%. Therefore, in terms of long-term reliability, it was determined that a very good connection could be achieved.
【0062】(実施例3)本例では、実施例1における
第1の導電性接着剤の材料と第2の導電性接着剤の材料
を代えて、光起電力素子Dを形成した。他の点は実施例
1と同様とした。Example 3 In this example, the photovoltaic element D was formed by replacing the material of the first conductive adhesive and the material of the second conductive adhesive in Example 1. The other points were the same as in Example 1.
【0063】第1の導電性接着剤としては、アクリル系
の熱可塑性樹脂中に、粒径数百nmのカーボンブラック
を重量比30%で添加し、さらに粘度調整のためにME
Kを少量添加したものをシェイカーで充分な時間分散さ
せたものを用いた。また、該第一の導電性接着剤とは別
に、エポキシ樹脂中に粒径数百nmのカーボンの微粒子
を重量比35%の割合で分散させたカーボンペーストを
用意した。As the first conductive adhesive, 30% by weight of carbon black having a particle diameter of several hundreds nm was added to an acrylic thermoplastic resin, and ME was added to adjust the viscosity.
A small amount of K was added and dispersed by a shaker for a sufficient time. Separately from the first conductive adhesive, a carbon paste was prepared in which fine particles of carbon having a particle diameter of several hundred nm were dispersed in an epoxy resin at a ratio of 35% by weight.
【0064】まず、直径100μmの銅ワイヤーの周辺
に上記エポキシ系カーボンペーストを5μmの厚みで塗
布、150℃で硬化した後、前記第1の導電性接着剤を
直径100μmの銅ワイヤーの周辺に10μmの厚みで
塗布し、80℃の温度で乾燥することにより、集電電極
は形成された。ここで、上記エポキシ系カーボンペース
トを、銅ワイヤーと第1の導電性接着剤との間に設けた
理由は、銅線からの金属イオンマイグレーションを防止
するためである。First, the above epoxy-based carbon paste was applied to the periphery of a copper wire having a diameter of 100 μm to a thickness of 5 μm and cured at 150 ° C., and then the first conductive adhesive was applied to the periphery of a copper wire having a diameter of 100 μm to 10 μm. A current collecting electrode was formed by applying a coating solution having a thickness of 80 ° C. and drying at a temperature of 80 ° C. Here, the reason why the epoxy-based carbon paste is provided between the copper wire and the first conductive adhesive is to prevent metal ion migration from the copper wire.
【0065】また、第2の導電性接着剤としては、第1
の導電性接着剤で用いたのと同様のアクリル系熱可塑性
樹脂中に、粒径5μm程度の銀の粉末を分散させた銀ペ
ーストを用いた。該第2の導電性接着剤は、端子部材で
ある銅箔表面に100μmの厚みで塗布した後、80℃
で乾燥させた。As the second conductive adhesive, the first
A silver paste in which a silver powder having a particle size of about 5 μm was dispersed in the same acrylic thermoplastic resin as that used in the conductive adhesive of was used. The second conductive adhesive is applied at a thickness of 100 μm on the surface of the copper foil, which is a terminal member, and then at 80 ° C.
Dried.
【0066】上記集電電極は、熱圧着過程により電極形
成面と、第2の導電性接着剤が塗布された端子部材に接
続される。その際、1kgf/cm2の圧力を加えなが
ら150℃で2分間加熱したところ、端子部材の部分で
はアクリル樹脂どうしが互いに溶けあうように硬化し、
低抵抗で信頼性の高い機械的および電気的接合を形成す
ることができた。The current collecting electrode is connected to the electrode formation surface and the terminal member coated with the second conductive adhesive by a thermocompression bonding process. At that time, when it was heated at 150 ° C. for 2 minutes while applying a pressure of 1 kgf / cm 2 , the acrylic resin in the terminal member portion was cured so as to melt each other
It was possible to form low resistance and reliable mechanical and electrical junctions.
