JPH0731998A - Slightly anaerobic hydrogen fermentation method for organic waste - Google Patents
Slightly anaerobic hydrogen fermentation method for organic wasteInfo
- Publication number
- JPH0731998A JPH0731998A JP19532993A JP19532993A JPH0731998A JP H0731998 A JPH0731998 A JP H0731998A JP 19532993 A JP19532993 A JP 19532993A JP 19532993 A JP19532993 A JP 19532993A JP H0731998 A JPH0731998 A JP H0731998A
- Authority
- JP
- Japan
- Prior art keywords
- fermentation
- hydrogen
- organic waste
- gas
- hydrogen fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000855 fermentation Methods 0.000 title claims abstract description 196
- 230000004151 fermentation Effects 0.000 title claims abstract description 191
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 165
- 239000001257 hydrogen Substances 0.000 title claims abstract description 153
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 153
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000010815 organic waste Substances 0.000 title claims description 29
- 239000007789 gas Substances 0.000 claims abstract description 68
- 239000012528 membrane Substances 0.000 claims abstract description 18
- 230000033116 oxidation-reduction process Effects 0.000 claims abstract description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 38
- 238000000926 separation method Methods 0.000 claims description 24
- 239000001569 carbon dioxide Substances 0.000 claims description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 19
- 238000005273 aeration Methods 0.000 claims description 14
- 150000002431 hydrogen Chemical class 0.000 abstract description 7
- 239000002699 waste material Substances 0.000 abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 88
- 241000894006 Bacteria Species 0.000 description 48
- 239000010802 sludge Substances 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 29
- 239000010865 sewage Substances 0.000 description 23
- 230000000696 methanogenic effect Effects 0.000 description 17
- 239000007788 liquid Substances 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 13
- 239000010801 sewage sludge Substances 0.000 description 13
- 238000010792 warming Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000010800 human waste Substances 0.000 description 9
- 239000005416 organic matter Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 241000233866 Fungi Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 241000205276 Methanosarcina Species 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 241000193171 Clostridium butyricum Species 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 241000203353 Methanococcus Species 0.000 description 2
- 241000205011 Methanothrix Species 0.000 description 2
- 241000193157 Paraclostridium bifermentans Species 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 241000192031 Ruminococcus Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- -1 ogenes) Species 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- MSYNCHLYGJCFFY-UHFFFAOYSA-B 2-hydroxypropane-1,2,3-tricarboxylate;titanium(4+) Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O MSYNCHLYGJCFFY-UHFFFAOYSA-B 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241001495412 Clostridium maximum Species 0.000 description 1
- 241000193470 Clostridium sporogenes Species 0.000 description 1
- 241000202987 Methanobrevibacter Species 0.000 description 1
- 241000205280 Methanomicrobium Species 0.000 description 1
- 241000205265 Methanospirillum Species 0.000 description 1
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 230000001458 anti-acid effect Effects 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000009280 upflow anaerobic sludge blanket technology Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機性廃棄物の生物処
理方法に係り、特に、し尿、下水汚泥等の有機物を濃厚
に含む各種汚泥の微嫌気水素発酵法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biological treatment of organic waste, and more particularly to a method for slightly anaerobic hydrogen fermentation of various sludges containing organic matter such as human waste and sewage sludge.
【0002】[0002]
【従来の技術】従来、し尿、下水汚泥及び/又は有機物
を濃厚に含む各種汚泥の処理処分は、処理コストが安い
こと、運転管理が容易なこと、及び有機物の分解安定化
と同時にこれらをエネルギー物質であるメタンに生物変
換できることなどの利点が評価され、メタン発酵法が採
用されてきたことは周知の事実である。2. Description of the Related Art Conventionally, the treatment and disposal of human waste, sewage sludge and / or various sludges rich in organic matter has low treatment cost, easy operation management, and stabilization of decomposition of organic matter and at the same time energy saving. It is a well-known fact that the methane fermentation method has been adopted due to its advantages such as bioconversion to the substance methane.
【0003】従来技術としてのメタン発酵法には、高温
メタン発酵法、中温メタン発酵法及び/又は比較的最近
の技術として上向流式スラッジブランケット型メタン発
酵法(UASB法)等があり、これらの処理技術は、共
通して固形物液化細菌、酸発酵菌(低級カルボン酸の生
成)及びメタン生成菌による3段階の生物学的な継起反
応により汚濁性有機物を分解、低分子化し、最終的にエ
ネルギー物質であるメタンと炭酸ガスに変換し、メタン
発酵消化液は通常の好気性処理により残存する有機物を
微生物学的に酸化、安定化して公共用水域に放流する技
術である。The conventional methane fermentation method includes a high temperature methane fermentation method, a medium temperature methane fermentation method and / or a relatively recent technology such as an upflow sludge blanket type methane fermentation method (UASB method). The common treatment technology is to decompose and lower the molecular weight of pollutant organic substances by a three-step biological successive reaction by solid-liquefying bacteria, acid-fermenting bacteria (producing lower carboxylic acids) and methanogenic bacteria, and finally It is a technology that converts methane and carbon dioxide, which are energy substances, into methane fermentation digestion liquid, and microbially oxidizes and stabilizes the remaining organic matter by ordinary aerobic treatment and discharges it to public water bodies.
【0004】この処理技術の中核は、各種汚泥中に野性
的に生息している、例えば、メタノコッカス(Methanoc
occus)、メタノスリックス(Methanothrix) 、メタノサ
ルシナ(Methanosarcina) 、メタノブルビバクター(Me
thanobrevibacter) などのカルボン酸資化性メタン細
菌、水素資化性メタン細菌などの所謂メタン生成細菌に
よるメタン生成生物反応であり、次の生物反応によりメ
タンが生成される。 酢 酸 CH3 COO- +H2 O=CH4 +HC
O3 - 蟻 酸 4HCOO- +4H+ +H2 O=3HC
O3 - +3H+ +CH4 酪 酸 2CH3 (CH2 )2 COO- +HCO
3 - +H2 O=4CH3 COO- +H2 +CH4 水 素 4H2 +H+ +HCO3 - =CH4 +3
H2 O[0004] The core of this treatment technology is wildly inhabited in various sludges, such as Methanococcus.
occus), methanothrics (Methanothrix), methanosarcina (Methanosarcina), methanoble vivactor (Me
is a methanogenic bioreaction by a so-called methanogenic bacterium such as a carboxylic acid-utilizing methane bacterium such as thanobrevibacter) or a hydrogen-utilizing methane bacterium, and methane is produced by the following biological reaction. Acetic acid CH 3 COO - + H 2 O = CH 4 + HC
O 3 - ant acid 4HCOO - + 4H + + H 2 O = 3HC
O 3 − + 3H + + CH 4 Butyric acid 2CH 3 (CH 2 ) 2 COO − + HCO
3 − + H 2 O = 4CH 3 COO − + H 2 + CH 4 hydrogen 4H 2 + H + + HCO 3 − = CH 4 +3
H 2 O
【0005】前記したように、メタン発酵法は省エネル
ギー的な処理技術であるだけでなく、メタンというエネ
ルギー物質を生産できるために、濃厚有機性廃棄物、例
えばし尿、下水汚泥の処理に広く採用され、現時点にお
いて、し尿処理では処理場総数1250箇所に対して約
550〜650箇所、下水処理では処理場総数1200
箇所(全てを含めて)に対して300〜400箇所のメ
タン発酵処理施設が稼働している。As described above, the methane fermentation method is not only an energy-saving treatment technology, but also can produce an energy substance called methane, and is therefore widely used for the treatment of concentrated organic waste such as human waste and sewage sludge. At the present time, about 550 to 650 treatment sites for human waste treatment total 1250 treatment sites, and sewage treatment treatment total 1200 treatment facilities.
300 to 400 methane fermentation treatment facilities are operating for all (including all) locations.
【0006】然しながら、ここ数年来地球規模での環境
汚染が顕在化しつつあり、その中でも各種のガスによる
地球の温暖化が人類の将来の生存を脅かす最たるものと
して指摘され、警鐘が鳴らされている。温暖化を促進す
るガスとしては、現在、人間の各種の生産活動、生活活
動及び自然の生態系から大気中に放散される炭酸ガスが
最も多く、地球温暖化への寄与率は45〜55%である
といわれる。これに対して、上記の人類による各種の活
動及び自然界からのメタンの発生量は炭酸ガスの発生量
に対しては微々たるものであるが、メタンの赤外線吸収
能力は炭酸ガスに対して格段に大きい(約2桁大きい)
ためにメタンガスの地球温暖化への寄与率は15〜20
%にも達し、地球の温度上昇に対して無視できない寄与
率である。[0006] However, environmental pollution on a global scale has become apparent over the past few years, and among them, it has been pointed out that global warming caused by various gases is the most threatening future survival of mankind, and a warning is issued. . As the gas that promotes global warming, the largest amount of carbon dioxide is released into the atmosphere from various human production activities, daily activities and natural ecosystems, and the contribution rate to global warming is 45 to 55%. It is said to be. On the other hand, the above-mentioned various activities by human beings and the amount of methane generated from nature are insignificant with respect to the amount of carbon dioxide, but the infrared absorption capacity of methane is far greater than that of carbon dioxide. Large (about two digits larger)
Therefore, the contribution rate of methane gas to global warming is 15 to 20
%, Which is a non-negligible contribution to the rise in the temperature of the earth.
【0007】このような観点から、従来技術としてのメ
タン発酵法は、地球温暖化に極めて深刻な影響を与える
メタンガスを集中的に、かつ大量に発生するのでエネル
ギー物質として完全に捕捉し、完全燃焼しなければなら
ない。しかし現実には、外気温度の低い冬期にはまず問
題はないとして、夏場の外気温が高い季節には、発酵槽
の加温熱源として発生するメタンガスは明らかに余剰熱
源となり、多くの処理場では熱源として利用する事無
く、発生ガスをそのまま大気に放散している事例が多
い。From this point of view, the methane fermentation method as a conventional technique generates methane gas, which has a very serious influence on global warming, in a concentrated and large amount, so that it is completely captured as an energy substance and completely burned. Must. However, in reality, there is no problem in the winter when the outside air temperature is low, and in the summer when the outside temperature is high, the methane gas generated as a heating source for the fermentation tank is obviously a surplus heat source, and in many treatment plants. In many cases, the generated gas is directly emitted to the atmosphere without being used as a heat source.
