[go: up one dir, main page]

JPH07310231A - Porous and light-weight polyethylene terephthalate fiber - Google Patents

Porous and light-weight polyethylene terephthalate fiber

Info

Publication number
JPH07310231A
JPH07310231A JP6100841A JP10084194A JPH07310231A JP H07310231 A JPH07310231 A JP H07310231A JP 6100841 A JP6100841 A JP 6100841A JP 10084194 A JP10084194 A JP 10084194A JP H07310231 A JPH07310231 A JP H07310231A
Authority
JP
Japan
Prior art keywords
fiber
porous
polyethylene terephthalate
fibers
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6100841A
Other languages
Japanese (ja)
Inventor
Tadashi Tanabe
忠 田辺
Katsuhiro Fujimoto
克宏 藤本
Shiho Kitahara
志保 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6100841A priority Critical patent/JPH07310231A/en
Publication of JPH07310231A publication Critical patent/JPH07310231A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a porous polyethylene terephthalate fiber having light weight and excellent heat-retaining property and mechanical strength and excellent in the screening of ultraviolet and visible rays. CONSTITUTION:This porous and light weight fiber comprises a polyethylene terephthalate. The periphery of the fiber consists of a dense and nonporous layer. Fine pores are present in the core part of the fiber in a state connected with each other in the direction of the fiber axis. The average diameter (D) of the fine pores is 0.1-10mum. The fiber contains a porous part having an L/D ratio of >100 (L is the length in the direction of the fiber axis) and the density of the fiber is <=1.30g/cm<3>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成綿、不織布、織布等
の衣料分野や、建材、複合材に適用できる軽量で保温
性、機械的強度に優れ、紫外・可視光の遮蔽性に優れた
多孔質軽量繊維である。
[Industrial application] The present invention can be applied to the field of clothing such as synthetic cotton, non-woven fabric and woven fabric, as well as construction materials and composite materials, and has excellent heat retention and mechanical strength, and excellent ultraviolet / visible light shielding properties. Porous lightweight fiber.

【0002】[0002]

【従来の技術】従来よりポリエチレンテレフタレートを
多孔質軽量化する手段としていくつかの方法が提案され
てきた。例えば特開昭47ー14418号公報にはポリマー混合
物に無機物を混合し溶融成形後延伸することにより多孔
化した繊維状物を成形する方法が開示されている。この
方法ではポリマーの他に添加物が不可欠であり、成形後
の繊維状物から添加物が脱落したり、添加物のために強
度が低下したりする事があり良好な繊維とは言いがた
い。
2. Description of the Related Art Conventionally, several methods have been proposed as means for reducing the weight of porous polyethylene terephthalate. For example, JP-A-47-14418 discloses a method of molding a porous fibrous material by mixing an inorganic material with a polymer mixture, melt-molding and stretching. In this method, additives are indispensable in addition to the polymer, the additives may fall off from the fibrous material after molding, and the strength may decrease due to the additives, so it is difficult to say that it is a good fiber. .

【0003】またハードエラスティックな特性を利用し
て多孔質繊維を得る方法が特開昭52-15627号公報、特開
昭57-84702号公報に開示されているが、この方法では空
孔部の体積が充分に大きくならず、また繊維外部まで貫
通した孔であるため充分な軽量性、保温性が得られな
い。また減量加工法(例えばアルカリ処理)に見られる
ような後処理により多孔化する方法があるが、このよう
な方法でも繊維外部まで貫通した孔であるため充分な保
温性が得られず、またアルカリ溶解物が繊維に付着残存
する欠点を有する。
Further, Japanese Patent Laid-Open Nos. 52-15627 and 57-84702 disclose methods for obtaining porous fibers by utilizing the hard elastic property. Does not have a sufficiently large volume, and since it is a hole penetrating to the outside of the fiber, sufficient lightness and heat retention cannot be obtained. There is also a method of making it porous by a post-treatment as seen in the weight reduction processing method (for example, alkali treatment). However, even with such a method, it is not possible to obtain sufficient heat retention because the pores penetrate to the outside of the fiber. It has the drawback that the melt remains attached to the fibers.

【0004】また、中空口金を用いて中空形状に紡糸す
る方法もあるが、中空率を高めるためには高粘度の特殊
なポリマーを用いて、特殊な条件で紡糸する必要があ
り、また、このような条件で紡糸しても充分な中空率
(密度)が得られず、軽量性、保温性には劣った繊維し
か得ることができない。更に、特開昭64-20312号公報に
は熱可塑性ポリマー溶融成形後急冷した後、融点より1
0℃低い温度以下の雰囲気温度で延伸することにより多
孔化する方法が開示されている。しかしここに開示され
ている製造条件の範囲では必ずしも多孔化せず、工業的
レベルでの製造も困難である。また空孔のL/Dが小さ
いため低密度化しにくい恐れや、繊維軸方向に不均一と
なるため、強度が低下する恐れがある。
There is also a method of spinning into a hollow shape using a hollow spinneret, but in order to increase the hollow ratio, it is necessary to use a special polymer having a high viscosity and perform spinning under special conditions. Even if the fiber is spun under such conditions, a sufficient hollow ratio (density) cannot be obtained, and only fibers having inferior lightness and heat retention can be obtained. Further, in Japanese Patent Laid-Open No. 64-20312, the melting point of the thermoplastic polymer is rapidly cooled after melt molding, and
A method of making porous by stretching at an ambient temperature of 0 ° C. or lower is disclosed. However, it does not necessarily become porous under the range of the manufacturing conditions disclosed herein, and it is difficult to manufacture on an industrial level. Moreover, since the L / D of the pores is small, it is difficult to reduce the density, and the strength is likely to decrease because the pores are non-uniform in the fiber axis direction.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、軽量
性、保温性、機械的強度に優れ、更に紫外・可視光の遮
蔽性にも優れたポリエチレンテレフタレート繊維を提供
することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polyethylene terephthalate fiber which is excellent in lightness, heat retention, mechanical strength, and ultraviolet / visible light shielding property.