【0067】本例にて示した組み合わせの2つの導電性
接着剤を持つ光起電力素子Dにおいては、初期で実効効
率ηが7.88%、直列抵抗が24.6Ωcm2という
結果が得られた(表1)。すなわち、第1の導電性接着
剤を、アクリル系の熱可塑性樹脂中にカーボンブラック
を添加したものとし、第2の導電性接着剤を、アクリル
系熱可塑性樹脂中に銀の粉末を分散させた銀ペーストに
代えて、かつエポキシ系カーボンペーストを、銅ワイヤ
ーと第1の導電性接着剤との間に設けた場合でも、初期
の素子特性については問題ないと判断される。In the photovoltaic device D having the two conductive adhesives in the combination shown in this example, the result that the effective efficiency η is 7.88% and the series resistance is 24.6 Ωcm 2 is obtained at the initial stage. (Table 1). That is, the first conductive adhesive was carbon black added to an acrylic thermoplastic resin, and the second conductive adhesive was a silver powder dispersed in the acrylic thermoplastic resin. Even when an epoxy-based carbon paste is provided between the copper wire and the first conductive adhesive instead of the silver paste, it is determined that there is no problem with the initial element characteristics.
【0068】また、本例の光起電力素子Dに対して、実
施例1と同様の温湿度サイクル試験をした結果、80サ
イクル経過後の劣化率は0.7%に抑えられた。従っ
て、長期信頼性という面から、非常に優れた接続が達成
できた。The photovoltaic device D of this example was subjected to the same temperature and humidity cycle test as in Example 1, and as a result, the deterioration rate after 80 cycles was suppressed to 0.7%. Therefore, in terms of long-term reliability, a very excellent connection could be achieved.
【0069】[0069]
(請求項1)以上説明したように、請求項1に係る発明
によれば、次に示すような効果を得ることができた。(Claim 1) As described above, according to the invention of claim 1, the following effects can be obtained.
【0070】(1)従来必要であった上記電極を形成し
た後に導電性接着剤を塗布する工程が省略できる。その
結果、製品化工程のコストダウンを大幅に達成できる。
勿論、上記端子部材上に導電性接着剤を塗布する工程は
(オフラインで)必要であるが、上記工程は、広幅の材
料に一括して行えるため、上記半導体素子毎に行う必要
はなく、総工数は大幅に削減できる。また、接続方法が
熱圧着によるため、後続の熱処理工程も省略できる。(1) It is possible to omit the step of applying a conductive adhesive after forming the above-mentioned electrodes, which is conventionally required. As a result, it is possible to significantly reduce the cost of the manufacturing process.
Needless to say, the step of applying the conductive adhesive on the terminal member is necessary (off-line), but since the step can be collectively performed on a wide material, it is not necessary to perform it for each semiconductor element. Man-hours can be significantly reduced. Further, since the connection method is thermocompression bonding, the subsequent heat treatment step can be omitted.
【0071】(2)上記方法によれば、導電性接着剤の
薄い膜で機能するため、従来より導電性接着剤の使用量
を削減できる。(2) According to the above method, since the thin film of the conductive adhesive functions, the amount of the conductive adhesive used can be reduced as compared with the conventional method.
【0072】(3)上記端子部材上に塗布された導電性
接着剤は上記電極より高くなることはないので、表面被
覆材の厚みを必要以上に増加させる必要はない。(3) Since the conductive adhesive applied on the terminal member does not become higher than the electrode, it is not necessary to increase the thickness of the surface coating material more than necessary.
【0073】(4)上記方法によれば、従来例と同様に
接続面にAg等の腐食しにくい金属を含んだ導電性接着
剤を使用できるため、長期にわたる信頼性を確保でき
る。また同時に、銅等の酸化しやすい金属で形成されて
いる端子部材を全面にわたって保護できるため、製造工
程中の熱処理による酸化や、製造後の酸化による悪影響
を防止することができ、従来技術で得られている以上の
信頼性を確保できる。(4) According to the above method, since a conductive adhesive containing a metal such as Ag which is not easily corroded can be used for the connection surface as in the conventional example, long-term reliability can be secured. At the same time, the entire surface of the terminal member formed of a metal such as copper that easily oxidizes can be protected, so that it is possible to prevent the adverse effects of oxidation due to heat treatment during the manufacturing process and oxidation after manufacturing. You can secure more reliability than you can expect.