【0008】さらに、このメタン発酵技術は、水素資化
性メタン生成菌の基質となる水素の絶対量に対して、生
物反応の結果生成される炭酸ガスが大過剰であるため
に、発生ガス中にはエネルギー源として全く価値のない
炭酸ガスが常に、約40%残存し、地球温暖化を助長す
る結果となる。また、前記のメタンガスもエネルギーと
して有効に利用しても、燃焼すると次式に示すように炭
酸ガスに変換される。 CH4 +2O2 =CO2 +2H2 OFurther, this methane fermentation technique is characterized in that the carbon dioxide gas produced as a result of a biological reaction is in excessive excess with respect to the absolute amount of hydrogen, which is a substrate of hydrogen-utilizing methanogens. Carbon dioxide, which has absolutely no value as an energy source, always remains at about 40%, which promotes global warming. Further, even if the above-mentioned methane gas is effectively used as energy, when it is burned, it is converted into carbon dioxide gas as shown in the following equation. CH 4 + 2O 2 = CO 2 + 2H 2 O
【0009】以上より、従来から、し尿或いは主として
下水汚泥の処理技術として広汎に適用されているメタン
発酵法は、発生するメタンガスが未利用のまま大気中に
漏洩したり或いは意識的に大気中に放散されることによ
り地球の温暖化を助長し、さらに厄介なことにはメタン
をエネルギー源として燃焼しても地球温暖化の元凶であ
る炭酸ガスに変換し、温暖化をさらに助長することにな
る。以上詳述したように、従来、し尿、下水汚泥及び/
又は有機物を濃厚に含む各種の廃水、汚泥の処理に広く
採用されているメタン発酵は、それ自身、省エネルギー
的であり、運転管理も容易であるが、発生するガスを利
用しても、また、利用しないで大気中に放散しても、地
球の温暖化に負に寄与する大量のメタンガス、炭酸ガス
を排出し、地球に優しい処理技術であるとは言えない。From the above, the methane fermentation method, which has been widely applied as a treatment technology for human waste or mainly sewage sludge, has a problem that the generated methane gas leaks into the atmosphere without being used or is intentionally discharged into the atmosphere. Dissipation promotes global warming, and even more troublesome is that even if methane is used as an energy source, it will be converted to carbon dioxide, which is the main cause of global warming, and further promotes global warming. . As detailed above, conventionally, human waste, sewage sludge and / or
Or, various wastewater containing organic matter in a concentrated manner, methane fermentation, which is widely adopted for treatment of sludge, is itself energy-saving and is easy to operate and manage, even if the generated gas is used, Even if it is diffused into the atmosphere without using it, it cannot be said to be an earth-friendly treatment technology because it emits a large amount of methane gas and carbon dioxide gas that negatively contributes to global warming.
【0010】[0010]
【発明が解決しようとする課題】以上の事実より、ここ
数年来、地球環境保全或いは改善に貢献できる新しい有
機性廃棄物の処理技術、特に、従来技術としてのメタン
発酵法に取って変わるべき新しい処理技術の研究、開発
が急務となっており、その確立が社会的に強く要望され
ている。本発明は、従来技術、特にメタン発酵法の前記
の宿命的な欠陥を改善し、クリーンエネルギーである水
素を高速、高効率で生産することができる微嫌気水素発
酵法を提供することを課題とする。From the above facts, from the above facts, a new organic waste treatment technology that can contribute to the preservation or improvement of the global environment, especially a new technology that should replace the conventional methane fermentation method, has been available for several years. There is an urgent need for processing technology research and development, and there is a strong social demand for its establishment. The present invention aims to provide a slightly anaerobic hydrogen fermentation method capable of producing the hydrogen, which is a clean energy, at high speed and with high efficiency by improving the above-mentioned fatal defects of the conventional technology, in particular, the methane fermentation method. To do.
【0011】[0011]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、有機性廃棄物を水素発酵させる微嫌気
水素発酵法において、前記水素発酵における発酵液を酸
化還元電位が、−100〜−200mVの範囲の微嫌気
条件となるように制御しながら発酵させることとしたも
のである。上記において、水素発酵は、減圧発酵で行う
か、又は、発生ガスをガス分離膜を通過させて水素と炭
酸ガスを分離させながら行うのがよく、こうすることに
よって、水素ガスを強制的に反応系外に取出すことによ
り水素分圧を低減せしめることができる。In order to solve the above problems, in the present invention, in the slightly anaerobic hydrogen fermentation method of hydrogen-fermenting an organic waste, the fermentation liquid in the hydrogen fermentation has an oxidation-reduction potential of -100. Fermentation is performed while controlling so as to be a slightly anaerobic condition in the range of to -200 mV. In the above, hydrogen fermentation is preferably carried out by reduced pressure fermentation or while the generated gas is passed through a gas separation membrane to separate hydrogen and carbon dioxide gas, whereby hydrogen gas is forcibly reacted. The hydrogen partial pressure can be reduced by taking it out of the system.
【0012】また、原料としての有機性廃棄物は、発酵
する前に予め緩慢曝気により有機性廃棄物の酸化還元電
位を水素発酵が遅滞なく進行する範囲に調整するのがよ
い。さらに、前記水素発酵は、減圧発酵を行う第一発酵
と常圧発酵を行う第二発酵とに分割し、第二発酵の発酵
液を緩慢曝気により水素発酵が遅滞なく進行する酸化還
元電位に調整し、この発酵液を有機性廃棄物に合流させ
るか、又は第一発酵に連続的及び/又は間歇的に循環さ
せて行うことができる。本発明の水素発酵は、酸化還元
電位感知センサーにより、酸化還元電位が水素発酵に好
適な範囲となるように緩慢曝気の風量を調整して行うこ
ともできる。The organic waste as a raw material is preferably adjusted by slow aeration before fermentation so that the redox potential of the organic waste is within a range in which hydrogen fermentation proceeds without delay. Furthermore, the hydrogen fermentation is divided into a first fermentation that performs vacuum fermentation and a second fermentation that performs atmospheric fermentation, and the fermentation liquid of the second fermentation is adjusted to a redox potential that allows hydrogen fermentation to proceed without delay by slow aeration. However, the fermentation liquor can be combined with the organic waste, or continuously and / or intermittently circulated in the first fermentation. The hydrogen fermentation of the present invention can also be performed by using a redox potential sensor to adjust the air volume of slow aeration so that the redox potential falls within a range suitable for hydrogen fermentation.
【0013】上記のように、本発明においては、し尿や
下水汚泥の野性的に生息しているメタン生成細菌群と水
素生産菌群とが、それぞれ生活し、かつ増殖するのに好
適な酸化還元電位に可成りの格差があることを有効に利
用し、投入基質或いは嫌気性発酵槽内液の酸化還元電位
を、緩慢な曝気などの手段により水素生産菌が生息する
に適した範囲に人為的に制御することにより、有機性廃
棄物の水素発酵がメタン発酵に優先して進行するように
調整することを最大の特徴とする水素生産法であり、水
素発酵を微嫌気の条件下で安定して、かつ高速、高効率
に達成させることができる。As described above, according to the present invention, the redox suitable for the living and growing of the methanogenic bacteria group and the hydrogen-producing bacteria group, which live in the wild, such as human waste and sewage sludge, respectively. By making effective use of the considerable potential difference, the redox potential of the input substrate or the liquid in the anaerobic fermentation tank is artificially adjusted to a range suitable for inhabiting hydrogen-producing bacteria by means such as slow aeration. The hydrogen production method is characterized by adjusting the hydrogen fermentation of organic waste so that it preferentially progresses over the methane fermentation by controlling the above. In addition, high speed and high efficiency can be achieved.
【0014】次に本発明を詳細に説明する。本発明の微
嫌気水素発酵法では、メタン発酵に優先して水素発酵が
進行する結果として、発酵槽の液相において水素平衡濃
度が上昇し、当然、閉鎖系の発酵槽気相部の水素分圧が
上昇する。水素生産菌による有機性廃棄物の水素発酵
は、その生物反応の標準自由エネルギーが正の値となる
吸エルゴン反応であり、本来的に生物反応は正の方向に
は進みにくい。Next, the present invention will be described in detail. In the slightly anaerobic hydrogen fermentation method of the present invention, the hydrogen equilibrium concentration is increased in the liquid phase of the fermenter as a result of the progress of the hydrogen fermentation in preference to the methane fermentation, and naturally, the hydrogen content of the gas phase part of the closed fermenter is increased. The pressure rises. Hydrogen fermentation of organic waste by hydrogen-producing bacteria is an absorbing ergon reaction in which the standard free energy of the biological reaction has a positive value, and the biological reaction is inherently difficult to proceed in the positive direction.
【0015】この反応を正の方向に順調に進行させるた
めには、水素発酵の生産物である水素を、混合培養系に
おいて、他の生物反応を継起的に進行せしめることによ
り全体の生物反応系として標準自由エネルギーが負の値
となる発エルゴン反応に転換するか或いは液相、気相中
の水素を強制的に反応系外に取り出し、実質的に発エル
ゴン反応と同等の効果があるように操作しなければなら
ない。従って、本発明では、有機性廃棄物の水素発酵を
遅退なく進行させるために、水素発酵槽を減圧条件と
し、槽内液を減圧発酵することにより、液相中の水素の
平衡濃度及び気相中の水素分圧を強制的に低減し、水素
発酵が実質的に発エルゴン反応として進行するように配
慮されている。In order to allow this reaction to proceed smoothly in the positive direction, hydrogen, which is a product of hydrogen fermentation, is allowed to successively proceed with other biological reactions in the mixed culture system, whereby the whole biological reaction system is allowed to proceed. As a result, the standard free energy is converted to a degassing ergon reaction with a negative value, or hydrogen in the liquid phase or gas phase is forcibly taken out of the reaction system so that the effect is substantially equivalent to the degassing ergon reaction. Have to operate. Therefore, in the present invention, in order to proceed the hydrogen fermentation of the organic waste without delay, the hydrogen fermentation tank is under reduced pressure conditions and the tank liquid is subjected to reduced pressure fermentation to obtain the equilibrium concentration of hydrogen and the gas in the liquid phase. It is considered that the hydrogen partial pressure in the phase is forcibly reduced so that the hydrogen fermentation substantially proceeds as an ergon reaction.