【0006】[0006]

【課題を解決するための手段】このため本発明者は前記
従来技術の欠点を改良すべく鋭意検討した結果本発明に
到達したものである。すなわち本発明は、ポリエチレン
テレフタレートからなる繊維であって、繊維外周部が緻
密な非多孔質層よりなり、繊維内部には繊維軸方向につ
ながった微細孔を有し、微細孔の平均直径(D)が0.
1〜10μmであり、繊維軸方向の長さ(L)との比
(L/D)が100を超える多孔質部分を含み、かつ繊
維の密度が1.30g/cm3 以下であることを特徴とする
多孔質軽量繊維、である。
For this reason, the present inventor has arrived at the present invention as a result of extensive studies to improve the drawbacks of the prior art. That is, the present invention is a fiber made of polyethylene terephthalate, which has a dense non-porous layer at the outer peripheral portion of the fiber, has fine pores connected in the fiber axial direction inside the fiber, and has an average diameter (D ) Is 0.
1 to 10 μm, including a porous portion having a ratio (L / D) to the length (L) in the fiber axis direction of more than 100, and having a fiber density of 1.30 g / cm 3 or less And porous light weight fiber.

【0007】本発明の多孔質軽量繊維は、ポリエチレン
テレフタレートからなる繊維であって、繊維外周部が緻
密な非多孔質層よりなり、繊維内部には繊維軸方向につ
ながった微細孔を有し、微細孔の平均直径(D)が0.
1〜10μmであり、繊維軸方向の長さ(L)との比
(L/D)が100を超える多孔質部分を含み、かつ繊
維の密度が1.30g/cm3 以下である繊維である。
The porous lightweight fiber of the present invention is a fiber made of polyethylene terephthalate, which is composed of a dense non-porous layer at the outer peripheral portion of the fiber and has fine pores connected in the fiber axial direction inside the fiber. The average diameter (D) of the micropores is 0.
It is a fiber having a porous portion having a ratio (L / D) of 1 to 10 μm and a length (L) in the fiber axis direction of more than 100, and a fiber density of 1.30 g / cm 3 or less. .

【0008】繊維の密度は1.30g/cm3 以下、好まし
くは1.20g/cm3 以下、更に好ましくは1.10g/cm
3 以下である必要がある。密度が1.30g/cm3 を超え
ると充分な保温性、軽量性を示さない。ここでいう繊維
の密度とは、単糸長さの合計が10cm以上の繊維を密
度勾配管法を用いて測定した値のことである。この際本
発明の繊維では、繊維外周部に緻密な非多孔質層が存在
しているため、繊維内部に存在している空孔に密度勾配
液が侵入することはない。
[0008] The density of fibers is 1.30 g / cm 3 or less, preferably 1.20 g / cm 3 or less, more preferably 1.10 g / cm
Must be 3 or less. If the density exceeds 1.30 g / cm 3 , sufficient heat retention and lightweight properties are not exhibited. The term “fiber density” as used herein refers to a value obtained by measuring a fiber having a total single fiber length of 10 cm or more by using a density gradient tube method. At this time, in the fiber of the present invention, since the dense non-porous layer exists in the outer peripheral portion of the fiber, the density gradient liquid does not enter the pores existing inside the fiber.

【0009】本発明の繊維は、見かけ上の密度が1.3
0g/cm3 以下であり、多孔質部分と空孔の存在していな
い部分が繊維軸方向に独立して存在していてもよいが、
空孔の存在していない部分の長さの割合が、好ましくは
50%以下、より好ましくは30%以下である方が、保
温性、軽量性および紫外、可視光線の遮蔽性に優れてい
る。
The fibers of the present invention have an apparent density of 1.3.
It is 0 g / cm 3 or less, and the porous portion and the portion without pores may exist independently in the fiber axis direction,
When the ratio of the length of the portion where no holes are present is preferably 50% or less, more preferably 30% or less, the heat retaining property, the lightweight property, and the ultraviolet and visible light shielding properties are excellent.

【0010】本発明においては、非多孔質層が、多孔質
部分の繊維外周部に存在する構造であることが重要であ
る。この様な構造であることにより微細孔部分が繊維外
部とつながっていない空孔となり、保温性が良好とな
る。多孔質部分の微細孔の平均直径は0.1〜10μm
である必要がある。0.1μm未満の微細孔は走査型電
子顕微鏡(SEM)等を用いて確認することが困難であ
る。また10μm以上では、繊維を取り扱う際に繊維が
つぶれてしまいやすく、充分な保温性、軽量性を示さな
くなるおそれがある。
In the present invention, it is important that the non-porous layer has a structure in which the non-porous layer is present on the outer peripheral portion of the fiber in the porous portion. With such a structure, the fine pores become pores that are not connected to the outside of the fiber, and the heat retention is improved. The average diameter of the micropores in the porous part is 0.1-10 μm
Must be It is difficult to confirm fine pores of less than 0.1 μm using a scanning electron microscope (SEM) or the like. On the other hand, if it is 10 μm or more, the fibers are likely to be crushed when they are handled, and there is a possibility that sufficient heat retaining property and lightweight property may not be exhibited.