【0074】(請求項5)請求項5に係る発明によれ
ば、次に示すような効果を得ることができた。(Claim 5) According to the invention of claim 5, the following effects can be obtained.
【0075】(1)上記電極を形成する工程とは切り離
して、上記端子部材上に導電性接着剤を塗布する工程を
オフラインで設けることが可能となった。その結果、単
位時間当たりの作業効率を上げることができるため、製
品化工程のコストダウンを図ることが可能となる。(1) The step of applying a conductive adhesive on the terminal member can be provided off-line, separately from the step of forming the electrode. As a result, the work efficiency per unit time can be increased, and the cost of the commercialization process can be reduced.
【0076】(2)上記方法によれば、個々の電極は、
同時に一括処理にて光起電力素子の受光面の表面上に固
定されるため、各接点部の固定度合いは均一化されるこ
とから、接点部に対する信頼性も高くなる。また、上記
方法により組立工程の簡略化も達成できるため、低コス
ト化も図れる。(2) According to the above method, the individual electrodes are
At the same time, since they are fixed on the surface of the light receiving surface of the photovoltaic element by batch processing, the fixing degree of each contact portion is made uniform, and the reliability of the contact portions is also increased. Further, since the assembling process can be simplified by the above method, the cost can be reduced.
【0077】以上のように、本発明によれば、光起電力
素子の製造工程を簡略化でき製造装置を簡単にできると
ともに、導電性接着剤、表面被覆材等の使用材料を削減
でき、製造コストを低減できる。また、初期投資に見合
う長期使用を可能とする高信頼性を実現できる。As described above, according to the present invention, the manufacturing process of the photovoltaic element can be simplified, the manufacturing apparatus can be simplified, and the materials used such as the conductive adhesive and the surface coating material can be reduced. Cost can be reduced. In addition, high reliability that enables long-term use commensurate with initial investment can be realized.
【図1】本実施例に係る光起電力素子の外観を示す模式
図である。FIG. 1 is a schematic view showing the appearance of a photovoltaic element according to this example.
【図2】図1におけるX−X’部分の断面を示す模式図
である。FIG. 2 is a schematic diagram showing a cross section of a portion XX ′ in FIG.
【図3】図1におけるY−Y’部分の断面を示す模式図
である。FIG. 3 is a schematic view showing a cross section of a portion YY ′ in FIG.
【図4】従来例に係る光起電力素子の外観を示す模式図
である。FIG. 4 is a schematic view showing an appearance of a photovoltaic element according to a conventional example.
101 光起電力素子、 102、401 エッチングライン、 103、402 集電電極、 104、403 端子部材、 105、404 絶縁部材、 106 他方の極の端子部材、 106a 他方の極の端子部材の接合点、 201 基体、 202 半導体層、 203 透明導電膜、 204 第2の導電性接着剤、、 205 銅線、 206 第1の導電性接着剤、 405 導電性接着剤。 101 photovoltaic element, 102, 401 etching line, 103, 402 current collecting electrode, 104, 403 terminal member, 105, 404 insulating member, 106 other pole terminal member, 106a junction point of other pole terminal member, 201 substrate, 202 semiconductor layer, 203 transparent conductive film, 204 second conductive adhesive, 205 copper wire, 206 first conductive adhesive, 405 conductive adhesive
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 健司 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kenji Takada 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (5)
体層での発生電力を集電するための電極を有する光起電
力素子において、該電極は、予め少なくとも1種類の第
1の導電性接着剤を塗布し乾燥させた金属細線を圧着、
熱圧着もしくは加熱により該光起電力素子の受光面の表
面上に固定したものであり、該光起電力素子の表面上に
は該電極にて集電された電力を素子外に送電するための
端子部材を有し、該電極は、該光起電力素子の受光面の
表面上に固定されるとともに該端子部材の表面上にも固
定され、該端子部材の少なくとも該電極が固定される部
分には第2の導電性接着剤が予め塗布されていることを
特徴とする光起電力素子。1. A photovoltaic element having a semiconductor layer for photoelectric conversion and an electrode for collecting electric power generated in the semiconductor layer, wherein the electrode is at least one kind of first conductive material in advance. Adhesive applied and dried metal fine wire is crimped,
It is fixed on the surface of the light receiving surface of the photovoltaic element by thermocompression bonding or heating, and is for transmitting the electric power collected by the electrode to the outside of the element on the surface of the photovoltaic element. A terminal member, the electrode is fixed on the surface of the light-receiving surface of the photovoltaic element and also fixed on the surface of the terminal member, and at least a portion of the terminal member where the electrode is fixed. Is a second conductive adhesive applied in advance, and is a photovoltaic element.