【0016】また、本発明では、水素発酵を順調に進行
させる他の方法として、水素発酵の発生ガスがガス分離
膜を通過させることにより炭酸ガスと水素ガスとに分離
し、水素ガスを生物反応系外に強制的に取り出し、前記
の障害を解消している。微生物の優れた機能の一つとし
て、特定の微生物によって必ずしも好ましい生活環境、
生活条件が与えられなくても、長期間、この条件下で培
養する過程で遺伝子レベルでの質的転換が行なわれ、次
第にこの環境に馴致、順応し、微生物は異種環境におい
ても好ましい条件下におけるとほぼ同等の機能を発揮す
るようになる。この質的転換を有効に利用し、当初に設
定した減圧発酵槽の減圧度、及び/又はガス分離膜にお
ける水素ガスの分離量を緩慢に低減することにより、常
圧における水素発酵を企図することも本願発明の目的を
妨げるものではない。Further, in the present invention, as another method for smoothly proceeding hydrogen fermentation, the generated gas of hydrogen fermentation is separated into carbon dioxide gas and hydrogen gas by passing through a gas separation membrane, and hydrogen gas is subjected to a biological reaction. It was forcibly taken out of the system to eliminate the above obstacles. As one of the excellent functions of microorganisms, a living environment that is always preferable by a specific microorganism,
Even if living conditions are not given, qualitative conversion at the gene level is performed in the process of culturing under these conditions for a long period of time, gradually adapting to this environment and acclimatizing, and the microorganisms under favorable conditions even in a heterogeneous environment. It has almost the same function as. By effectively utilizing this qualitative conversion, by slowly reducing the degree of decompression of the initially set reduced pressure fermentation tank and / or the amount of hydrogen gas separated in the gas separation membrane, hydrogen fermentation at atmospheric pressure is attempted. Does not hinder the object of the present invention.
【0017】本発明における最重要な必須条件は、発酵
槽内溶液のORPを、緩慢曝気により絶対嫌気の環境か
ら微嫌気の環境、即ち、ORPを水素生産菌が生活、増
殖するのに最適な−100〜−200mVの範囲に調整
することである。然しながら、この操作を、即ち緩慢曝
気を水素発酵槽内で直接行なうと槽内でのORPの変動
幅が不可抗力的に大きくなり、水素生産菌にとって必ず
しも好ましい生活環境とは言えない。水素生産菌は微嫌
気環境を好むとはいえ所謂好気性細菌ではなく、菌体に
直接過剰の酸素が接触することは、水素生産菌の活動、
増殖にとっては可成りの阻害要因となる。The most important essential condition in the present invention is that the ORP of the solution in the fermenter is optimally changed from the absolute anaerobic environment to the slightly anaerobic environment by slow aeration, that is, the ORP is optimal for life and growth of hydrogen-producing bacteria. It is to adjust in the range of −100 to −200 mV. However, if this operation, that is, the slow aeration is directly performed in the hydrogen fermentation tank, the fluctuation range of ORP in the tank becomes unavoidably large, which is not necessarily a preferable living environment for hydrogen-producing bacteria. Although the hydrogen-producing bacterium prefers a slightly anaerobic environment, it is not a so-called aerobic bacterium, and the direct contact of excess oxygen with the bacterium causes the activity of the hydrogen-producing bacterium.
It is a significant impediment to proliferation.
【0018】本発明では、この阻害要因を排除するため
に、主たる発酵槽のORPを直接的に好適範囲に調整す
るのではなく、例えば、主発酵槽の前にORP調整槽を
設け、ここで処理対象物を緩慢曝気することにより主発
酵槽内溶液の緻密な調整が行なわれるように配慮されて
いる。さらに、本発明では、別の阻害要因排除方法とし
て水素発酵槽を2分割して初段の発酵槽を減圧発酵槽、
次段の発酵槽を常圧発酵槽とし、常圧発酵槽を緩慢曝気
することにより設定ORPを所定のORPよりも高くな
るように操作し、この液を水素生産の主発酵が行なわれ
る減圧発酵槽に連続的及び/又は間歇的に適量循環する
ことによりORPを間接的に微調整し、確実に−100
〜−200mVの範囲となるように考慮している。In the present invention, in order to eliminate this inhibiting factor, the ORP of the main fermentation tank is not directly adjusted to a suitable range, but for example, an ORP adjustment tank is provided in front of the main fermentation tank. It is considered that the solution in the main fermentation tank is precisely adjusted by slowly aerating the object to be treated. Further, in the present invention, as another method of eliminating the inhibiting factors, the hydrogen fermentation tank is divided into two, and the first-stage fermentation tank is a reduced pressure fermentation tank,
The next-stage fermenter is an atmospheric fermentor, and the set ORP is operated to be higher than a predetermined ORP by slowly aerating the atmospheric fermenter, and this liquid is subjected to the main fermentation for hydrogen production under reduced pressure. ORP is indirectly fine-tuned by circulating an appropriate amount continuously and / or intermittently in the tank to ensure -100.
It is considered to be in the range of -200 mV.
【0019】また、本発明では、発酵槽のORPの調整
をさらに厳密に行なうために、前記の2例の主発酵槽に
酸化還元電位検知センサーを設置し、これを緩慢曝気用
のブロワーと運動させることにより曝気風量を調整し、
これにより生物反応系のORPを水素発酵が確実に進行
する範囲となるように制御する機構を設けている。In addition, in the present invention, in order to more strictly adjust the ORP of the fermenter, an oxidation-reduction potential detection sensor is installed in the main fermentation tanks of the above-mentioned two examples, and this is installed with a blower for slow aeration. By adjusting the aeration air volume,
With this, a mechanism is provided to control the ORP of the biological reaction system so that it is within a range in which hydrogen fermentation surely proceeds.
【0020】[0020]
【作用】周知のように、メタン生産細菌は偏性(絶対)
嫌気性菌の範囲に属し、酸素の存在により決定的な打撃
を受けるだけでなく、このような環境条件下では生存す
ることができない。従って、これらの細菌が生存し、か
つ生活、活動できる酸化還元電位(以下、ORPと略記
する)には自ずから限界があり、通常、可成り厳密に−
350〜−450mVに制限される。し尿、下水汚泥な
どの有機性廃棄物には野性的に多くの種属のメタン生成
菌が生息しているが、その代表的なメタン菌群として次
の種属があげられる。[Action] As is well known, methanogenic bacteria are obligate (absolute)
It belongs to the range of anaerobes and is not only critically hit by the presence of oxygen, it is also unable to survive under these environmental conditions. Therefore, the oxidation-reduction potential (hereinafter abbreviated as ORP) at which these bacteria can survive, live, and act is naturally limited, and is usually rather strictly-
Limited to 350-450 mV. Organic wastes such as human waste and sewage sludge wildly inhabit many methanogens of different genera, and the following species are typical methane bacteria groups.
【0021】 メタノコッカス(Methanococcus) メタノサルシナ(Methanosarcina) メタノスリックス(Methanothrix) メタノブレビバクター(Methanobrevibacter) メタノミクロビウム(Methanomicrobium) メタノスピリリウム(Methanospirillum) メタノバクテリウム(Methanobacterium) メタノゲニウム(Methanogenium) な
ど。Methanococcus Methanosarcina Methanothrix Methanobrevibacter Methanomicrobium Methanospirillum Methanospirillum Methananospiran.
【0022】これらのメタン生成細菌類は例外なく偏性
嫌気性細菌に属し、前記したORPの条件下でないと生
息できないだけでなく、メタン生成細菌類は一般的に下
記に示すように至適pH条件下、最適温度条件でも増殖
速度が極めて遅い。 至適pH ・・・・・・・ 7.8 至適温度 ・・・・・・・ 28〜33℃ 比増殖速度 ・・・・・・ 0.3〜0.5day-1 このメタン生成細菌の増殖特性は、後述するように、本
発明方法の課題、目的を安定して達成するには極めて好
都合である。These methanogenic bacteria belong to obligate anaerobic bacteria without exception, and not only can they inhabit under the above-mentioned ORP conditions, but the methanogenic bacteria generally have an optimum pH as shown below. Under the conditions, the growth rate is extremely slow even under the optimum temperature condition. Optimum pH ・ ・ ・ ・ ・ 7.8 Optimum temperature ・ ・ ・ ・ ・ 28-33 ℃ Specific growth rate ・ ・ ・ ・ ・ 0.3-0.5day -1 As will be described later, the growth characteristics are extremely convenient for stably achieving the objects and objects of the method of the present invention.
【0023】メタン生成細菌類に対して水素生産菌類は
通性嫌気性菌の範疇に属し、酸素の存在が必ずしも生存
の決定的な障害にはならず、酸素があっても、なくても
生活、増殖することができる。従って、当然、生存でき
るORPの範囲はメタン生成細菌よりも正の側に偏差し
ており、通常−100〜−200mVが好適ORPの範
囲である。し尿、下水汚泥などの有機性廃棄物に野性的
に生息している水素生産菌類は現時点で可成り明確にさ
れ、同定されているが、その主なものを列記すると次の
通りである。また、水素生産菌の特質として強力なセル
ラーゼを生産する菌が多く、この種の細菌は繊維質を分
解して水素を生産する。Hydrogen-producing fungi belong to the category of facultative anaerobes against methanogenic bacteria, and the presence of oxygen does not necessarily become a decisive obstacle to survival. , Can multiply. Therefore, naturally, the range of viable ORP deviates to the positive side of methanogenic bacteria, and normally -100 to -200 mV is a preferable range of ORP. The hydrogen-producing fungi that wildly inhabit organic waste such as human waste and sewage sludge have been fairly clarified and identified at the present time, but the main ones are listed below. In addition, as a characteristic of hydrogen-producing bacteria, many bacteria produce strong cellulase, and this kind of bacteria decomposes fiber to produce hydrogen.