【0011】微細孔の平均直径(D)と、微細孔の繊維
軸方向の長さ(L)との比(L/D)が100を超える
ことは、本発明の多孔質軽量繊維の軽量性や機械的強度
が優れるためには重要なことである。L/Dが100以
下では、繊維に引っ張り等の応力がかかった場合に、空
孔間のポリマー部に応力が集中してしまい、破断しやす
くなり機械的強度が低下してしまう恐れや、低密度化し
にくい恐れがある。また工業的レベルで製造した場合、
L/Dが100以下の繊維を製造するのは非常に困難で
ある。
The ratio (L / D) of the average diameter (D) of the fine pores to the length (L) of the fine pores in the axial direction of the fiber exceeds 100, which means that the light weight of the porous lightweight fiber of the present invention is high. It is important for excellent mechanical strength. When L / D is 100 or less, when stress such as tension is applied to the fiber, the stress is concentrated on the polymer portion between the pores, which easily breaks and mechanical strength is lowered, It may be difficult to densify. When manufactured at an industrial level,
It is very difficult to produce fibers with L / D of 100 or less.

【0012】繊維の形態は円形に限定されるものではな
く、必要に応じて各種の異形断面にしてもよい。また繊
維の太さも特に限定されるものではなく、用途によって
任意のサイズのものが選択される。本発明の多孔質軽量
繊維に用いるポリマーは、好ましくはエチレンテレフタ
レート単位のみからなるポリエチレンテレフタレート
(以下PETと略称する)であるが、それ以外に従来公
知のジカルボン酸成分、ジオキシ成分、オキシカルボン
酸成分等を共重合して得られる共重合ポリエチレンテレ
フタレート、あるいはポリエチレンテレフタレートまた
は共重合ポリエチレンテレフタレートに他のホモポリエ
ステル、共重合ポリエステルを溶融混合せしめた混合ポ
リエステルなどを用いることも可能である。
The shape of the fibers is not limited to the circular shape, and may have various modified cross-sections if necessary. Further, the thickness of the fiber is not particularly limited, and any size can be selected depending on the application. The polymer used for the porous lightweight fiber of the present invention is preferably polyethylene terephthalate (hereinafter abbreviated as PET) consisting only of ethylene terephthalate units, but other than that, conventionally known dicarboxylic acid components, dioxy components, oxycarboxylic acid components. It is also possible to use copolymerized polyethylene terephthalate obtained by copolymerizing the above, or a mixed polyester obtained by melt-mixing polyethylene terephthalate or copolymerized polyethylene terephthalate with another homopolyester or a copolymerized polyester.

【0013】また共重合ポリエチレンテレフタレート中
にアミド結合、エーテル結合、カーボネート結合などを
含む共重合ポリマーなどや、ポリエチレンテレフタレー
ト以外の繊維形成能のあるポリエステルないしポリエス
テルエーテルなどを用いることも可能である。もちろん
このポリマーに従来公知の触媒、着色防止剤、耐熱剤、
耐候性向上剤不活性微粒子などが含まれていてもよい。
It is also possible to use a copolymer having a amide bond, an ether bond, a carbonate bond or the like in the copolymerized polyethylene terephthalate, or a fiber-forming polyester or polyester ether other than polyethylene terephthalate. Of course, for this polymer, conventionally known catalysts, anti-coloring agents, heat-resistant agents,
The weather resistance improver may contain inert fine particles and the like.

【0014】ポリマーの重合度は特に限定されるもので
はないが、o-クロルフェノールを用いて測定した溶液粘
度(ηsp/c)が好ましくは0.3〜3の範囲、より好ま
しくは0.5〜1.2の範囲であるほうがよい。ηsp/c
が0.3以下では紡糸した繊維の強度が弱くなりやす
い。またηsp/cが3を、超えるものは、溶融成形時の流
動性が悪く紡糸が困難であり、また紡糸した際の繊維の
配向度が高くなりやすいため好ましくない。
The degree of polymerization of the polymer is not particularly limited, but the solution viscosity (ηsp / c) measured using o-chlorophenol is preferably in the range of 0.3 to 3, more preferably 0.5. It is better to be in the range of 1.2. ηsp / c
Is less than 0.3, the strength of the spun fiber tends to be weak. If ηsp / c exceeds 3, the fluidity during melt molding is poor and spinning is difficult, and the degree of orientation of the fibers during spinning tends to be high, such being undesirable.

【0015】この様な繊維は、通常の方法では製造でき
ず、以下に示すように、特殊な構造の未延伸糸を特殊な
条件で延伸することにより始めて製造が可能となる。本
発明の多孔質軽量繊維は、まず溶融成形法により配向度
の低い繊維状物に成形後、ネック延伸する事により得ら
れる。溶融成形後の繊維状物の配向度を複屈折率(Δ
n)として示した場合、0.02以下、好ましくは0.
015以下、より好ましくは0.01以下である事が望
ましい。Δnが0.02を超えると延伸による空孔の発
生が不十分となり、密度が1.30g/cm3 を超えてしま
い、保温性、軽量性が損なわれてしまう恐れがある。Δ
nの測定下限である0.001の繊維状物からも本発明
の多孔質軽量繊維を得ることはできた。Δnが0.02
以下であれば、一度溶融成形した繊維に熱延伸等の処理
を行ったものでもよい。
Such a fiber cannot be produced by a usual method, and can be produced only by drawing an undrawn yarn having a special structure under special conditions as shown below. The porous lightweight fiber of the present invention can be obtained by first forming a fibrous material having a low degree of orientation by a melt molding method, and then performing neck stretching. The degree of orientation of the fibrous material after melt molding is determined by the birefringence (Δ
n), 0.02 or less, preferably 0.
It is desirable that it is 015 or less, more preferably 0.01 or less. If Δn exceeds 0.02, the generation of voids due to stretching becomes insufficient, the density exceeds 1.30 g / cm 3 , and there is a possibility that the heat retaining property and the lightness are impaired. Δ
It was possible to obtain the porous lightweight fiber of the present invention from a fibrous material having a measurement limit of n of 0.001. Δn is 0.02
Fibers that have been melt-molded once may be subjected to treatments such as hot drawing as long as they are as follows.

