JPH07312509A - Irreversible circuit element - Google Patents
Irreversible circuit elementInfo
- Publication number
- JPH07312509A JPH07312509A JP10142094A JP10142094A JPH07312509A JP H07312509 A JPH07312509 A JP H07312509A JP 10142094 A JP10142094 A JP 10142094A JP 10142094 A JP10142094 A JP 10142094A JP H07312509 A JPH07312509 A JP H07312509A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- circuit device
- center electrode
- microwave
- microwave magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002427 irreversible effect Effects 0.000 title abstract 3
- 239000002223 garnet Substances 0.000 claims description 24
- 239000000696 magnetic material Substances 0.000 claims description 19
- 229910000859 α-Fe Inorganic materials 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- ICAWQJNNPMTGPS-UHFFFAOYSA-N [Fe].[V].[Ca] Chemical compound [Fe].[V].[Ca] ICAWQJNNPMTGPS-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract description 6
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 abstract 2
- 238000002955 isolation Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000010304 firing Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000002003 electrode paste Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Landscapes
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、サーキュレータ,アイ
ソレータ等の移動体通信用電子部品に関し、素子を小型
化し、信頼性を高め、さらに製造コストを低減すること
ができるようにした非可逆回路素子の構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile communication electronic component such as a circulator and an isolator, which is a nonreciprocal circuit device which can be miniaturized to improve reliability and further reduce manufacturing cost. Concerning the structure of.
【0002】[0002]
【従来の技術】従来、マイクロ波用磁性体と永久磁石は
プレス成形法により作製されている。特に、永久磁石で
は成形する際に磁場配向させるため、磁場を印加しなが
らプレス成形する方法を用いている。ここで、小型の非
可逆回路素子には、その素子に要求される寸法より大き
いマイクロ波用磁性体と永久磁石の焼成体を作製し、要
求寸法に研磨することで対応している。2. Description of the Related Art Conventionally, microwave magnetic materials and permanent magnets have been manufactured by press molding. In particular, a permanent magnet uses a method of press molding while applying a magnetic field in order to orient the magnetic field during molding. Here, a small non-reciprocal circuit device is dealt with by manufacturing a fired body of a microwave magnetic material and a permanent magnet larger than the size required for the device and polishing it to the required size.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、近年、
移動通信機器等の高周波機器の小型化,低コスト化,汎
用化が促進され、これらに使用される非可逆回路素子に
おいても小型化,低コスト化,汎用化が求められてい
る。ここで言う非可逆回路素子とは、たとえば電気的絶
縁状態で、かつ、交叉状に配設された複数の中心電極を
有し、その上部及び下部にマイクロ波用磁性体を配置
し、更に、永久磁石により直流磁界が印加される構造を
した素子、いわゆる集中定数型サーキュレータ、アイソ
レータなどである。これにより、これらに用いられるマ
イクロ波用磁性体と永久磁石では、小型で薄く、組み立
て工程での不良を軽減して、低コスト化と汎用化に寄与
することが重要とされている。However, in recent years,
High-frequency devices such as mobile communication devices are being downsized, reduced in cost, and generalized, and nonreciprocal circuit elements used therein are also required to be downsized, reduced in cost, and generalized. The non-reciprocal circuit element referred to here has, for example, a plurality of center electrodes arranged in an electrically insulating state and in a cross shape, and a microwave magnetic material is disposed above and below the center electrodes. An element having a structure in which a DC magnetic field is applied by a permanent magnet, a so-called lumped constant type circulator, an isolator, or the like. As a result, it is important for the microwave magnetic body and permanent magnet used for these to be small and thin, reduce defects in the assembly process, and contribute to cost reduction and general-purpose use.
【0004】これに対して、従来のプレス成形法により
作製されたマイクロ波用磁性体と永久磁石では、小型で
薄い成形体を寸法精度良く作製するのは極めて困難であ
り、これらの要求に十分対応できない。そこで、マイク
ロ波用磁性体に関しては、小型で薄い焼成体を得るため
に研磨を必要とし、製造コスト高騰の要因にもなってい
る。On the other hand, it is extremely difficult to manufacture a compact and thin molded body with high dimensional accuracy using the conventional magnetic material for microwaves and permanent magnets manufactured by the press molding method. I can not cope. Therefore, with respect to the magnetic material for microwaves, polishing is required to obtain a small and thin fired body, which is also a factor of increasing the manufacturing cost.
【0005】本発明は、中心電極を埋没したマイクロ波
用磁性体と永久磁石とを一体とした焼成体で構成するこ
とにより、非可逆回路素子の小型化,低コオスト化,汎
用化を促進することを目的とする。According to the present invention, a non-reciprocal circuit device is downsized, cost-effective, and generalized by using a fired body in which a magnetic body for microwaves having a center electrode buried therein and a permanent magnet are integrated. The purpose is to
【0006】[0006]
【課題を解決するための手段】前記目標を達成するた
め、本願請求項1に記載の発明は、電気的絶縁状態で、
かつ、交叉状に配設された複数の中心電極を有し、上記
中心電極がマイクロ波用磁性体に埋設されるとともに、
永久磁石により直流磁界が印加されるように構成された
非可逆回路素子において、上記中心電極を埋設したマイ
クロ波用磁性体と、永久磁石とを一体焼結することを特
徴としている。In order to achieve the above-mentioned object, the invention according to claim 1 of the present application is an electrically insulated state,
And, having a plurality of center electrodes arranged in a cross shape, the center electrodes are embedded in a microwave magnetic material,
In a non-reciprocal circuit device configured to apply a DC magnetic field by a permanent magnet, the microwave magnetic body having the center electrode embedded therein and the permanent magnet are integrally sintered.