【0024】 クロストリジウム ブチリカム(Clos
tridium butyricum) クロストリジウム スエルモセラム(Clostridium
thermocellum) クロストリジウム ビフェルメンタンス(Clostrid
ium bifermentans) クロストリジウム スポロゲネス(Clostridium sp
orogenes) クロストリジウム アエロトレランス(Clostridiu
m aerotolerans) ルミノコッカス アルバ(Ruminococcus alba) ザルシナ マキシマ(Sarcina maxima)
など。Clostridium butyricum (Clos
tridium butyricum) Clostridium
thermocellum) Clostridium bifermentans (Clostrid
ium bifermentans) Clostridium sporogenes
orogenes) Clostridium Aerotolerance (Clostridiu
m aerotolerans) Ruminococcus alba Ruminococcus alba Sarcina maxima
Such.
【0025】これらの水素生産菌類は、メタン生成細菌
と比較すると、対象となる基質により可成りの範囲で変
動するが、次に示すように最適条件下における比増殖度
はメタン細菌よりも通常1桁大きく、連続系におけるケ
モスタットにおいても菌の滞留時間が0.5〜3.0日
でも系外に洗流されることはない。 至適pH ・・・・・・・ 5.5〜5.8 至適温度 ・・・・・・・ 25〜30℃ 比増殖速度 ・・・・・・ 5〜15day-1 Compared with methanogenic bacteria, these hydrogen-producing fungi fluctuate within a considerable range depending on the target substrate, but as shown below, the specific growth rate under the optimum conditions is usually 1 or more than that of methanogenic bacteria. It is an order of magnitude larger, and even in a chemostat in a continuous system, even if the residence time of the bacteria is 0.5 to 3.0 days, it is not washed out of the system. Optimum pH: 5.5-5.8 Optimum temperature: 25-30 ° C Specific growth rate: 5-15day -1
【0026】このように、メタン生成細菌類と水素生産
菌類との間には最適のORPの範囲に大きい格差がある
だけでなく、最適pH範囲及び増殖速度の間にも大きい
格差があり、本発明の微嫌気水素発酵をメタン発酵に優
先して、かつ安定して進行させるには有利な条件が具備
されているのである。この革新的な新規の生物生産プロ
セスから生産される水素の発生量は大量であり、同時に
発生する地球温暖化の原因物質である炭酸ガス量を最低
とすることが出来るだけでなく、この多機能生産処理プ
ロセスにより有機性廃棄物の処理も可能である。従っ
て、本発明は、トータルプロセスとして地球環境保全及
び改善に著しく貢献する画期的な有機性廃棄物の処理と
水素生産が可能な生物学的水素生産法である。Thus, not only is there a large disparity in the optimum ORP range between methanogenic bacteria and hydrogen-producing fungi, but there is also a large disparity in the optimum pH range and growth rate. Advantageous conditions are provided in order to allow the slightly anaerobic hydrogen fermentation of the invention to proceed in a stable manner prior to the methane fermentation. The amount of hydrogen produced from this innovative new biological production process is large, and it is not only possible to minimize the amount of carbon dioxide gas that is a causative agent of global warming that occurs at the same time It is also possible to treat organic waste by the production treatment process. Therefore, the present invention is a biological hydrogen production method capable of epoch-making treatment of organic waste and hydrogen production, which contributes significantly to global environment conservation and improvement as a total process.
【0027】[0027]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 図1に本発明の方法を実施するための工程図の一例を示
す。この実施例では有機性廃棄物として下水の混合汚泥
(最初沈殿池汚泥+余剰活性汚泥)を用いて説明する。
まず、図1において、処理対象として下水混合汚泥1を
流入管2を経由してORP調整槽3に導入する。調整槽
の容積は特に限定しないが、汚泥の滞留時間として0.
5日〜1日もあれば十分である。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 FIG. 1 shows an example of a process chart for carrying out the method of the present invention. In this example, a mixed sludge (first settling tank sludge + excess activated sludge) is used as an organic waste.
First, in FIG. 1, the sewage mixed sludge 1 is introduced into the ORP adjustment tank 3 via the inflow pipe 2 as a treatment target. The volume of the adjusting tank is not particularly limited, but the retention time of sludge is 0.
Five to one day is enough.
【0028】嫌気的条件に放置された下水混合汚泥1の
ORPは、通常メタン発酵が進行するに適した−350
〜−450mVの範囲にあり、絶対嫌気性菌であるメタ
ン生成細菌は、この環境下で微弱ながら既に活動を開始
している。従って、ORP調整槽3に貯留された(連続
或いは回分式の何れの注入方式でもよい)下水混合汚泥
1のORPを、通性嫌気性細菌である水素生産菌が活動
するのに好適なORPまで上昇させるために、ブロワー
4により緩慢曝気し、−100〜−200mV、好まし
くは−150mV程度に調整する。The ORP of the sewage mixed sludge 1 left under anaerobic conditions is usually -350, which is suitable for the progress of methane fermentation.
Methanogenic bacteria, which are in the range of ˜-450 mV and are absolutely anaerobic bacteria, have already started their activities under this environment although they are weak. Therefore, the ORP of the sewage mixed sludge 1 stored in the ORP adjusting tank 3 (either continuous or batch type injection method may be used) up to the ORP suitable for the hydrogen-producing bacteria that are facultative anaerobic bacteria to operate. In order to raise it, it is slowly aerated by the blower 4 and adjusted to -100 to -200 mV, preferably about -150 mV.
【0029】然し、下水混合汚泥1は、減圧水素発酵槽
7に投入され、嫌気的条件に曝されると嫌気度が高まり
ORP値が希望する値よりも低くなるので、−100〜
−200mVよりも正値により近い値に設定するのが好
ましい。何れにしても、減圧水素発酵槽7におけるOR
P値を水素生産菌の至適ORPの範囲に厳密に設定する
ために、本発明では減圧水素発酵槽7に設置したORP
感知センサー9と緩慢曝気用のブロワー4を電気的に連
動させることにより、発酵液のORPが常に至適範囲と
なるように制御されている。However, when the sewage mixed sludge 1 is put into the reduced pressure hydrogen fermentation tank 7 and exposed to anaerobic conditions, the anaerobic level increases and the ORP value becomes lower than the desired value.
It is preferable to set the value closer to the positive value than -200 mV. In any case, OR in the reduced pressure hydrogen fermentation tank 7
In order to strictly set the P value within the optimum ORP range of hydrogen-producing bacteria, in the present invention, the ORP installed in the reduced pressure hydrogen fermentation tank 7 is used.
By electrically interlocking the sensor 9 and the blower 4 for slow aeration, the ORP of the fermentation liquid is controlled so as to always be in the optimum range.
【0030】緩慢曝気により微嫌気条件に調整された下
水混合汚泥1は移送管6により減圧水素発酵槽7に連続
的及び/又は間歇的に投入される。減圧水素発酵槽7の
容積は、前記したように通常のメタン生成菌の増殖速度
では必然的に槽外に洗流されるように配慮されており、
処理すべき下水混合汚泥1の減圧水素発酵槽7での滞留
時間が3〜5日となるような容積を有する。前記したよ
うに、下水汚泥などに通常野性的に生息しているメタン
生成細菌の増殖速度は、pH=7.8、培養温度28〜
33℃の最適条件において0.3〜0.5day-1の範
囲にあり、この数値を基準としてメタン生成細菌が反応
系外に洗流される滞留時間を計算上求めると3.3日以
内となる。The sewage mixed sludge 1 adjusted to a slightly anaerobic condition by slow aeration is continuously and / or intermittently introduced into the reduced-pressure hydrogen fermentation tank 7 through the transfer pipe 6. As described above, the volume of the reduced pressure hydrogen fermentation tank 7 is designed so that it is inevitably washed out of the tank at the normal growth rate of the methanogen.
It has a volume such that the residence time of the sewage mixed sludge 1 to be treated in the reduced pressure hydrogen fermentation tank 7 is 3 to 5 days. As described above, the growth rate of methanogenic bacteria that normally live wildly in sewage sludge is pH = 7.8, culture temperature 28-
It is in the range of 0.3 to 0.5 day -1 under the optimum condition of 33 ° C, and the retention time for washing out the methanogens to the outside of the reaction system is calculated within 3.3 days based on this value. .
【0031】また、この短い滞留時間範囲で嫌気性発酵
を行なうと、通常メタン発酵よりも酸発酵が支配的とな
る所謂酸発酵主導型の発酵が優先的に進行し、発酵液中
に低級カルボン酸が蓄積して、液のpHは可成り酸性側
に偏差する。このように、減圧水素発酵槽7の容積を縮
小することにより、発酵条件はORPだけでなく、メタ
ン生成細菌は必然的に発酵槽外に洗流され、さらにpH
条件もメタン生成細菌の好適pHから可成り低い側に偏
差するために、自動的に水素生産菌の増殖に最適な環境
条件が具備されることになり、好都合である。When anaerobic fermentation is carried out within this short residence time range, so-called acid fermentation-led fermentation, in which acid fermentation is more predominant than methane fermentation, preferentially proceeds, and lower carboxylic acid is added to the fermentation broth. Acid accumulates and the pH of the solution deviates to the acidic side. Thus, by reducing the volume of the reduced-pressure hydrogen fermenter 7, not only the fermentation conditions but also methanogenic bacteria are inevitably washed out of the fermenter, and the pH is further increased.
Since the condition also deviates from the preferable pH of the methanogenic bacterium to a considerably lower side, the optimum environmental condition for the growth of the hydrogen-producing bacterium is automatically provided, which is convenient.
【0032】減圧水素発酵槽7に導入された下水混合汚
泥1は、槽内滞留時間3〜5日、発酵温度30℃、自動
的に調整されるpH5.0〜6.0の条件下で、かつ、
攪拌機8により連続的に攪拌しながら水素発酵させるの
が好ましい操作条件であり、本発明の目的を達成するに
適した条件である。槽内攪拌は、発生ガス攪拌でも本発
明に反するものではない。The sewage mixed sludge 1 introduced into the reduced pressure hydrogen fermentation tank 7 has a residence time in the tank of 3 to 5 days, a fermentation temperature of 30 ° C., and an automatically adjusted pH of 5.0 to 6.0. And,
It is preferable to carry out hydrogen fermentation while continuously stirring with the stirrer 8, which is suitable for achieving the object of the present invention. The stirring in the tank does not go against the present invention even if the generated gas is stirred.