【0016】紡糸に用いられる紡糸ノズルは円形に限定
されるものではない。必要に応じて異形断面にしてもよ
い。低配向繊維状物を得るためには、紡糸温度はポリマ
ーの融点より20〜150℃高い範囲に設定することが
望ましい。この温度範囲より低温域で紡糸した場合はポ
リマーの溶融が不完全となりメルトフラクチャーが起こ
りやすく、延伸工程での安定性が低下する。また逆にこ
の温度範囲より高い温度領域で紡糸した場合はポリマー
の分解、変性が起こりやすく、強度、伸度の低下が起こ
ってしまう。
The spinning nozzle used for spinning is not limited to a circular shape. A modified cross section may be used if necessary. In order to obtain a low orientation fibrous material, it is desirable to set the spinning temperature in the range of 20 to 150 ° C. higher than the melting point of the polymer. When spinning is carried out in a temperature range lower than this temperature range, the polymer is incompletely melted and melt fracture easily occurs, resulting in a decrease in stability in the stretching step. On the contrary, when spinning is carried out in a temperature range higher than this temperature range, decomposition and modification of the polymer are likely to occur, resulting in reduction in strength and elongation.

【0017】適当な紡糸温度で吐出されたポリマーは低
配向の繊維状物が得られるよう巻き取る必要がある。こ
のためには、配向しにくいように、紡糸ドラフトを低く
し、冷風等を用いて急速に冷却固化させ、低紡糸速度で
巻き取ることが望ましい。多孔質軽量繊維は、上記のよ
うにして得た低配向繊維状物を、延伸前の繊維状物を軟
化点付近以下の温度に保ち、150℃以下程度の比較的
低温で、高倍率のネック延伸をすることにより得ること
ができる。ネック延伸とは、延伸点を固定し、繊維径が
急激に変化しているネック点が発生するような延伸のこ
とである。延伸倍率は急激なネック点ができる高倍率
で、繊維が破断せず安定して延伸できる倍率が望まし
い。
The polymer discharged at an appropriate spinning temperature needs to be wound to obtain a low orientation fibrous material. For this purpose, it is desirable to lower the spinning draft so as to make it difficult to orient, rapidly cool and solidify using cold air or the like, and wind at a low spinning speed. The porous lightweight fiber is obtained by keeping the low-orientation fibrous material obtained as described above at a temperature below the softening point of the fibrous material before stretching and at a relatively low temperature of about 150 ° C. or less and a high-magnification neck. It can be obtained by stretching. Neck drawing is a drawing in which a drawing point is fixed and a necking point in which the fiber diameter is rapidly changed occurs. It is desirable that the draw ratio is a high ratio that allows a sharp neck point and that the fiber can be stably drawn without breaking.

【0018】ネック延伸し多孔質化した繊維は、必要に
応じて融点以下の温度で熱セット、熱延伸、熱緩和処理
を行ってもかまわない。
The neck-stretched and porous fiber may be heat-set, heat-stretched, and heat-relaxed at a temperature not higher than the melting point, if necessary.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
る。測定法は以下に示した方法によった。 (1)微細孔の平均直径、繊維軸方向の長さ 微細孔の平均直径は、繊維の横断面を走査型電子顕微鏡
(SEM)および画像解析装置を用いて測定した。また
繊維軸方向の長さは、繊維の縦断面をSEMを用いて測
定した。
EXAMPLES The present invention will be specifically described below with reference to examples. The measuring method was as follows. (1) Average Diameter of Micropores, Length in Fiber Axis Direction The average diameter of the micropores was measured on the cross section of the fiber using a scanning electron microscope (SEM) and an image analyzer. The length in the fiber axis direction was measured by using a SEM on the longitudinal section of the fiber.

【0020】(2)密度 密度が1.05g/cm3 以上は、単糸長さの合計が10c
m以上の繊維を密度勾配管法により測定を行った。密度
勾配液は四塩化炭素とトルエンの混合液を用いた。1.
05g/cm3 未満は、密度勾配管にて浮くことを確認した
後、繊維の断面積、重量、多孔質部の長さ割合を用いて
計算により求めた。
(2) Density If the density is 1.05 g / cm 3 or more, the total single yarn length is 10 c.
Fibers of m or more were measured by the density gradient tube method. As the density gradient liquid, a mixed liquid of carbon tetrachloride and toluene was used. 1.
When it was less than 05 g / cm 3 , it was confirmed by floating in a density gradient tube, and then calculated using the cross-sectional area of the fiber, the weight, and the length ratio of the porous portion.

【0021】(3)複屈折率(Δn) ナトリウムランプを光源とし、浸液としてオリーブ油を
用い、偏光顕微鏡にて測定を行った。 (4)破断倍率、機械的物性 テンシロンを用いて室温にて糸長5cm、試験速度5c
m/minの条件で測定し求めた。
(3) Birefringence (Δn) The measurement was carried out with a polarizing microscope using a sodium lamp as a light source and olive oil as the immersion liquid. (4) Breaking ratio and mechanical properties Using Tensilon at room temperature, yarn length 5 cm, test speed 5 c
It was measured and determined under the condition of m / min.