【0007】請求項2の発明は、請求項1において、マ
イクロ波用磁性体にカルシウムバナジウム鉄ガーネット
を用い、永久磁石にMeO・6Fe2 03 (Meは2価
の金属)で表されるマグネットプランバイト型六方晶系
フェライトを用いて一体焼結したことを特徴としてい
る。[0007] magnet invention of claim 2, in claim 1, using a calcium vanadium iron garnet magnetic microwave, MeO · 6Fe 2 0 3 in the permanent magnet (Me is the bivalent metal) represented by It is characterized in that it is integrally sintered by using a planvite type hexagonal ferrite.
【0008】請求項3の発明は、請求項1又は2におい
て、上記マイクロ波用磁性体の生シートと、上記中心電
極が形成されたマイクロ波用磁性体の生シートと、永久
磁石の生シートとを積層圧着し、同時に焼成したことを
特徴としている。According to a third aspect of the present invention, in the first or second aspect, the raw sheet of the microwave magnetic material, the raw sheet of the microwave magnetic material on which the center electrode is formed, and the raw sheet of the permanent magnet are used. And is laminated and pressure-bonded and simultaneously fired.
【0009】請求項4の発明は、請求項1ないし3の何
れかにおいて、上記永久磁石と上記マイクロ波用磁性体
との間に金属を埋設したことを特徴としている。According to a fourth aspect of the invention, in any one of the first to third aspects, a metal is embedded between the permanent magnet and the microwave magnetic body.
【0010】[0010]
【作用】請求項1の発明によれば、中心電極を埋設した
マイクロ波用磁性体と、永久磁石とを一体焼結した焼成
体で構成したので、手作業による組み立て工程を省略で
き、素子の小型化に対応できる。According to the invention of claim 1, since the microwave magnetic body having the center electrode embedded therein and the permanent magnet are integrally sintered, the sintered body can be omitted, and the manual assembling process can be omitted. Can be downsized.
【0011】請求項2の発明によれば、焼成温度が近い
ために一体焼結が可能である。マイクロ波用磁性体に磁
気的損失が極めて低いカルシウムバナジウム鉄ガーネッ
トを用いたので、低損失な非可逆回路素子が得られる。According to the second aspect of the present invention, since the firing temperatures are close to each other, it is possible to perform integral sintering. Since calcium vanadium iron garnet with extremely low magnetic loss is used for the microwave magnetic material, a low loss nonreciprocal circuit device can be obtained.
【0012】請求項3の発明によれば、シート積層枚数
を調整することで、マイクロ波用磁性体磁性体と永久磁
石の厚さを制御できるとともに、マイクロ波用磁性体と
永久磁石の部分を薄くした非可逆回路素子を容易に作製
することが可能である。According to the invention of claim 3, the thickness of the magnetic body for microwaves and the thickness of the permanent magnet can be controlled by adjusting the number of laminated sheets, and the portions of the magnetic body for microwaves and the permanent magnet can be controlled. It is possible to easily manufacture a thin nonreciprocal circuit device.
【0013】また、請求項4の発明によれば、マイクロ
波用磁性体と永久磁石の間に電極を形成することにより
アース電極を設けることができるとともに、永久磁石と
マイクロ波用磁性体の組成成分が相互拡散することを防
止できる。According to the invention of claim 4, a ground electrode can be provided by forming an electrode between the microwave magnetic body and the permanent magnet, and the composition of the permanent magnet and the microwave magnetic body can be provided. The components can be prevented from interdiffusing.
【0014】[0014]
【実施例】以下、この発明に係る高周波用非可逆回路素
子の実施例を添付図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a high frequency nonreciprocal circuit device according to the present invention will be described below with reference to the accompanying drawings.