【0033】下水混合汚泥1が前記の条件で処理される
と次の生物反応式に例示したように有機物が分解され、
低級カルボン酸と相当量の水素が生産される。 *(C6 H10O5 )n →4C6 H12O6→3CH3 (C
H2 )2 COOH+2CH3 COOH+8H2 +8CO
2 *3CH3 (CH2 )2 COO- +6H2 O=6CH3
COO- +3H++6H2 *2CH3 COO- +4H2 O=10H+ +2H2 +4
CO2 When the sewage mixed sludge 1 is treated under the above conditions, organic substances are decomposed as illustrated in the following biological reaction formula,
Lower carboxylic acids and a considerable amount of hydrogen are produced. * (C 6 H 10 O 5 ) n → 4C 6 H 12 O 6 → 3CH 3 (C
H 2) 2 COOH + 2CH 3 COOH + 8H 2 + 8CO
2 * 3CH 3 (CH 2 ) 2 COO − + 6H 2 O = 6CH 3
COO − + 3H + + 6H 2 * 2CH 3 COO − + 4H 2 O = 10H + + 2H 2 +4
CO 2
【0034】そのために、発生した大量の水素が減圧水
素発酵槽7内の発酵液及び気相部に充満し、液相中の平
衡濃度だけでなく、気相中の水素分圧が上昇する。水素
は、それ自身が本来的に生物毒作用を持っており、液相
中の濃度がある限度以上になると水素発酵が阻害され
る。さらに、前記したように、水素生産菌による水素生
成の生物反応は標準自由エネルギーが正値をとる吸エル
ゴン反応であり、生成された水素を強制的に反応系外に
取り去り、実質的に発エルゴン反応と同等の効果を発揮
するような特定の操作を考慮する必要がある。本発明で
は、この目的のために水素発酵槽を常法の減圧発酵条件
とする。すなわち、発酵槽気相部の減圧度は、通常−3
00〜−400mmAqに設定されるが、この減圧度を
常時維持することにより、水素発酵は正の方向に遅退な
く進行する。Therefore, a large amount of generated hydrogen fills the fermentation liquor and the gas phase portion in the reduced pressure hydrogen fermentation tank 7, and not only the equilibrium concentration in the liquid phase but also the hydrogen partial pressure in the gas phase increases. Hydrogen has a biotoxic effect by itself, and hydrogen fermentation is inhibited when the concentration in the liquid phase exceeds a certain limit. Furthermore, as described above, the biological reaction of hydrogen generation by hydrogen-producing bacteria is an absorption ergon reaction in which the standard free energy has a positive value, and the generated hydrogen is forcibly removed from the reaction system to generate a substantial ergon. It is necessary to consider a specific operation that produces the same effect as the reaction. In the present invention, for this purpose, the hydrogen fermenter is subjected to conventional vacuum fermentation conditions. That is, the degree of pressure reduction in the gas phase of the fermenter is usually -3.
It is set to 00 to -400 mmAq, but by constantly maintaining this degree of pressure reduction, hydrogen fermentation proceeds in the positive direction without delay.
【0035】水素発酵により発生する水素ガスを生物反
応系外に使用するもう一つの方法として水素ガス分離膜
を用いる方法があり、減圧発酵と同等の効果を期待する
ことができる。水素ガスはガス分子として粒径が極めて
小さく、他のガスとの混合ガスから水素を99%の高純
度で容易に分離することが出来るので、例えば、既に石
油精製工業、化学工業などの生産工程で実用化されてい
る。本発明のように、下水混合汚泥の水素発酵の発生ガ
スが水素ガスと炭酸ガスの混合ガスである場合、ガス分
離膜による水素の分離は比較的容易であり、通常、5k
g/cm2 以下の圧力で99%の高純度水素ガスとして
分離することができる。市販の水素ガス分離膜として
は、素材として幾つかの種類のものが販売されている
が、本発明の実施例では水素を最も選択的に、かつ効果
的に分離できる芳香族ポリイミドを素材とする分離膜を
使用した。As another method of using hydrogen gas generated by hydrogen fermentation outside the biological reaction system, there is a method of using a hydrogen gas separation membrane, and the same effect as under reduced pressure fermentation can be expected. Hydrogen gas has a very small particle size as a gas molecule, and hydrogen can be easily separated from a mixed gas with other gas with a high purity of 99%, so that, for example, already in the petroleum refining industry, chemical industry, and other production processes. Has been put into practical use in. As in the present invention, when the generated gas of hydrogen fermentation of sewage mixed sludge is a mixed gas of hydrogen gas and carbon dioxide gas, hydrogen separation by a gas separation membrane is relatively easy, and usually 5 k
It can be separated as 99% high-purity hydrogen gas at a pressure of g / cm 2 or less. As a commercially available hydrogen gas separation membrane, several kinds of materials are sold, but in the examples of the present invention, aromatic polyimide is used as a material capable of separating hydrogen most selectively and effectively. A separation membrane was used.
【0036】本発明において、減圧水素発酵槽7からの
発生ガスはガス排出管10から引き抜かれ、ガス分離膜
11を減圧状態で通過させることにより水素ガス12を
分離し、一方、濃縮された炭酸ガス13は別系統に取り
出され、目的に応じて有効利用され処理、処分される。
減圧発酵、ガス分離又は両者の併用により発酵槽内の水
素分圧を低減することにより水素生産菌は正常に増殖す
るが、この細菌は生物反応系で次第に高濃度の水素に遺
伝子レベルでの耐性を獲得する能力があるので、減圧発
酵、ガス分離の操作は運転当初からある一定期間を経て
あとは、徐々に常圧発酵に戻すか或いはガス分離を行な
わない条件に転換しても水素発酵が極端に減衰すること
なく、このような運転操作も本発明の範囲に含まれるこ
とは当然である。In the present invention, the gas generated from the reduced-pressure hydrogen fermentation tank 7 is extracted from the gas discharge pipe 10 and passed through the gas separation membrane 11 under reduced pressure to separate the hydrogen gas 12, while the concentrated carbon dioxide. The gas 13 is taken out to another system, and is effectively used, processed and disposed according to the purpose.
Hydrogen-producing bacteria grow normally by reducing the hydrogen partial pressure in the fermenter by vacuum fermentation, gas separation, or a combination of both, but this bacterium is resistant to progressively higher concentrations of hydrogen at the genetic level. Therefore, after a certain period of time from the beginning of operation, vacuum fermentation and gas separation operations gradually return to normal pressure fermentation, or even if the conditions for gas separation are not changed, hydrogen fermentation will continue. Of course, such driving operation is also included in the scope of the present invention without being extremely damped.
【0037】有機物を分解された下水混合汚泥1は前記
の水素発酵の生物反応式からも容易に理解できるよう
に、可成りの濃度の低級カルボン酸(酪酸6,000m
g/l以上、酢酸500mg/l以上)が含まれてい
る。従って、発酵消化液は流出管14を経由して系外に
取り出されたのち、低級カルボン酸を分離精製して有効
利用するか或いは公共用水への放流を前提として生物学
的な処理によりさらに分解安定化する必要がある。ま
た、発酵消化汚泥は引抜き管15により外部に取り出さ
れ、適法な手段により処理、処分される。The sewage mixed sludge 1 obtained by decomposing organic matter can be easily understood from the above-mentioned biological reaction formula of hydrogen fermentation, so that the lower carboxylic acid (butyric acid 6,000 m 2
g / l or more, acetic acid 500 mg / l or more). Therefore, after the fermented digested liquid is taken out of the system through the outflow pipe 14, the lower carboxylic acid is separated and purified for effective use, or further decomposed by a biological treatment on the assumption that it is released into public water. Need to stabilize. Further, the fermented digested sludge is taken out to the outside by the drawing pipe 15 and treated and disposed by a proper means.
【0038】実施例2 図2に本発明の方法を実施するための工程図の他の例を
示す。図2においては、水素発酵槽を、減圧発酵を行な
う第一発酵槽23と常圧発酵を行なう第二発酵槽24に
2分割してある。両発酵槽23、24の総容積は、通常
のメタン生成細菌が増殖速度の点から必然的に洗流され
る3〜5日となるように設定することが望ましく、ま
た、第一発酵槽23と第二発酵槽24の容積比は凡そ
2:1となるように決定することが望ましいが、本発明
は、この比率に限定されるものではない。Embodiment 2 FIG. 2 shows another example of a process diagram for carrying out the method of the present invention. In FIG. 2, the hydrogen fermentation tank is divided into two parts, a first fermentation tank 23 for performing reduced pressure fermentation and a second fermentation tank 24 for performing atmospheric fermentation. It is desirable to set the total volume of both fermenters 23 and 24 so that it is 3 to 5 days in which normal methanogenic bacteria are inevitably washed out in terms of growth rate. It is desirable to determine the volume ratio of the second fermenter 24 to be approximately 2: 1, but the present invention is not limited to this ratio.
【0039】まず、下水混合汚泥21は流入管22によ
り第一発酵槽に導入される。第一発酵槽(減圧水素発酵
槽)23で水素発酵された発酵液は移送管により第二発
酵槽(常圧発酵)24に導入され、この槽で水素発酵の
仕上げを受ける。第二発酵槽24は一種のORP調整槽
的な機能を持ち、槽の底部からブロワー32により空気
を緩慢に送り込み、水素生産菌に好適なORPよりも若
干高め(正値に近い値)のORP値まで槽内液を曝気す
る。この槽のORP値は槽に設けられたORP感知セン
サー29で監視される。ブロワー32からの送気は、ガ
ス排出管30によって発生した主として炭酸ガスと共に
大気中に放散される。First, the sewage mixed sludge 21 is introduced into the first fermentation tank through the inflow pipe 22. The fermented liquid that has been hydrogen-fermented in the first fermentation tank (reduced pressure hydrogen fermentation tank) 23 is introduced into the second fermentation tank (normal pressure fermentation) 24 through a transfer pipe, and the hydrogen fermentation is finished in this tank. The second fermenter 24 has a kind of ORP adjusting tank function, and slowly blows air from the bottom of the tank by the blower 32, which is slightly higher than the ORP suitable for hydrogen-producing bacteria (a value close to a positive value). Aerate the liquid in the tank to the specified value. The ORP value of this tank is monitored by an ORP detection sensor 29 provided in the tank. The air supplied from the blower 32 is diffused into the atmosphere together with mainly carbon dioxide gas generated by the gas discharge pipe 30.