【0022】繊維の延伸は、2個の延伸ロールと、その
間に設置したプレートヒーターを用いて行った。延伸温
度はこのプレートヒーターの表面温度で示す。延伸倍率
は延伸前後での繊維の繊度(単位長さあたりの重量)よ
り求めた。
The fiber was drawn by using two drawing rolls and a plate heater installed between them. The stretching temperature is indicated by the surface temperature of this plate heater. The draw ratio was determined from the fiber fineness (weight per unit length) before and after drawing.

【0023】[0023]

【実施例1】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比18、紡速315m/minで繊維
を製造した。この繊維のΔnは0.004、破断延伸倍
率は6.0倍であった。巻取った未延伸糸を、延伸温度
80℃、延伸倍率5.9倍でネック延伸を行った。
Example 1 Polyethylene terephthalate (ηsp / c =
The chips of 0.73) were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 18 and a spinning speed of 315 m / min. This fiber had a Δn of 0.004 and a breaking draw ratio of 6.0 times. The wound undrawn yarn was neck-drawn at a drawing temperature of 80 ° C. and a draw ratio of 5.9.

【0024】得られた繊維は、長さ方向に全てが多孔質
構造を有しており、密度は0.64g/cm3 であった。S
EMで繊維を観察したところ、繊維は直径が66.5μ
mの円形で、横断面には0.35〜2.0μm程度の空
孔が多数存在する多孔質層と、繊維外周部から内部に向
かって厚みが7.5μm程度の微細孔の存在しない非多
孔質層が認められた。この断面の空孔径を画像解析装置
を用いて更に詳しく調べたところ、空孔の平均直径は
0.9μmであった。また繊維の縦断面を観察したとこ
ろ、微細孔が100μmを超えて連続しており、L/D
が100を超えていることが確認できた。この繊維の機
械的物性は強度6.2g/d、伸度14%、弾性率15
5g/dと非常に優れていた。
The fibers thus obtained all had a porous structure in the length direction and had a density of 0.64 g / cm 3 . S
When the fibers were observed by EM, the fibers had a diameter of 66.5μ.
A porous layer having a circular shape of m and having a large number of pores of about 0.35 to 2.0 μm in the cross section, and fine pores having a thickness of about 7.5 μm from the outer periphery of the fiber toward the inside. A porous layer was observed. When the pore diameter of this cross section was examined in more detail using an image analyzer, the average diameter of the pores was 0.9 μm. Also, when the longitudinal section of the fiber was observed, it was found that the fine pores were continuous beyond 100 μm, and L / D
Was confirmed to be over 100. The mechanical properties of this fiber are: strength 6.2 g / d, elongation 14%, elastic modulus 15
It was extremely excellent at 5 g / d.

【0025】これらの結果を表1に示す。The results are shown in Table 1.

【0026】[0026]

【実施例2】実施例1と同様の方法で紡糸、延伸した繊
維を、更に230℃にて1.4倍延伸を行った。得られ
た繊維は、長さ方向に全てが多孔質構造を有しており、
密度は1.00g/cm3 であった。SEMで繊維の横断面
を観察したところ、繊維は直径が48.5μmの円形
で、平均直径が約0.5μmの空孔が多数存在する多孔
質層と、繊維外周部から内部に向かって厚みが約7.5
μmの微細孔の存在しない非多孔質層が認められた。ま
た繊維の縦断面を観察したところ、微細孔が100μm
以上を超えて連続しており、L/Dが100を超えてい
ることが確認できた。この繊維の機械的物性は強度8.
9g/d、伸度8%、弾性率144g/dと非常に強度
の高い繊維であった。
Example 2 The fiber spun and stretched in the same manner as in Example 1 was further stretched 1.4 times at 230 ° C. The obtained fibers all have a porous structure in the length direction,
The density was 1.00 g / cm 3 . When the cross section of the fiber was observed by SEM, the fiber had a circular shape with a diameter of 48.5 μm and a porous layer having a large number of pores with an average diameter of about 0.5 μm, and the thickness of the fiber from the outer periphery to the inside. Is about 7.5
A non-porous layer without micrometer pores was observed. Also, when observing the longitudinal cross section of the fiber, it was found that
It was confirmed that it was continuous over the above and L / D exceeded 100. The mechanical properties of this fiber are strength 8.
The fiber had a very high strength of 9 g / d, an elongation of 8% and an elastic modulus of 144 g / d.

【0027】これらの結果を表1に示す。The results are shown in Table 1.

【0028】[0028]

【実施例3】実施例1と同様の方法で紡糸、延伸した繊
維を、更に230℃にて0.8倍緩和熱処理を行った。
得られた繊維は、長さ方向に全てが多孔質構造を有して
おり、密度は0.95g/cm3 であった。SEMで繊維の
横断面を観察したところ、繊維は直径が63.3μmの
円形で、平均直径が約0.7μmの空孔が多数存在する
多孔質層と、繊維外周部から内部に向かって厚みが約
7.5μmの微細孔の存在しない非多孔質層が認められ
た。また繊維の縦断面を観察したところ、微細孔が10
0μmを超えて連続しており、L/Dが100を超えて
いることが確認できた。この繊維の機械的物性は強度
4.6g/d、伸度52%、弾性率68g/dと伸度の
高い繊維であった。
Example 3 The fiber spun and stretched in the same manner as in Example 1 was further subjected to 0.8 times relaxation heat treatment at 230 ° C.
The obtained fibers all had a porous structure in the length direction and had a density of 0.95 g / cm 3 . When the cross section of the fiber was observed by SEM, the fiber had a circular shape with a diameter of 63.3 μm and a porous layer having a large number of pores with an average diameter of about 0.7 μm, and the thickness from the outer peripheral portion of the fiber toward the inside. However, a non-porous layer having no fine pores of about 7.5 μm was observed. When the longitudinal section of the fiber was observed, it was found that the fine pores were 10
It was confirmed that the diameter was continuous over 0 μm and the L / D was over 100. The mechanical properties of this fiber were high, with a strength of 4.6 g / d, an elongation of 52% and an elastic modulus of 68 g / d.