する金属からなることを特徴とする請求項1に記載の光
起電力素子。2. The photovoltaic element according to claim 1, wherein the terminal member is made of a metal containing at least copper as a component.
にカーボン粉体を添加したものからなることを特徴とす
る請求項1に記載の光起電力素子。3. The photovoltaic element according to claim 1, wherein the first conductive adhesive is formed by adding carbon powder to a polymer resin.
に銀を主成分にした粉体もしくは金属あるいは合金の表
面に銀をコートした粉体を添加したものからなることを
特徴とする請求項1に記載の光起電力素子。4. The second conductive adhesive is made of a polymer resin to which a powder containing silver as a main component or a powder obtained by coating the surface of a metal or alloy with silver is added. The photovoltaic element according to claim 1.
体層での発生電力を集電するための電極を有する光起電
力素子の製造方法において、該電極は、金属細線へ予め
少なくとも1種類の第1の導電性接着剤を塗布し乾燥す
る工程と、該金属細線を圧着、熱圧着もしくは加熱によ
り該光起電力素子の受光面の表面上に固定する工程と、
該光起電力素子の受光面の表面上に固定するとともに、
該光起電力素子の表面上にある該電極にて集電された電
力を素子外に送電するための端子部材の表面上にも固定
する工程とを少なくとも有し、該端子部材は、少なくと
も該電極を固定する部分へ第2の導電性接着剤を予め塗
布する工程を有することを特徴とする光起電力素子の製
造方法。5. A method of manufacturing a photovoltaic element having a semiconductor layer for photoelectric conversion and an electrode for collecting power generated in the semiconductor layer, wherein at least one kind of the electrode is preliminarily formed on a thin metal wire. A step of applying and drying the first conductive adhesive, and a step of fixing the metal thin wire on the surface of the light receiving surface of the photovoltaic element by pressure bonding, thermocompression bonding or heating.
While fixed on the surface of the light receiving surface of the photovoltaic element,
At least fixing on the surface of the terminal member for transmitting the electric power collected by the electrode on the surface of the photovoltaic element to the outside of the element, the terminal member being at least the A method of manufacturing a photovoltaic element, comprising a step of previously applying a second conductive adhesive to a portion for fixing an electrode.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6108113A JPH07321353A (en) | 1994-05-23 | 1994-05-23 | Photovoltaic element and manufacture |
AU20134/95A AU695669B2 (en) | 1994-05-19 | 1995-05-18 | Photovoltaic element, electrode structure thereof, and process for producing the same |
EP95107622A EP0684652B1 (en) | 1994-05-19 | 1995-05-18 | Photovoltaic element, electrode structure thereof, and process for producing the same |
DE69534582T DE69534582T2 (en) | 1994-05-19 | 1995-05-18 | Photovoltaic device, electrode structure thereof and manufacturing method |
CN95107160A CN1088262C (en) | 1994-05-19 | 1995-05-19 | Photovoltaic element, electrode structure thereof, and process for producing the same |
KR1019950012542A KR100195685B1 (en) | 1994-05-19 | 1995-05-19 | Photovoltaic device electrode structure and manufacturing method thereof |
US08/897,105 US5942048A (en) | 1994-05-19 | 1997-07-18 | Photovoltaic element electrode structure thereof and process for producing the same |
CNB011226382A CN1193433C (en) | 1994-05-19 | 2001-06-27 | Photoelectric element, its electrode structure and method for manufucturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6108113A JPH07321353A (en) | 1994-05-23 | 1994-05-23 | Photovoltaic element and manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07321353A true JPH07321353A (en) | 1995-12-08 |
Family