【0040】さらに、ORPを水素生産菌に好適な値よ
りも高めに調整された第二発酵槽24の発酵液は、発酵
液循環ポンプ33と循環管34によって生物反応系内を
連続的或いは間歇的に循環するが、この循環液は、分岐
管35により下水混合汚泥21に合流するか或いは分岐
管36により第一発酵槽に導入される。図2に例示した
プロセスの主たる狙いは、図1に例示したプロセスが、
減圧水素発酵槽内の発酵液のORPを水素生産細菌の増
殖に適した、またメタン発酵を抑制するに適した範囲に
調整するのに可成りの熟練を必要とするのに対して、適
度の液循環により簡単な操作で、希望するORP値に正
確に制御することが出来るだけでなく、主発酵が行なわ
れる第一発酵槽23で主役を演じている水素生産菌に直
接酸素が接触する機会がないので、水素発酵が円滑に行
なわれるという利点がある。Further, the fermented liquor of the second fermenter 24 whose ORP is adjusted to be higher than a value suitable for hydrogen-producing bacteria is continuously or intermittently in the biological reaction system by the fermented liquor circulation pump 33 and the circulation pipe 34. The circulation liquid is circulated as desired, and the circulating liquid is joined to the sewage mixed sludge 21 through the branch pipe 35 or introduced into the first fermentation tank through the branch pipe 36. The main aim of the process illustrated in FIG. 2 is that the process illustrated in FIG.
The ORP of the fermented liquor in the reduced pressure hydrogen fermenter requires a considerable amount of skill to adjust the ORP to a range suitable for the growth of hydrogen-producing bacteria and suitable for suppressing methane fermentation, Opportunity to directly contact oxygen with hydrogen-producing bacteria that play a leading role in the first fermentation tank 23 where main fermentation is performed, as well as being able to accurately control the desired ORP value with a simple operation by liquid circulation. Therefore, there is an advantage that hydrogen fermentation can be carried out smoothly.
【0041】また、第一発酵槽23のORP調整をさら
に厳密に行なうために、第一発酵槽23に設けられたO
RP感知センサー29と緩慢曝気用ブロワー32とを電
気的に連結し、槽内のORP値を検知しながらブロワー
32をON−OFFさせるように配慮されている。水素
発酵の阻害要因となる発生ガス中の水素ガスによる発酵
槽気相部の酸素分圧を低減させる方法としては、図1に
例示した方法と同様の方法を採用しており、第一発酵槽
23の発生ガスはガス排出管25により槽外に取り出さ
れ、ガス分離膜を減圧条件で通過し、水素ガス27と濃
縮炭酸ガス28とに分離する。減圧発酵の機構も図1と
全く同様である。発酵消化汚泥は、排出管37によって
槽外に引抜き、処理、処分される。Further, in order to perform the ORP adjustment of the first fermentation tank 23 more strictly, the O provided in the first fermentation tank 23 is adjusted.
It is considered that the RP detection sensor 29 and the slow aeration blower 32 are electrically connected and the blower 32 is turned on and off while detecting the ORP value in the tank. As a method of reducing the oxygen partial pressure in the gas phase part of the fermenter by the hydrogen gas in the generated gas, which is an inhibitory factor for hydrogen fermentation, the same method as that illustrated in FIG. 1 is adopted. The generated gas 23 is taken out of the tank by the gas discharge pipe 25, passes through the gas separation membrane under reduced pressure, and is separated into hydrogen gas 27 and concentrated carbon dioxide gas 28. The mechanism of vacuum fermentation is exactly the same as in FIG. The fermented digested sludge is drawn out of the tank by the discharge pipe 37, treated and disposed.
【0042】実施例3 この実施例は、有機性廃棄物として都市下水処理場から
発生する下水汚泥を水素発酵した処理例である。実験に
供した下水汚泥は、某下水処理場の重力沈殿濃縮した最
初沈殿池汚泥と機械脱水した余剰活性汚泥とを、固形物
重量比が自然発生比に近似した2:1となるように混合
し、混合液の全固形物濃度がほぼ30g/lとなるよう
に水道水を加えて調整し、実験期間中は変質しないよう
に3〜5℃の冷暗所に保存した。表1に実験に供した下
水混合汚泥の一般的性状、組成を示す。Example 3 In this example, sewage sludge generated from an urban sewage treatment plant as organic waste is subjected to hydrogen fermentation. The sewage sludge used in the experiment was a mixture of the first settling basin sludge concentrated by gravity settling at a certain sewage treatment plant and the excess activated sludge mechanically dewatered so that the solids weight ratio was 2: 1 close to the natural generation ratio. Then, tap water was added to adjust the total solid content of the mixed solution to about 30 g / l, and the mixture was stored in a cool dark place at 3 to 5 ° C so as not to deteriorate during the experiment. Table 1 shows the general properties and composition of the sewage mixed sludge used in the experiment.
【0043】[0043]
【表1】 *1 最初沈殿池汚泥:余剰活性汚泥(機械脱水)=2:
1(重量比) *2 遠心分離・・・・3,000G,10分間[Table 1] * 1 First settling tank sludge: excess activated sludge (mechanical dehydration) = 2:
1 (weight ratio) * 2 Centrifugation ... 3,000G, 10 minutes
【0044】水素発酵槽の容積は、実際の水張り容積
(有効容積)が5リットルの円筒型発酵槽を3基製作
し、これらを30℃の恒温水槽にセットして、発酵日数
が4日の中温発酵を行なった。それぞれの水素発酵の条
件は次の通りである。実験条件 (1)対照 下水混合汚泥の嫌気性発酵 (2)下水混合汚泥の減圧水素発酵 微嫌気水素発酵 減圧度 −1,500mmAq (3)下水混合汚泥の常圧水素発酵 水素ガス分離膜による水素分圧の低減Regarding the volume of the hydrogen fermentation tank, three cylindrical fermenters having an actual water-filled volume (effective volume) of 5 liters were manufactured, and these were set in a constant temperature water tank of 30 ° C., and the number of fermentation days was 4 days. Medium temperature fermentation was performed. The conditions of each hydrogen fermentation are as follows. Experimental conditions (1) Anaerobic fermentation of control sewage mixed sludge (2) Reduced pressure hydrogen fermentation of mixed sewage sludge Microanaerobic hydrogen fermentation Decompression degree -1,500 mmAq (3) Atmospheric pressure hydrogen fermentation of mixed sewage sludge Hydrogen by hydrogen gas separation membrane Reduction of partial pressure
【0045】本発明の実施例に使用した水素発酵槽は、
有効容積が5リットルで規模が小さいため、本発明にお
ける発酵槽の減圧システムをそのまま実施例の実験装置
に適用するには装置的に可成りの困難が伴い、実験結果
の正確、妥当な評価に反って支障を来すことになる。そ
こで、実験(2)の水素発酵槽は、真空ポンプにより全
槽が実質的に−1,500mmAqとなるように自動的
に減圧制御し、減圧発酵を行なった。実験(3)に用い
た水素ガス分離膜は、某社製の芳香族ポリイミドを素材
とする分離膜であり、長さが約290mm,直径が約5
0mmの円筒状の製品であり、出来合いの分離装置にセ
ットして使用した。The hydrogen fermenter used in the examples of the present invention is
Since the effective volume is 5 liters and the scale is small, it is difficult to apply the decompression system of the fermenter according to the present invention to the experimental apparatus of the example as it is, and it is difficult in terms of the apparatus. It will warp and cause trouble. Therefore, in the hydrogen fermentation tank of the experiment (2), the vacuum pump was used to automatically reduce the pressure of the whole tank to substantially -1,500 mmAq, and the fermentation was carried out under reduced pressure. The hydrogen gas separation membrane used in the experiment (3) is a separation membrane made of an aromatic polyimide manufactured by a certain company and has a length of about 290 mm and a diameter of about 5 mm.
It was a 0 mm cylindrical product, and was set in a ready-made separation device and used.
【0046】水素ガス分離の条件としては、減圧度−
1.5psigの減圧条件で、発酵槽からの水素ガス
(約70%)と炭酸ガス(約30%)の混合ガスを吸引
し、分離される水素ガスの純度は90〜95%を期待し
た。実際の運転では、分離装置の能力が過大なために稼
働時間は短く、運転3min/休止57min程度であ
った。The conditions for hydrogen gas separation are:
Under a reduced pressure condition of 1.5 psig, a mixed gas of hydrogen gas (about 70%) and carbon dioxide gas (about 30%) was sucked from the fermenter, and the purity of the separated hydrogen gas was expected to be 90 to 95%. In the actual operation, the operating time was short because the capacity of the separation device was excessive, and the operation was about 3 min / interruption 57 min.
【0047】供試した下水混合汚泥は発酵槽に投入(回
分式)する前に緩慢な曝気を行い、供試汚泥のORPが
所定のORPよりも高めとなるように、具体的にはOR
P−50〜−100mVとなるように調整したのちに発
酵槽に投入した。3基の水素発酵槽内溶液のORPは、
それぞれにORP感知センサーを設置し、ORP値を監
視しながら水素生産菌が増殖するのに好適な−150m
Vを設定値として運転した。The sewage mixed sludge tested is slowly aerated before being put into the fermenter (batch type) so that the ORP of the sample sludge is higher than a predetermined ORP.
After adjusting to P-50 to -100 mV, it was put into a fermenter. The ORP of the three hydrogen fermentor solutions is
Each is equipped with an ORP sensor and is suitable for growing hydrogen-producing bacteria while monitoring the ORP value -150m
It was operated with V as the set value.