【0015】〔実施例1〕焼成後に酸化カルシウムと酸
化イットリウム、酸化鉄約60mol%、酸化バナジウ
ム約10mol%を主成分とするCa−V−Fe系ガー
ネットになる仮焼粉を作製する。上記Ca−V−Fe系
ガーネット仮焼粉を粉砕し、ポリビニルプチラールと分
散剤、そして可塑剤等と混合して、液状の磁性体スラリ
ーを作製した。その後、ドクターブレード法により、厚
さ10〜200μmのCa−V−Fe系ガーネット生シ
ートを作製し、第1図に示すように、打ち抜かれたCa
−V−Fe系ガーネット生シート1の表面に、スクリー
ン印刷法でパラジウムまたは白金粉末と有機溶剤を混合
した中心電極用ペーストを、約120度づつ回転させて
印刷し、中心電極6を印刷した3種類のCa−V−Fe
系ガーネット生シート2,3,4を作製した。[Example 1] After firing, a calcined powder to be a Ca-V-Fe garnet containing calcium oxide, yttrium oxide, iron oxide about 60 mol% and vanadium oxide about 10 mol% as main components is prepared. The Ca-V-Fe-based garnet calcined powder was pulverized and mixed with polyvinyl butyral, a dispersant, a plasticizer and the like to prepare a liquid magnetic slurry. After that, a Ca-V-Fe-based garnet green sheet having a thickness of 10 to 200 μm was prepared by a doctor blade method, and as shown in FIG.
On the surface of the -V-Fe-based garnet raw sheet 1, a center electrode paste prepared by mixing palladium or platinum powder and an organic solvent by a screen printing method was rotated by about 120 degrees and printed to print the center electrode 6. Types of Ca-V-Fe
The garnet raw sheets 2, 3 and 4 were produced.
【0016】さらに、化学式BaO・6Fe2 O3 ,又
はSrO・6Fe2 O3 で表されるマグネットブランバ
イト系六方晶系の結晶構造が焼成体で形成するようにし
た仮焼粉を作製した後、巣磁区粒子の臨界粒子以下に粉
砕した。粉砕した仮焼粉をポリビニルブチラールと分散
剤、そして可塑剤等と混合して、液状の磁性体スラリー
を作成した。その後、ドクターブレード法により、マグ
ネトブランバイト型六方晶系フェライト生シートを作成
した。作成したマグネトブランバイト型六方晶系フェラ
イト生シートは、厚さ10〜200μm程度であり、シ
ート面に対して垂直方向への配向度は45〜50%程度
であった。Further, after producing a calcined powder in which a magnet rambitite hexagonal crystal structure represented by the chemical formula BaO.6Fe 2 O 3 or SrO.6Fe 2 O 3 is formed in the fired body, The particles were crushed to below the critical particles of the nest magnetic domain particles. The pulverized calcined powder was mixed with polyvinyl butyral, a dispersant, a plasticizer and the like to prepare a liquid magnetic substance slurry. Then, a magnetobrumbite type hexagonal ferrite green sheet was prepared by the doctor blade method. The produced magnetobrumbite type hexagonal ferrite green sheet had a thickness of about 10 to 200 μm, and the degree of orientation in the direction perpendicular to the sheet surface was about 45 to 50%.
【0017】ここで図2に示す通りに、中心電極5を印
刷した各Ca−V−Fe系ガーネット生シート2,3,
4を複数枚積層し、中心電極を印刷していないCa−V
−Fe系ガーネット生シート1を上下に積み重ねた。さ
らに、その上下面にマグネトブランバイト型六方晶系フ
ェライト生シート5を数枚〜数十枚積層圧着し、双方の
合計の厚さ500μm〜十数mm程度の一体型成形体A
を得た。Here, as shown in FIG. 2, each Ca-V-Fe-based garnet green sheet 2, 3, on which the center electrode 5 is printed is printed.
Ca-V in which 4 or more sheets are laminated and the center electrode is not printed
—Fe-based garnet raw sheets 1 were stacked one above the other. Further, several to several tens of magneto-branbite type hexagonal ferrite green sheets 5 are laminated and pressure-bonded on the upper and lower surfaces thereof, and the total thickness of both is 500 μm to several tens of mm.
Got
【0018】図3に示すように、上記積層体における中
心電極6が交差する点を中心点として約5mm直径の円
板状に内抜き、未約成チップ7を作製した。上記未焼成
チップを焼く400℃で脱脂した後、焼成温度1000
〜1450℃で同時焼成し、中心電極を埋設したマイク
ロ波用磁性体と永久磁石とを一体にした焼成体を得た。As shown in FIG. 3, a non-compacted chip 7 was produced by punching out in a disk shape having a diameter of about 5 mm with a center point of the center electrode 6 in the laminated body as a center point. Baking the above-mentioned unfired chips after degreasing at 400 ° C, firing temperature 1000
Simultaneous firing was performed at ˜1450 ° C. to obtain a fired body in which the microwave magnetic body having the center electrode embedded therein and the permanent magnet were integrated.
【0019】そして上記一体にした焼成体の端面を研磨
した後、その端面に露出した各中心電極6に、ガラスフ
リットを含む金属ペーストを塗布して焼き付けを行い、
外部取り出し用電極を形成した。得られた一体焼成体の
上部及び下部に、アース電極を形成して上記中心電極6
の片側を接地し、上記中心電極6の他方に整合回路用容
量を設けた。最後に磁場6000〜11000〔Oe〕
で着磁し、金属ヨークで上記一体焼成体を挟み込んで、
磁気閉磁回路を形成し、サーキュレータ、アイソレータ
に代表される非可逆回路素子を構成した。After polishing the end face of the integrated fired body, a metal paste containing glass frit is applied to each center electrode 6 exposed on the end face and baked.