【0029】これらの結果を表1に示す。The results are shown in Table 1.

【0030】[0030]

【実施例4】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比18、紡速315m/minで繊維
を製造した。この繊維のΔnは0.004、破断延伸倍
率は6.0倍であった。巻取った未延伸糸を、延伸温度
80℃、延伸倍率4.2倍でネック延伸を行った。
Example 4 Polyethylene terephthalate (ηsp / c =
The chips of 0.73) were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 18 and a spinning speed of 315 m / min. This fiber had a Δn of 0.004 and a breaking draw ratio of 6.0 times. The wound undrawn yarn was neck-drawn at a drawing temperature of 80 ° C. and a draw ratio of 4.2 times.

【0031】得られた繊維は、長さ方向に多孔質構造を
有している部分と、多孔質構造を有していない部分とが
交互に存在しており、多孔質構造を有している部分の繊
維軸方向の長さ割合は50%であり、密度は1.19g/
cm3 であった。SEMで多孔質構造を有している部分の
横断面を観察したところ、繊維は直径が66.5μmの
円形で、平均直径が約0.7μmの空孔が多数存在する
多孔質層と、繊維外周部から内部に向かって厚みが約
8.0μmの微細孔の存在しない非多孔質層が認められ
た。また繊維の縦断面を観察したところ、微細孔が10
0μmを超えて連続しており、L/Dが100を超えて
いることが確認できた。この繊維の機械的物性は強度
5.2g/d、伸度21%、弾性率86g/dと非常に
優れていた。
The obtained fiber has a porous structure in which a portion having a porous structure and a portion having no porous structure are alternately present in the lengthwise direction, and has a porous structure. The length ratio in the fiber axis direction of the part is 50%, and the density is 1.19 g /
It was cm 3 . When the cross section of the portion having a porous structure was observed by SEM, the fibers were circular with a diameter of 66.5 μm, and a porous layer having a large number of pores with an average diameter of about 0.7 μm From the outer periphery to the inside, a non-porous layer having a thickness of about 8.0 μm and having no fine pores was observed. When the longitudinal section of the fiber was observed, it was found that the fine pores were 10
It was confirmed that the diameter was continuous over 0 μm and the L / D was over 100. The mechanical properties of this fiber were excellent, with a strength of 5.2 g / d, an elongation of 21% and an elastic modulus of 86 g / d.

【0032】これらの結果を表1に示す。The results are shown in Table 1.

【0033】[0033]

【実施例5】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比57、紡速1000m/minで繊
維を製造した。この繊維のΔnは0.008、破断延伸
倍率は4.6倍であった。巻取った未延伸糸を、延伸温
度80℃、延伸倍率4.4倍でネック延伸を行った。
Example 5 Polyethylene terephthalate (ηsp / c =
0.73) chips were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 57 and a spinning speed of 1000 m / min. This fiber had a Δn of 0.008 and a breaking draw ratio of 4.6 times. The wound undrawn yarn was neck-drawn at a drawing temperature of 80 ° C. and a draw ratio of 4.4.

【0034】得られた繊維は、長さ方向に全てが多孔質
構造を有しており、密度は1.07g/cm3 であった。S
EMで繊維の横断面を観察したところ、繊維は直径が3
2.7μmの円形で、平均直径が約0.6μmの空孔が
多数存在する多孔質層と、繊維外周部から内部に向かっ
て厚みが約9.0μmの微細孔の存在しない非多孔質層
が認められた。また繊維の縦断面を観察したところ、微
細孔が100μmを超えて連続しており、L/Dが10
0を超えていることが確認できた。この繊維の機械的物
性は強度6.0g/d、伸度16%、弾性率122g/
dと非常に優れていた。
The fibers thus obtained all had a porous structure in the length direction and had a density of 1.07 g / cm 3 . S
When the cross section of the fiber was observed by EM, the fiber had a diameter of 3
A porous layer having a circular shape of 2.7 μm and having a large number of pores having an average diameter of about 0.6 μm, and a non-porous layer having a thickness of about 9.0 μm from the outer peripheral portion of the fiber toward the inside and having no fine pores. Was recognized. Also, when the longitudinal section of the fiber was observed, the micropores were continuous over 100 μm and the L / D was 10
It was confirmed that it exceeded 0. The mechanical properties of this fiber are as follows: strength 6.0 g / d, elongation 16%, elastic modulus 122 g / d
It was very excellent as d.

【0035】これらの結果を表1に示す。The results are shown in Table 1.

【0036】[0036]

【実施例6】ポリエチレンテレフタレート(ηsp/c=
0.48)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比34、紡速400m/minで繊維
を製造した。この繊維のΔnは0.002、破断延伸倍
率は6.5倍であった。巻取った未延伸糸を、延伸温度
80℃、延伸倍率6.3倍でネック延伸を行った。
Example 6 Polyethylene terephthalate (ηsp / c =
0.48) chips were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 34 and a spinning speed of 400 m / min. This fiber had a Δn of 0.002 and a breaking draw ratio of 6.5 times. The wound undrawn yarn was neck-drawn at a drawing temperature of 80 ° C. and a draw ratio of 6.3 times.