ID=14476237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6108113A Pending JPH07321353A (en) | 1994-05-19 | 1994-05-23 | Photovoltaic element and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07321353A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345465A (en) * | 2000-06-01 | 2001-12-14 | Canon Inc | Photovoltaic element and method of manufacturing photovoltaic element |
WO2005038934A1 (en) * | 2003-10-17 | 2005-04-28 | Canon Kabushiki Kaisha | Photovoltaic element and method of producing photovoltaic element |
US7687708B2 (en) | 2003-01-23 | 2010-03-30 | Canon Kabushiki Kaisha | Photovoltaic cell having a coating film provided on a photovoltaic element and manufacturing method thereof |
WO2012073802A1 (en) * | 2010-11-29 | 2012-06-07 | 三洋電機株式会社 | Solar battery cell and solar battery module |
-
1994
- 1994-05-23 JP JP6108113A patent/JPH07321353A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345465A (en) * | 2000-06-01 | 2001-12-14 | Canon Inc | Photovoltaic element and method of manufacturing photovoltaic element |
US7687708B2 (en) | 2003-01-23 | 2010-03-30 | Canon Kabushiki Kaisha | Photovoltaic cell having a coating film provided on a photovoltaic element and manufacturing method thereof |
WO2005038934A1 (en) * | 2003-10-17 | 2005-04-28 | Canon Kabushiki Kaisha | Photovoltaic element and method of producing photovoltaic element |
WO2012073802A1 (en) * | 2010-11-29 | 2012-06-07 | 三洋電機株式会社 | Solar battery cell and solar battery module |
JP2012119394A (en) * | 2010-11-29 | 2012-06-21 | Sanyo Electric Co Ltd | Solar battery cell and solar battery module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100242852B1 (en) | Photovoltaic device and its manufacturing method | |
US6586270B2 (en) | Process for producing a photovoltaic element | |
JP3352252B2 (en) | Solar cell element group, solar cell module and method of manufacturing the same | |
US5667596A (en) | Photovoltaic device and manufacturing method of the same | |
US6121542A (en) | Photovoltaic device | |
JP3164183B2 (en) | Photovoltaic element and module | |
JP4024161B2 (en) | Manufacturing method of solar cell module | |
JP3751539B2 (en) | Thin film solar cell and manufacturing method thereof | |
JP3323573B2 (en) | Solar cell module and method of manufacturing the same | |
JP2004288898A (en) | Method of manufacturing solar cell module | |
JPH10173210A (en) | Electrode, method of forming the same, and photovoltaic element having the electrode | |
JPH06196743A (en) | Solar battery module | |
TW200834943A (en) | Solar cell module | |
US6114185A (en) | Welding process and photovoltaic device | |
JPH08330615A (en) | Series solar cell and manufacture thereof | |
JPH06140651A (en) | Solar cell module | |
JPH07321353A (en) | Photovoltaic element and manufacture | |
JP3006711B2 (en) | Solar cell module | |
JP4585652B2 (en) | Photovoltaic element and method for producing photovoltaic element | |
JP3548379B2 (en) | Photovoltaic device and manufacturing method thereof | |
JP2006041351A (en) | Process for manufacturing photovoltaic element | |
JP2002359381A (en) | Photoelectromotive force element and its manufacturing method | |
JP2001345468A (en) | Method for manufacturing photovoltaic element | |
US20110297219A1 (en) | Method and materials for the fabrication of current collecting structures for photovoltaic devices | |
JPH07321351A (en) | Electrode structure of photovoltaic element and manufacture |