An external extraction electrode was formed. The center electrode 6 is formed by forming a ground electrode on the upper and lower parts of the obtained integrated fired body.
One side was grounded, and the matching circuit capacitor was provided on the other side of the center electrode 6. Finally magnetic field 6000 to 11000 [Oe]
Magnetize, sandwich the above-mentioned integrated fired body with a metal yoke,
A magnetic closed magnetic circuit was formed to construct a non-reciprocal circuit device represented by a circulator and an isolator.
【0020】本実施例では、Ca−V−Fe系ガーネッ
トと、マグネトブランバイト型六方晶系の永久磁石とを
一体焼成したので、手作業による組み立て工程を省略で
き、素子の小型化に対応でき、また焼成温度が近いため
に一体焼結が可能である。マイクロ波用磁性体に磁気的
損失が極めて低いカルシウムバナジウム鉄ガーネットを
用いたので、低損失な非可逆回路素子が得られる。In this embodiment, since the Ca-V-Fe garnet and the magnetobrambite type hexagonal permanent magnet are integrally fired, the manual assembling process can be omitted and the device can be miniaturized. Moreover, since the firing temperatures are close to each other, it is possible to perform integral sintering. Since calcium vanadium iron garnet with extremely low magnetic loss is used for the microwave magnetic material, a low loss nonreciprocal circuit device can be obtained.
【0021】また本実施例では、シート積層枚数を調整
することで、マイクロ波用磁性体磁性体と永久磁石の厚
さを制御できるとともに、マイクロ波用磁性体と永久磁
石の部分を薄くした非可逆回路素子を容易に作製するこ
とが可能である。In the present embodiment, the thickness of the microwave magnetic material and the permanent magnet can be controlled by adjusting the number of laminated sheets, and the microwave magnetic material and the permanent magnet are thinned. It is possible to easily manufacture the reversible circuit element.
【0022】〔実施例2〕実施例1と同様の方法を用い
て、厚さ10〜200μmのCa−V−Fe系ガーネッ
ト系生シート1と、約120度ずつ回転させて中心電極
6を印刷した3種類のCa−V−Fe系ガーネット生シ
ート2,3,4を作製した。[Embodiment 2] Using the same method as in Embodiment 1, a Ca-V-Fe based garnet-based green sheet 1 having a thickness of 10 to 200 μm and a center electrode 6 are printed by rotating each by about 120 degrees. Three types of Ca-V-Fe based garnet raw sheets 2, 3 and 4 were prepared.
【0023】さらに化学式BaO・6Fe2 O3 ,又は
SrO・6Fe2 O3 で表されるマグネトブランバイト
型六方晶系の結晶構造が焼成体で形成するようにした仮
焼粉を作製した後、単磁区粒子の臨界粒子以下に粉砕し
た。粉砕した仮焼粉をポリビニルブチラールと可塑剤と
有機溶剤とを液状バインダーと混練し、均一になるまで
混合した。そして図4に示すように、押し出し成形機8
から押し出して板状体とし、カレンダーロール9を通し
て厚さ130〜200μm程度のマグネトブランバイト
型六方晶系フェライト生シート5を得た。この圧延積層
成形法で得られたマグネトブランバイト型六方晶系フェ
ライト生シートはシート面に対して垂直方向への配向度
は50〜60%程度であった。Further, after preparing a calcined powder in which a magneto-branbite type hexagonal crystal structure represented by the chemical formula BaO.6Fe 2 O 3 or SrO.6Fe 2 O 3 is formed in the fired body, The particles were crushed to a size below the critical particle size of single domain particles. The pulverized calcined powder was kneaded with polyvinyl butyral, a plasticizer and an organic solvent with a liquid binder, and mixed until uniform. And as shown in FIG. 4, the extrusion molding machine 8
Was extruded into a plate-like body and passed through a calender roll 9 to obtain a magnetobrumbite type hexagonal ferrite green sheet 5 having a thickness of about 130 to 200 μm. The magneto-branbite type hexagonal ferrite green sheet obtained by this roll lamination method had an orientation degree in the direction perpendicular to the sheet surface of about 50 to 60%.
【0024】ここで実施例1と同様に、図2に示す通
り、中心電極6を印刷した各Ca−V−Fe系ガーネッ
ト生シート2,3,4を複数枚積層し、中心電極を印刷
していないCa−V−Fe系ガーネット生シート1を上
下に積み重ねた。さらに、その上下面にマグネトブラン
バイト型六方晶系フェライト生シート5を数枚〜数十枚
積層圧着し、中心電極6が交差する点を中心点として約
5mm直径の円板状に打ち抜き、焼成温度1000〜1
450℃で同時焼成し、中心電極を埋設したマイクロ波
用磁性体と永久磁石とを一体にした焼成体を得た。Here, as in Example 1, as shown in FIG. 2, a plurality of Ca-V-Fe based garnet green sheets 2, 3 and 4 on which the center electrode 6 is printed are laminated and the center electrode is printed. The raw Ca-V-Fe-based garnet sheets 1 that were not used were stacked one above the other. Further, several to several tens of magneto-branbite type hexagonal ferrite green sheets 5 are laminated and pressed on the upper and lower surfaces, punched into a disk shape having a diameter of about 5 mm with a point where the center electrodes 6 intersect as a center point, and fired. Temperature 1000-1
Simultaneous firing was performed at 450 ° C. to obtain a fired body in which the microwave magnetic body having the center electrode embedded therein and the permanent magnet were integrated.