【0037】得られた繊維は、長さ方向に全てが多孔質
構造を有しており、密度は0.54g/cm3 であった。S
EMで繊維の横断面を観察したところ、繊維は直径が8
4.5μmの円形で、平均直径が約1.3μmの空孔が
多数存在する多孔質層と、繊維外周部から内部に向かっ
て厚みが約2.5μmの微細孔の存在しない非多孔質層
が認められた。また繊維の縦断面を観察したところ、微
細孔が130μmを超えて連続しており、L/Dが10
0を超えていることが確認できた。この繊維の機械的物
性は強度4.9g/d、伸度8%、弾性率108g/d
と非常に優れていた。
The fibers thus obtained all had a porous structure in the length direction and had a density of 0.54 g / cm 3 . S
When the cross section of the fiber was observed by EM, the fiber had a diameter of 8
A 4.5 μm circular porous layer having a large number of pores having an average diameter of about 1.3 μm, and a non-porous layer having a thickness of about 2.5 μm from the outer peripheral portion of the fiber toward the interior Was recognized. Observation of the longitudinal section of the fiber revealed that the micropores were continuous over 130 μm and the L / D was 10
It was confirmed that it exceeded 0. The mechanical properties of this fiber are: strength 4.9 g / d, elongation 8%, elastic modulus 108 g / d.
And was very good.

【0038】これらの結果を表1に示す。The results are shown in Table 1.

【0039】[0039]

【実施例7】ポリエチレンテレフタレート(ηsp/c=
0.88)のチップを公知の方法で乾燥後、320℃で
溶融し、ドラフト比32、紡速350m/minで繊維
を製造した。この繊維のΔnは0.006、破断延伸倍
率は6.6倍であった。巻取った未延伸糸を、延伸温度
80℃、延伸倍率6.0倍でネック延伸を行った。
Example 7 Polyethylene terephthalate (ηsp / c =
0.88) chips were dried by a known method and then melted at 320 ° C. to produce fibers at a draft ratio of 32 and a spinning speed of 350 m / min. The Δn of this fiber was 0.006, and the breaking draw ratio was 6.6. The wound undrawn yarn was neck-drawn at a drawing temperature of 80 ° C. and a draw ratio of 6.0.

【0040】得られた繊維は、長さ方向に全てが多孔質
構造を有しており、密度は0.98g/cm3 であった。S
EMで繊維の横断面を観察したところ、繊維は直径が3
3.8μmの円形で、平均直径が約0.3μmの空孔が
多数存在する多孔質層と、繊維外周部から内部に向かっ
て厚みが約5.0μmの微細孔の存在しない非多孔質層
が認められた。また繊維の縦断面を観察したところ、微
細孔が100μmを超えて連続しており、L/Dが10
0を超えていることが確認できた。この繊維の機械的物
性は強度6.4g/d、伸度21%、弾性率98g/d
と非常に優れていた。
The fibers thus obtained all had a porous structure in the length direction and had a density of 0.98 g / cm 3 . S
When the cross section of the fiber was observed by EM, the fiber had a diameter of 3
A porous layer having a circular shape of 3.8 μm and having a large number of pores having an average diameter of about 0.3 μm, and a non-porous layer having a thickness of about 5.0 μm from the outer peripheral portion of the fiber toward the inside thereof Was recognized. Also, when the longitudinal section of the fiber was observed, the micropores were continuous over 100 μm and the L / D was 10
It was confirmed that it exceeded 0. The mechanical properties of this fiber are strength 6.4 g / d, elongation 21%, elastic modulus 98 g / d.
And was very good.

【0041】これらの結果を表1に示す。The results are shown in Table 1.

【0042】[0042]

【実施例8】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、320℃で
溶融し、ドラフト比1.6、紡速150m/minで繊
維を製造した。この繊維のΔnは0.002、破断延伸
倍率は6.8倍であった。巻取った未延伸糸を延伸温度
85℃、延伸倍率6.6倍でネック延伸を行った。
Example 8 Polyethylene terephthalate (ηsp / c =
0.73) chips were dried by a known method and then melted at 320 ° C. to produce fibers at a draft ratio of 1.6 and a spinning speed of 150 m / min. This fiber had a Δn of 0.002 and a breaking draw ratio of 6.8. The wound undrawn yarn was neck-drawn at a drawing temperature of 85 ° C. and a draw ratio of 6.6.

【0043】得られた繊維は、長さ方向に全てが多孔質
構造を有しており、密度は0.92g/cm3 であった。S
EMで繊維の横断面を観察したところ、繊維は直径が2
4.8μmの円形で、平均直径が約0.4μmの空孔が
多数存在する多孔質層と、繊維外周部から内部に向かっ
て厚みが約4.0μmの微細孔の存在しない非多孔質層
が認められた。また繊維の縦断面を観察したところ、微
細孔が100μmを超えて連続しており、L/Dが10
0を超えていることが確認できた。この繊維の機械的物
性は強度6.8g/d、伸度12%、弾性率102g/
dと非常に優れていた。
The fibers thus obtained all had a porous structure in the length direction and had a density of 0.92 g / cm 3 . S
When the cross section of the fiber was observed by EM, the fiber had a diameter of 2
A porous layer having a circular shape of 4.8 μm and having a large number of pores having an average diameter of about 0.4 μm, and a non-porous layer having a thickness of about 4.0 μm from the outer peripheral portion of the fiber toward the inside and having no fine pore Was recognized. Also, when the longitudinal section of the fiber was observed, the micropores were continuous over 100 μm and the L / D was 10
It was confirmed that it exceeded 0. The mechanical properties of this fiber are strength 6.8 g / d, elongation 12%, elastic modulus 102 g / d.
It was very excellent as d.