【0048】それぞれの発酵槽に対する下水混合汚泥の
注入量は1.25リットル/日、従って、3基の発酵槽
とも汚泥の滞留時間は計算上4日となる。発酵消化液
は、遠心分離器を用いて3,000Gの遠心力、10分
間で浮遊物を強制的に分離除去し、水質分析の試料に供
した。以上の実験装置、実験条件における検証実験は、
運転が定常状態に達してから5ヵ月間継続し、その中間
過程での1ヵ月間の処理成績(平均値)を表2に示し
た。The injection amount of the sewage mixed sludge into each fermenter was 1.25 liters / day, so that the residence time of sludge in the three fermenters was calculated to be 4 days. The fermented digested liquid was subjected to a centrifugal force of 3,000 G for 10 minutes by using a centrifugal separator to forcibly separate and remove suspended solids, and then used as a sample for water quality analysis. The verification experiment under the above experimental apparatus and experimental conditions is
Table 2 shows the treatment results (average value) for 1 month in the intermediate process, which was continued for 5 months after the operation reached a steady state.
【0049】[0049]
【表2】 [Table 2]
【0050】検証実験によって得られた結果を要約する
と次の通りである。 (1)表2の実験結果からも容易に理解できるように、
下水の混合汚泥を、ORPを調整してから単に嫌気性発
酵(ほぼ常圧に等しい圧条件)しても水素発酵が優先的
に進行することはなく、しかも発酵日数が4〜5日程度
ではメタン発酵が確実に優先する。 (2)さらに、この程度の発酵日数では有機物の可溶化
は進むが有機物の分解率は低く、メタン発酵は水素発酵
には優先するが酸発酵優先型のメタン発酵であり、発生
ガスの絶対量が少ないだけでなく、発酵消化液には高濃
度に酢酸、プロピオン酸などの低級カルボン酸が含まれ
る。The results obtained by the verification experiment are summarized as follows. (1) As can be easily understood from the experimental results in Table 2,
Even if the mixed sludge of sewage is subjected to anaerobic fermentation (pressure condition almost equal to atmospheric pressure) after adjusting the ORP, hydrogen fermentation does not proceed preferentially, and the number of fermentation days is about 4 to 5 days. Methane fermentation is definitely a priority. (2) Furthermore, the solubilization of organic matter proceeds in such a number of fermentation days, but the decomposition rate of organic matter is low, and methane fermentation is a methane fermentation in which acid fermentation has priority but hydrogen fermentation has priority. Not only is it low in content, but the fermentation digestive juice also contains high concentrations of lower carboxylic acids such as acetic acid and propionic acid.
【0051】(3)これに対して、下水混合汚泥を微嫌
気としたのち、水素発酵槽の減圧度を−1,500mm
Aqに連続的に設定した減圧水素発酵法では明らかにメ
タン発酵は抑制され、水素発酵が優先的に進行する。発
生ガスの絶対量も実験1に比較して約32%も増加し、
しかも発生ガス中には約70%のクリーンエネルギーで
ある水素が含まれる。さらに、当然のことながら、発酵
液のCOD除去率、有機物の除去率は実験1よりも遙か
に優れている。(3) On the other hand, after making the sewage mixed sludge slightly anaerobic, the degree of pressure reduction of the hydrogen fermentation tank is -1,500 mm.
In the reduced-pressure hydrogen fermentation method in which Aq is continuously set, methane fermentation is obviously suppressed, and hydrogen fermentation proceeds preferentially. The absolute amount of generated gas also increased by about 32% compared to Experiment 1,
Moreover, the generated gas contains hydrogen, which is about 70% of clean energy. Furthermore, naturally, the COD removal rate of the fermented liquor and the organic matter removal rate are far superior to those of Experiment 1.
【0052】(4)さらに、実験3においては、微嫌気
下水混合汚泥を減圧発酵ではなく、ガス分離膜により発
生ガス中の水素ガスを系外に取り出し、発酵槽気相部の
水素分圧を低減する方法で水素発酵を試行したが、表2
の実験結果が示すように、実験2の減圧発酵とほぼ同等
の効果があり、水素発酵がメタン発酵に優先して進行し
た。処理結果としての水質的所見及びガス発生に関する
所見も、実験2の実験結果に対して遜色はないものと判
断される。(4) Further, in Experiment 3, the slightly anaerobic sewage mixed sludge was not subjected to reduced pressure fermentation, but the hydrogen gas in the generated gas was taken out of the system by the gas separation membrane, and the hydrogen partial pressure in the gas phase part of the fermentation tank was adjusted. The hydrogen fermentation was tried by the method of reducing, but Table 2
As shown by the experimental results of 1., there was almost the same effect as the reduced pressure fermentation of Experiment 2, and hydrogen fermentation proceeded prior to methane fermentation. The water quality findings and the gas generation findings as the treatment results are judged to be comparable to the experimental results of Experiment 2.
【0053】(5)メタン発酵に対して水素発酵を優先
させる手段としての減圧発酵及びガス分離膜による水素
分圧の低減化法は、運転当初の2〜3ヵ月間適用すれ
ば、混合培養液中の水素生産菌は遺伝子レベルの質的転
換により高濃度水素、高水素分圧の環境に馴致される。
本発明の実施例では、特に実験結果を提示しなかった
が、検証実験の最後の過程で試行したところ、約1ヵ月
間に渡り処理効率は10〜15%低下したが、この状態
で平衡に達した。 (6)水素発酵槽のORP値を、例えば−150mVに
調整、維持する補助的手段としてクエン酸チタニウムを
併用することは効果がある。特に混合液のpHが5.0
〜6.0の範囲においては実用的に効果があると判断さ
れる。(5) The reduced-pressure fermentation as a means for giving priority to hydrogen fermentation over methane fermentation and the method for reducing the hydrogen partial pressure by the gas separation membrane are applied to the mixed culture solution for 2 to 3 months at the beginning of the operation. The hydrogen-producing bacterium inside is adapted to the environment of high concentration hydrogen and high hydrogen partial pressure by qualitative conversion at the gene level.
In the examples of the present invention, although no experimental result was particularly presented, when it was tried in the final stage of the verification experiment, the treatment efficiency was reduced by 10 to 15% for about one month, but in this state, equilibrium was reached. Reached (6) It is effective to use titanium citrate together as an auxiliary means for adjusting and maintaining the ORP value of the hydrogen fermentation tank to, for example, −150 mV. Especially when the pH of the mixture is 5.0
It is judged to be practically effective in the range of up to 6.0.
【0054】[0054]
【発明の効果】本発明は、詳述したように、従来技術と
は全く異なる視点、思想からの発想による革新的な発明
であり、次のような作用効果を有する。 (1)有機性廃棄物を嫌気的条件下で処理するに当た
り、有機性廃棄物例えば下水混合汚泥を予め緩慢な曝気
を行い、発酵槽内液のORPを水素生産菌が増殖するの
に好適な値−100〜−200mVに調整しながら嫌気
性発酵を行なうことにより、地球温暖化を助長するメタ
ンガスと炭酸ガスを大量に発生する所謂メタン発酵を抑
制し、クリーンエネルギーを大量に発生する水素発酵を
確実に進行させることが出来る。As described in detail, the present invention is an innovative invention based on a concept and a concept completely different from the prior art, and has the following operational effects. (1) When treating organic waste under anaerobic conditions, the organic waste, for example, sewage mixed sludge is subjected to slow aeration in advance, which is suitable for the hydrogen-producing bacteria to grow in the ORP of the liquid in the fermentation tank. By performing anaerobic fermentation while adjusting the value to -100 to -200 mV, the so-called methane fermentation that generates a large amount of methane gas and carbon dioxide that promotes global warming is suppressed, and the hydrogen fermentation that generates a large amount of clean energy is performed. You can surely proceed.
【0055】従って、本発明は、世界的に逼迫している
エネルギー問題への寄与だけでなく、同時に地球温暖化
防止にも貢献することが出来る。 (2)本発明による減圧発酵により、また、ガス分離膜
による水素の分離により水素発酵槽の水素分圧を低減す
ることにより、吸エルゴン反応を実質的に発エルゴン反
応に転換することができ、この操作により水素発酵を確
実に正の方向に進行させることが出来る。Therefore, the present invention can contribute not only to the energy problem that is tight worldwide but also to the prevention of global warming. (2) By the reduced pressure fermentation according to the present invention, or by reducing the hydrogen partial pressure in the hydrogen fermentation tank by separating hydrogen with a gas separation membrane, the absorbed ergon reaction can be substantially converted into the ergon reaction. By this operation, hydrogen fermentation can be reliably advanced in the positive direction.
【図1】本発明の方法の一例を示す工程図。FIG. 1 is a process chart showing an example of a method of the present invention.
【図2】本発明の方法の他の例を示す工程図。FIG. 2 is a process drawing showing another example of the method of the present invention.
【符号の説明】 1、21:有機性廃棄物、2、22:流入管、3:OR
P調整槽、4、32:ブロワー、5:排気、6:移送
管、7:嫌気性減圧発酵槽、8:攪拌機、9、29:O
RPセンサ、10、25、30:ガス排出管、11、2
6:ガス分離膜、12、27:水素、13、28:濃縮
CO2 、14:流出管、15、37:消化汚泥引抜き
管、23:第一減圧発酵槽、24:第二常圧発酵槽、3
1:送気管、33:ポンプ、34:発酵液循環管、3
5、36:分岐管[Explanation of Codes] 1, 21: Organic waste, 2, 22: Inflow pipe, 3: OR
P adjusting tank, 4, 32: blower, 5: exhaust, 6: transfer pipe, 7: anaerobic vacuum fermentation tank, 8: stirrer, 9, 29: O
RP sensor, 10, 25, 30: gas exhaust pipe, 11, 2
6: Gas separation membrane, 12, 27: Hydrogen, 13, 28: Concentrated CO 2 , 14: Outflow pipe, 15, 37: Digested sludge drawing pipe, 23: First reduced pressure fermentation tank, 24: Second atmospheric pressure fermentation tank Three
1: Air supply pipe, 33: Pump, 34: Fermentation liquid circulation pipe, 3
5, 36: Branch pipe
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 3/00 8114−4B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C12P 3/00 8114-4B
Claims (5)
素発酵法において、前記水素発酵における発酵液を酸化
還元電位が、−100〜−200mVの範囲の微嫌気条
件となるように制御しながら発酵させることを特徴とす
る有機性廃棄物の微嫌気水素発酵法。1. In a slightly anaerobic hydrogen fermentation method of hydrogen-fermenting organic waste, while controlling the fermentation broth in the hydrogen fermentation so that the oxidation-reduction potential is in a range of -100 to -200 mV. A slightly anaerobic hydrogen fermentation method for organic waste, which is characterized by fermentation.