【0025】そして上記一体にした焼成体の端面を研磨
した後、その端面に露出した各中心電極6に、ガラスフ
リットを含む金属ペーストを塗布して焼き付けを行い、
外部取り出し用電極を形成した。得られた一体焼成体の
上部及び下部に、アース電極を形成して上記中心電極6
の片側を接地し、上記中心電極6の他方に整合回路用容
量を設けた。最後に磁場6000〜11000〔Oe〕
で着磁し、金属ヨークで上記一体焼成体を挟み込んで、
磁気閉磁回路を形成し、サーキュレータ、アイソレータ
に代表される非可逆回路素子を構成した。After polishing the end faces of the integrated fired body, a metal paste containing glass frit is applied to each center electrode 6 exposed on the end faces and baked.
An external extraction electrode was formed. The center electrode 6 is formed by forming a ground electrode on the upper and lower parts of the obtained integrated fired body.
One side was grounded, and the matching circuit capacitor was provided on the other side of the center electrode 6. Finally magnetic field 6000 to 11000 [Oe]
Magnetize, sandwich the above-mentioned integrated fired body with a metal yoke,
A magnetic closed magnetic circuit was formed to construct a non-reciprocal circuit device represented by a circulator and an isolator.
【0026】本実施例2においても上記実施例1と同様
の効果が得られる。In the second embodiment, the same effect as that of the first embodiment can be obtained.
【0027】〔実施例3〕実施例1と同様の方法を用い
て、厚さ10〜200μmのCa−V−Fe系ガーネッ
ト系生シート1と、約120度ずつ回転させて中心電極
6を印刷した3種類のCa−V−Fe系ガーネット生シ
ート2,3,4を作製した。さらに上記実施例1,実施
例2と同様の方法を用いて、10〜200μm程度のマ
グネトブランバイト型六方晶系フェライト生シートを得
た。[Example 3] Using the same method as in Example 1, a Ca-V-Fe garnet green sheet 1 having a thickness of 10 to 200 µm and a center electrode 6 are printed by rotating the green sheet 1 by about 120 degrees. Three types of Ca-V-Fe based garnet raw sheets 2, 3 and 4 were prepared. Further, a magneto-branbite type hexagonal ferrite green sheet of about 10 to 200 μm was obtained by using the same method as in Examples 1 and 2 above.
【0028】ここで図5に示す通り、上記Ca−V−F
e系ガーネット生シート及びマグネトブランバイト型六
方晶系フェライト生シート上に、スクリーン印刷法でパ
ラジウムまたは白金粉末と有機溶剤を混合した中心電極
用ペーストを、全面又はメッシュ状に印刷した。これに
よりアース電極13を形成したCa−V−Fe系ガーネ
ット及びマグネトブランバイト型六方晶系フェライト生
シート10又は11を得た。Here, as shown in FIG. 5, the Ca-VF
On the e-type garnet green sheet and the magnetobrumbite type hexagonal ferrite green sheet, a center electrode paste prepared by mixing palladium or platinum powder and an organic solvent was printed on the entire surface or in a mesh shape by a screen printing method. As a result, a Ca—V—Fe-based garnet on which the ground electrode 13 was formed and a magnetobrumbite-type hexagonal ferrite green sheet 10 or 11 were obtained.
【0029】ここで実施例1,2と同様に、図6に示す
通り、中心電極6を印刷した各Ca−V−Fe系ガーネ
ット生シート2,3,4を複数枚積層し、中心電極を印
刷していないCa−V−Fe系ガーネット生シート1を
上下に積み重ねた。さらに、その上面にアース電極を形
成したCa−V−Fe系ガーネット生シート15を1枚
積層し、その下面にアース電極を形成したマグネトブラ
ンバイト型六方晶系フェライト生シート14を1枚積層
した。そしてその上下面にマグネトブランバイト型六方
晶系フェライト生シート5を数枚〜数十枚積層圧着し、
中心電極6が交差する点を中心点として約5mm直径の
円板状に打ち抜き、焼成温度1000〜1450℃で同
時焼成し、中心電極を埋設したマイクロ波用磁性体と永
久磁石とを一体にした焼成体を得た。Similar to the first and second embodiments, as shown in FIG. 6, a plurality of Ca-V-Fe based garnet green sheets 2, 3 and 4 on which the center electrode 6 is printed are laminated to form the center electrode. Unprinted Ca-V-Fe based garnet green sheets 1 were stacked one above the other. Further, one Ca-V-Fe based garnet raw sheet 15 having an earth electrode formed on its upper surface was laminated, and one magnetobranbite type hexagonal ferrite green sheet 14 having an earth electrode formed on its lower surface was laminated. . Then, several to several tens of magneto-branbite type hexagonal ferrite green sheets 5 are laminated and pressure-bonded on the upper and lower surfaces thereof,
Punching into a disk shape having a diameter of about 5 mm with the intersection of the center electrodes 6 as the center point, and co-firing at a firing temperature of 1000 to 1450 ° C., the microwave magnetic body with the center electrode embedded and the permanent magnet were integrated. A fired body was obtained.