は、発生ガスをガス分離膜を通過させて水素と炭酸ガス
を分離させながら行うことを特徴とする請求項1記載の
有機性廃棄物の微嫌気水素発酵法。2. The organic waste according to claim 1, wherein the hydrogen fermentation is performed by vacuum fermentation or while the generated gas is passed through a gas separation membrane to separate hydrogen and carbon dioxide gas. Slightly anaerobic hydrogen fermentation method for products.
緩慢曝気により有機性廃棄物の酸化還元電位を水素発酵
が遅滞なく進行する範囲に調整することを特徴とする請
求項1又は2記載の有機性廃棄物の微嫌気水素発酵法。3. The organic waste is characterized by adjusting the oxidation-reduction potential of the organic waste in advance to a range in which hydrogen fermentation proceeds without delay by slow aeration before fermentation. A slightly anaerobic hydrogen fermentation method for the described organic waste.
酵と常圧発酵を行う第二発酵とに分割し、第二発酵の発
酵液を緩慢曝気により水素発酵が遅滞なく進行する酸化
還元電位に調整し、この発酵液を有機性廃棄物に合流さ
せるか、又は第一発酵に連続的及び/又は間歇的に循環
させて行うことを特徴とする請求項1又は2記載の有機
性廃棄物の微嫌気水素発酵法。4. The redox in which the hydrogen fermentation is divided into a first fermentation in which reduced pressure fermentation is performed and a second fermentation in which atmospheric fermentation is performed, and a fermentation solution of the second fermentation is slowly aerated so that hydrogen fermentation proceeds without delay. 3. The organic waste according to claim 1 or 2, characterized in that the fermentation liquor is adjusted to an electric potential and the fermentation liquor is combined with the organic waste or continuously and / or intermittently circulated in the first fermentation. Slightly anaerobic hydrogen fermentation method for products.
サーにより、酸化還元電位が水素発酵に好適な範囲とな
るように緩慢曝気の風量を調整して行うことを特徴とす
る請求項1〜4のいずれか1項記載の有機性廃棄物の微
嫌気水素発酵法。5. The hydrogen fermentation is performed by using a redox potential sensor to adjust the air volume of slow aeration so that the redox potential falls within a range suitable for hydrogen fermentation. The method for slightly anaerobic hydrogen fermentation of organic waste according to any one of 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19532993A JPH0731998A (en) | 1993-07-13 | 1993-07-13 | Slightly anaerobic hydrogen fermentation method for organic waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19532993A JPH0731998A (en) | 1993-07-13 | 1993-07-13 | Slightly anaerobic hydrogen fermentation method for organic waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0731998A true JPH0731998A (en) | 1995-02-03 |
Family
ID=16339361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19532993A Pending JPH0731998A (en) | 1993-07-13 | 1993-07-13 | Slightly anaerobic hydrogen fermentation method for organic waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0731998A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001056938A1 (en) * | 2000-02-01 | 2001-08-09 | Marsden John Christopher | Process for production of hydrogen from anaerobically decomposed organic material |
WO2003052112A1 (en) * | 2001-12-19 | 2003-06-26 | Japan Science And Technology Corporation | Method of producing hydrogen gas by using hydrogen bacteria |
JP2003304893A (en) * | 2002-04-16 | 2003-10-28 | Sumitomo Heavy Ind Ltd | Method for producing organic acid, apparatus therefor and method for storage of organic acid |
JP2006223962A (en) * | 2005-02-16 | 2006-08-31 | Asahi Organic Chem Ind Co Ltd | Method for treating organic waste with hydrogen production by microorganisms |
US7138046B2 (en) | 1996-06-06 | 2006-11-21 | World Hydrogen Energy Llc | Process for production of hydrogen from anaerobically decomposed organic materials |
JP2007098271A (en) * | 2005-10-04 | 2007-04-19 | Sumitomo Heavy Ind Ltd | Organic acid generation method and organic acid generation system |
JP2007260602A (en) * | 2006-03-29 | 2007-10-11 | Sumitomo Heavy Industries Environment Co Ltd | Organic acid production method, organic acid production device and waste water treatment apparatus |
ES2292312A1 (en) * | 2005-09-23 | 2008-03-01 | Universidad De Leon | Method for obtaining hydrogen and methane from bioresidues, includes two phases, where in former phase aqueous suspension of bioresidues is introduced in reactor, and crushed to obtain particle size less than five millimeter |
WO2008058712A2 (en) * | 2006-11-14 | 2008-05-22 | Universität Duisburg-Essen | Method for generating hydrogen |
JP2011223985A (en) * | 2010-03-31 | 2011-11-10 | Central Res Inst Of Electric Power Ind | Method for hydrogen fermentation treatment |
US8227222B2 (en) | 2007-03-29 | 2012-07-24 | Hitachi Plant Technologies, Ltd. | Method and apparatus for producing hydrogen and microorganism-immobilization pellets used in the same |
-
1993
- 1993-07-13 JP JP19532993A patent/JPH0731998A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7138046B2 (en) | 1996-06-06 | 2006-11-21 | World Hydrogen Energy Llc | Process for production of hydrogen from anaerobically decomposed organic materials |
KR100808736B1 (en) * | 2000-02-01 | 2008-02-29 | 로이초우두리 수코말 | Process for producing hydrogen from anaerobic decomposed organic material |
WO2001056938A1 (en) * | 2000-02-01 | 2001-08-09 | Marsden John Christopher | Process for production of hydrogen from anaerobically decomposed organic material |
WO2003052112A1 (en) * | 2001-12-19 | 2003-06-26 | Japan Science And Technology Corporation | Method of producing hydrogen gas by using hydrogen bacteria |
US6860996B2 (en) | 2001-12-19 | 2005-03-01 | Japan Science And Technology Corporation | Method of producing hydrogen gas by using hydrogen bacteria |
JP2003304893A (en) * | 2002-04-16 | 2003-10-28 | Sumitomo Heavy Ind Ltd | Method for producing organic acid, apparatus therefor and method for storage of organic acid |
JP2006223962A (en) * | 2005-02-16 | 2006-08-31 | Asahi Organic Chem Ind Co Ltd | Method for treating organic waste with hydrogen production by microorganisms |
ES2292312A1 (en) * | 2005-09-23 | 2008-03-01 | Universidad De Leon | Method for obtaining hydrogen and methane from bioresidues, includes two phases, where in former phase aqueous suspension of bioresidues is introduced in reactor, and crushed to obtain particle size less than five millimeter |
JP2007098271A (en) * | 2005-10-04 | 2007-04-19 | Sumitomo Heavy Ind Ltd | Organic acid generation method and organic acid generation system |
JP2007260602A (en) * | 2006-03-29 | 2007-10-11 | Sumitomo Heavy Industries Environment Co Ltd | Organic acid production method, organic acid production device and waste water treatment apparatus |
WO2008058712A2 (en) * | 2006-11-14 | 2008-05-22 | Universität Duisburg-Essen | Method for generating hydrogen |
WO2008058712A3 (en) * | 2006-11-14 | 2009-07-02 | Univ Duisburg Essen | Method for generating hydrogen |
US8227222B2 (en) | 2007-03-29 | 2012-07-24 | Hitachi Plant Technologies, Ltd. | Method and apparatus for producing hydrogen and microorganism-immobilization pellets used in the same |
JP2011223985A (en) * | 2010-03-31 | 2011-11-10 | Central Res Inst Of Electric Power Ind | Method for hydrogen fermentation treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1302446B1 (en) | Method for sludge reduction in a waste water treatment system | |
Arvanitoyannis et al. | Wine waste treatment methodology | |
EP0641296B1 (en) | Process for degrading organic matter | |
CN101538103A (en) | Sewage treatment method and equipment thereof | |
KR101565503B1 (en) | Method for Liquid Fertilizer of livestock excretions using the Selective aeration | |
CN105645687A (en) | Sewage biological reaction device and process integrating PHAs synthesis and nitrogen and phosphorus removal | |
KR100352811B1 (en) | Methods for rapid digestion of food wastes and for methane production using three-stage methane fermentaion system | |
JPH0731998A (en) | Slightly anaerobic hydrogen fermentation method for organic waste | |
US5397473A (en) | Biological treatment method for water | |
US12060291B2 (en) | Method for treatment and resource utilization of acidic organic wastewater | |
JP2511336B2 (en) | Method and equipment for hydrogen production from organic wastewater and sludge | |
Romero et al. | Microbiological purification kinetics of wine‐distillery wastewaters | |
JPH07136694A (en) | Pressurized hydrogen fermentation process for organic waste | |
JP2005103375A (en) | Methane fermentation treatment method and apparatus | |
EP1679287A1 (en) | Wastewater treatment method utilizing white rot and brown rot fungi | |
JPH04126594A (en) | Treatment of waste water | |
JPH0731484A (en) | Method for biologically producing hydrogen | |
US7201847B1 (en) | Wastewater treatment method utilizing white rot and brown rot fungi | |
WO2004028983A1 (en) | A method of processing organic wastewater | |
JP3699999B2 (en) | Treatment method of organic sludge | |
CN209619122U (en) | A kind of anaerobic membrane bioreactor | |
JP2003340412A (en) | Anaerobic digestion treatment method of organic waste and apparatus therefor | |
CN1235815C (en) | Treatment technology of polyvinglalcohol floating pulp waste water | |
CN114426327B (en) | Method for quickly starting biochemical unit of sewage treatment plant after shutdown maintenance | |
JP2002086185A (en) | Wastewater treatment method and apparatus |