【0030】ここで図7に示す通り、各中心電極6の片
側は、スルーホール12等を用いてCa−V−Fe系ガ
ーネット上に形成したアース電極13に接地されてい
る。またこの一体にした焼成体の端面を研磨した後、そ
の端面に露出した各中心電極6の他方に、ガラスフリッ
トを含む金属ペーストを塗布して焼き付けを行い、外部
取り出し用電極を形成した。得られた一体焼成体の上部
及び下部に、アース電極を形成して上記中心電極6の片
側を接地し、上記中心電極6の他方に整合回路用容量を
設けた。最後に磁場6000〜11000〔Oe〕で着
磁し、金属ヨークで上記一体焼成体を挟み込んで、磁気
閉磁回路を形成し、サーキュレータ、アイソレータに代
表される非可逆回路素子を構成した。Here, as shown in FIG. 7, one side of each center electrode 6 is grounded to a ground electrode 13 formed on a Ca-V-Fe garnet using a through hole 12 or the like. After polishing the end faces of the integrated fired body, a metal paste containing glass frit was applied to the other of the center electrodes 6 exposed on the end faces and baked to form electrodes for external extraction. A ground electrode was formed on the upper and lower parts of the obtained integrally fired body to ground one side of the center electrode 6 and a matching circuit capacitor was provided on the other side of the center electrode 6. Finally, it was magnetized with a magnetic field of 6000 to 11000 [Oe], and the above-mentioned integrally fired body was sandwiched between metal yokes to form a magnetic closed circuit, and a non-reciprocal circuit device represented by a circulator and an isolator was formed.
【0031】本実施例3においても上記実施例1,2と
同様の効果が得られる。また本実施例3では、マイクロ
波用磁性体と永久磁石との間にアース電極を設けたの
で、マイクロ波用磁性体と永久磁石の組成成分が相互拡
散すること防止できる効果がある。Also in the third embodiment, the same effect as in the first and second embodiments can be obtained. Further, in the third embodiment, since the ground electrode is provided between the microwave magnetic body and the permanent magnet, there is an effect that the composition components of the microwave magnetic body and the permanent magnet can be prevented from mutually diffusing.
【0032】[0032]
【発明の効果】以上のように請求項1の発明によれば、
中心電極を埋設したマイクロ波用磁性体と永久磁石とを
一体とした焼成体で構成したので、手作業による組立工
程を省略でき、素子の小型化に貢献でき、また上記一体
焼成体では中心電極はマイクロ波用磁性体内に埋設され
ているので、組立工程での位置ずれを防止できる効果が
ある。As described above, according to the invention of claim 1,
Since it is composed of a fired body in which a magnetic body for microwaves in which the center electrode is embedded and a permanent magnet are integrated, a manual assembly process can be omitted, which contributes to downsizing of the element. Since is embedded in the magnetic body for microwaves, it has an effect of preventing positional displacement in the assembly process.
【0033】請求項2の発明によれば、焼成温度が近い
ために一体焼結が極めて容易であり、低損失な非可逆回
路素子が得られる効果がある。According to the second aspect of the invention, since the firing temperatures are close to each other, it is extremely easy to perform integral sintering, and there is an effect that a low loss nonreciprocal circuit device can be obtained.
【0034】請求項3の発明によれば、シート積層枚数
を調整することで、マイクロ波用磁性体磁性体と永久磁
石の厚さを制御できるとともに、マイクロ波用磁性体と
永久磁石の部分を薄くした非可逆回路素子を容易に作製
することが可能であり、ふすいマイクロ波用磁性体,永
久磁石を得るための研磨工程を省略できる効果がある。According to the invention of claim 3, by adjusting the number of laminated sheets, it is possible to control the thicknesses of the magnetic body for microwave magnetic material and the permanent magnet, and at the same time, for the portions of the magnetic body for microwave and the permanent magnet. A thin non-reciprocal circuit device can be easily manufactured, and the polishing step for obtaining the sieving microwave magnetic material and the permanent magnet can be omitted.
【0035】また、請求項4の発明によれば、マイクロ
波用磁性体と永久磁石の間に電極を形成するようにした
ので、両者の間にアース電極を設けることができるとと
もに、永久磁石とマイクロ波用磁性体の組成成分が相互
拡散することを防止できる効果がある。Further, according to the invention of claim 4, since the electrode is formed between the microwave magnetic body and the permanent magnet, the ground electrode can be provided between the two and the permanent magnet and There is an effect that the composition components of the microwave magnetic material can be prevented from mutually diffusing.
【図1】本発明の一実施例による非可逆回路素子の作製
手順を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a procedure for manufacturing a nonreciprocal circuit device according to an embodiment of the present invention.
【図2】上記一実施例による非可逆回路素子の作製手順
を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a manufacturing procedure of the non-reciprocal circuit device according to the embodiment.
【図3】上記一実施例による非可逆回路素子の作製手順
を示すための未焼成チップの斜視図である。FIG. 3 is a perspective view of an unfired chip for showing a procedure for manufacturing a nonreciprocal circuit device according to the above-mentioned embodiment.
【図4】上記一実施例による非可逆回路素子の作製手順
を示すための圧延積層成形法による永久磁石生シートの
斜視図である。FIG. 4 is a perspective view of a permanent magnet green sheet produced by a rolling lamination method for showing a procedure for producing a non-reciprocal circuit device according to the above embodiment.
【図5】上記一実施例による非可逆回路素子の作製手順
を説明するためのマイクロ波用磁性体と永久磁石との間
に埋設されるアース電極を示す図である。FIG. 5 is a diagram showing a ground electrode embedded between a microwave magnetic body and a permanent magnet for explaining a procedure for manufacturing the nonreciprocal circuit device according to the embodiment.
【図6】上記一実施例による非可逆回路素子の作製手順
を説明するための分解斜視図である。FIG. 6 is an exploded perspective view for explaining a manufacturing procedure of the non-reciprocal circuit device according to the above embodiment.
【図7】上記一実施例による非可逆回路素子の作製手順
を説明するための一体焼成体を示す斜視図である。FIG. 7 is a perspective view showing an integrally fired body for explaining a manufacturing procedure of the non-reciprocal circuit device according to the embodiment.
2〜4 マイクロ波用磁性体 5 永久磁石 6 中心電極 2-4 Microwave magnetic material 5 Permanent magnet 6 Center electrode
Claims (4)
れた複数の中心電極を有し、上記中心電極がマイクロ波
用磁性体に埋設されるとともに、永久磁石により直流磁
界が印加されるように構成された非可逆回路素子におい
て、上記中心電極が埋設されたマイクロ波用磁性体と、
上記永久磁石とが一体焼結されていることを特徴とする
非可逆回路素子。1. A plurality of center electrodes which are electrically insulated and arranged in a cross shape, wherein the center electrodes are embedded in a microwave magnetic body and a DC magnetic field is applied by a permanent magnet. In the nonreciprocal circuit device configured as described above, a microwave magnetic body in which the center electrode is embedded,
A non-reciprocal circuit device, wherein the permanent magnet is integrally sintered.
性体にカルシウムバナジウム鉄ガーネットを用い、上記
永久磁石にMeO・6Fe2 03 (Meは2価の金属)
で表されるマグネットブランバイト型六方晶系フェライ
トを用いて一体焼結したこどう特徴とする非可逆回路素
子。2. The magnetic material for microwaves according to claim 1, wherein calcium vanadium iron garnet is used, and the permanent magnet is MeO.6Fe 2 O 3 (Me is a divalent metal).
A non-reciprocal circuit device characterized by being integrally sintered using a magnet brambyte type hexagonal ferrite represented by.
波用磁性体の生シートと、上記中心電極が形成されたマ
イクロ波用磁性体の生シートと、永久磁石の生シートと
を積層圧着し、同時に焼成したことを特徴とする非可逆
回路素子。3. The raw sheet of the magnetic material for microwaves, the raw sheet of the magnetic material for microwaves on which the center electrode is formed, and the raw sheet of the permanent magnet are laminated and pressure-bonded to each other according to claim 1 or 2. A non-reciprocal circuit device characterized by being fired at the same time.
記永久磁石と上記マイクロ波用磁性体との間に金属を埋
設したことを特徴とする非可逆回路素子。4. The nonreciprocal circuit device according to claim 1, wherein a metal is embedded between the permanent magnet and the microwave magnetic body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10142094A JPH07312509A (en) | 1994-05-16 | 1994-05-16 | Irreversible circuit element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10142094A JPH07312509A (en) | 1994-05-16 | 1994-05-16 | Irreversible circuit element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07312509A true JPH07312509A (en) | 1995-11-28 |
Family
ID=14300225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10142094A Pending JPH07312509A (en) | 1994-05-16 | 1994-05-16 | Irreversible circuit element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07312509A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11186815A (en) * | 1997-10-15 | 1999-07-09 | Hitachi Metals Ltd | High frequency circuit component |
JP2010010804A (en) * | 2008-06-24 | 2010-01-14 | Murata Mfg Co Ltd | Method of manufacturing ferrite magnet element |
EP3453682A1 (en) * | 2017-09-08 | 2019-03-13 | Skyworks Solutions, Inc. | Low temperature co-fireable dielectric materials |
WO2019209614A1 (en) * | 2018-04-23 | 2019-10-31 | Skyworks Solutions, Inc. | Modified barium tungstate for co-firing |
WO2019246364A1 (en) * | 2018-06-21 | 2019-12-26 | Skyworks Solutions, Inc. | Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators |
US11387532B2 (en) | 2016-11-14 | 2022-07-12 | Skyworks Solutions, Inc. | Methods for integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites |
US11565976B2 (en) | 2018-06-18 | 2023-01-31 | Skyworks Solutions, Inc. | Modified scheelite material for co-firing |
-
1994
- 1994-05-16 JP JP10142094A patent/JPH07312509A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11186815A (en) * | 1997-10-15 | 1999-07-09 | Hitachi Metals Ltd | High frequency circuit component |
JP2010010804A (en) * | 2008-06-24 | 2010-01-14 | Murata Mfg Co Ltd | Method of manufacturing ferrite magnet element |
US12148968B2 (en) | 2016-11-14 | 2024-11-19 | Skyworks Solutions, Inc. | Integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites |
US11387532B2 (en) | 2016-11-14 | 2022-07-12 | Skyworks Solutions, Inc. | Methods for integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites |
US11804642B2 (en) | 2016-11-14 | 2023-10-31 | Skyworks Solutions, Inc. | Integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites |
US11715869B2 (en) | 2017-09-08 | 2023-08-01 | Skyworks Solutions, Inc. | Low temperature co-fireable dielectric materials |
EP3453682A1 (en) * | 2017-09-08 | 2019-03-13 | Skyworks Solutions, Inc. | Low temperature co-fireable dielectric materials |
CN109467427A (en) * | 2017-09-08 | 2019-03-15 | 天工方案公司 | Low temperature co-fireable dielectric materials |
US12126066B2 (en) | 2017-09-08 | 2024-10-22 | Skyworks Solutions, Inc. | Low temperature co-fireable dielectric materials |
US11081770B2 (en) | 2017-09-08 | 2021-08-03 | Skyworks Solutions, Inc. | Low temperature co-fireable dielectric materials |
WO2019209614A1 (en) * | 2018-04-23 | 2019-10-31 | Skyworks Solutions, Inc. | Modified barium tungstate for co-firing |
US11603333B2 (en) | 2018-04-23 | 2023-03-14 | Skyworks Solutions, Inc. | Modified barium tungstate for co-firing |
US11958778B2 (en) | 2018-04-23 | 2024-04-16 | Allumax Tti, Llc | Modified barium tungstate for co-firing |
US11565976B2 (en) | 2018-06-18 | 2023-01-31 | Skyworks Solutions, Inc. | Modified scheelite material for co-firing |
US11699836B2 (en) | 2018-06-21 | 2023-07-11 | Skyworks Solutions, Inc. | Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators |
GB2589253B (en) * | 2018-06-21 | 2023-02-01 | Skyworks Solutions Inc | Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators |
US11936088B2 (en) | 2018-06-21 | 2024-03-19 | Skyworks Solutions, Inc. | Co-firing of low firing temperature dielectric materials with high bismuth garnet ferrites for miniaturized isolators and circulators |
GB2589253A (en) * | 2018-06-21 | 2021-05-26 | Skyworks Solutions Inc | Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators |
WO2019246364A1 (en) * | 2018-06-21 | 2019-12-26 | Skyworks Solutions, Inc. | Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101273283B1 (en) | Polycrystalline ceramic magnetic material, microwave magnetic components, and irreversible circuit devices made by using the same | |
US5379004A (en) | High frequency-use non-reciprocal circuit element | |
JP2011073937A (en) | Polycrystal magnetic ceramic, microwave magnetic substance, and irreversible circuit element using the same | |
JP5365967B2 (en) | Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same | |
CN1185753C (en) | High frequency magnetic material and high frequency circuit element | |
JPH07312509A (en) | Irreversible circuit element | |
JP5488954B2 (en) | Polycrystalline ceramic magnetic material, microwave magnetic material, and non-reciprocal circuit device using the same | |
JP3147615B2 (en) | Non-reciprocal circuit element for high frequency | |
JPH11283821A (en) | Nonreversible circuit element | |
JPH088111A (en) | Anisotropic permanent magnet and its manufacturing method | |
JPH08222912A (en) | Irreversible circuit element | |
JP3261779B2 (en) | Microwave circuit elements | |
JPH09294006A (en) | Irreversible circuit element and irreversible circuit device | |
JP3265831B2 (en) | Non-reciprocal circuit device and manufacturing method thereof | |
JP4081734B2 (en) | High frequency circuit components | |
JP3178153B2 (en) | Non-reciprocal circuit element for microwave | |
JP4305787B2 (en) | Magnet and manufacturing method thereof | |
JPH08307111A (en) | Irreversible circuit element | |
JPH09326603A (en) | Isolator | |
JP3412607B2 (en) | Method of manufacturing magnetic material for high frequency and high frequency circuit component | |
JPH09102410A (en) | Magnetic material and high-frequency circuit component | |
JP2011063483A (en) | High frequency magnetic material, part for irreversible circuit element and irreversible circuit element | |
JP2003023306A (en) | Central conductor assembly for irreversible circuit element and nonreversible circuit element using the same | |
JPH09326607A (en) | Capacitor and high frequency circuit element using the capacitor | |
JP2007037087A (en) | Non-reciprocal circuit element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040127 |