【0044】これらの結果を表1に示す。The results are shown in Table 1.

【0045】[0045]

【実施例9】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比18、紡速315m/minで繊維
を製造した。この繊維のΔnは0.004、破断延伸倍
率は6.0倍であった。巻取った未延伸糸を、延伸温度
150℃、延伸倍率5.9倍でネック延伸を行った。
Example 9 Polyethylene terephthalate (ηsp / c =
The chips of 0.73) were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 18 and a spinning speed of 315 m / min. This fiber had a Δn of 0.004 and a breaking draw ratio of 6.0 times. The wound undrawn yarn was neck-drawn at a drawing temperature of 150 ° C. and a draw ratio of 5.9.

【0046】得られた繊維は、長さ方向に多孔質構造を
有している部分と、多孔質構造を有していない部分とが
交互に存在しており、多孔質構造を有している部分の繊
維軸方向の長さ割合は70%であり、密度は1.15g/
cm3 であった。SEMで多孔質構造を有している部分の
横断面を観察したところ、繊維は直径が71.1μmの
円形で、平均直径が約0.6μmの空孔が多数存在する
多孔質層と、繊維外周部から内部に向かって厚みが約
7.0μmの微細孔の存在しない非多孔質層が認められ
た。また繊維の縦断面を観察したところ、微細孔が10
0μmを超えて連続しており、L/Dが100を超えて
いることが確認できた。この繊維の機械的物性は、強度
7.3g/d、伸度15%、弾性率156g/dと非常
に優れていた。
The obtained fiber has a porous structure in which a portion having a porous structure and a portion having no porous structure are alternately present in the longitudinal direction, and thus the fiber has a porous structure. The length ratio in the fiber axis direction of the part is 70%, and the density is 1.15 g /
It was cm 3 . When the cross section of the portion having a porous structure was observed by SEM, the fibers were circular with a diameter of 71.1 μm, and a porous layer having a large number of pores with an average diameter of about 0.6 μm From the outer peripheral portion to the inner portion, a non-porous layer having a thickness of about 7.0 μm and having no fine pores was observed. When the longitudinal section of the fiber was observed, it was found that the fine pores were 10
It was confirmed that the diameter was continuous over 0 μm and the L / D was over 100. The mechanical properties of this fiber were excellent, with a strength of 7.3 g / d, an elongation of 15% and an elastic modulus of 156 g / d.

【0047】これらの結果を表1に示す。The results are shown in Table 1.

【0048】[0048]

【比較例1】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比200、紡速2000m/minで
繊維を製造した。この繊維のΔnは0.021、破断延
伸倍率は3.8倍であった。巻取った未延伸糸を、延伸
温度80℃、延伸倍率3.7倍でネック延伸を行った。
Comparative Example 1 Polyethylene terephthalate (ηsp / c =
The chips of 0.73) were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 200 and a spinning speed of 2000 m / min. This fiber had a Δn of 0.021 and a breaking draw ratio of 3.8 times. The wound undrawn yarn was neck-drawn at a drawing temperature of 80 ° C. and a draw ratio of 3.7 times.

【0049】得られた繊維は、多孔質構造を有している
ものの、繊維軸方向の長さ割合は低く、密度は1.31
g/cm3 であった。SEMで繊維の横断面を観察したとこ
ろ、繊維は直径が37.5μmの円形で、多孔質層はわ
ずかしか観察されず、また微細孔の直径は0.1μm程
度だった。これらの結果を表1に示す。
Although the obtained fiber has a porous structure, the length ratio in the axial direction of the fiber is low and the density is 1.31.
It was g / cm 3 . When the cross section of the fiber was observed by SEM, the fiber was circular with a diameter of 37.5 μm, only a few porous layers were observed, and the diameter of the micropores was about 0.1 μm. The results are shown in Table 1.

【0050】[0050]

【比較例2】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比18、紡速315m/minで繊維
を製造した。この繊維のΔnは0.004、破断延伸倍
率は6.0倍であった。巻取った未延伸糸を、延伸温度
80℃、延伸倍率3.9倍で延伸を行った。この延伸で
はネック点は、はっきりとしなかった。
Comparative Example 2 Polyethylene terephthalate (ηsp / c =
The chips of 0.73) were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 18 and a spinning speed of 315 m / min. This fiber had a Δn of 0.004 and a breaking draw ratio of 6.0 times. The wound undrawn yarn was drawn at a drawing temperature of 80 ° C. and a draw ratio of 3.9 times. The neck point was not clear in this stretch.

【0051】得られた繊維は、多孔質構造を有しておら
ず、密度は1.36g/cm3 であった。SEMで繊維の横
断面を観察したところ、繊維は直径が31.5μmの円
形で、微細孔は観察されなかった。これらの結果を表1
に示す。
The obtained fiber did not have a porous structure and had a density of 1.36 g / cm 3 . When the cross section of the fiber was observed by SEM, the fiber had a circular shape with a diameter of 31.5 μm and no fine pores were observed. These results are shown in Table 1.
Shown in.

【0052】[0052]

【比較例3】低配向度の繊維を75℃に予熱して延伸す
る以外、実施例1と同様にして紡糸、延伸を行った。こ
の場合得られた繊維は多孔質構造を有しておらず、密度
は1.36g/cm3 であった。SEMで繊維の横断面を観
察したところ、繊維は直径が33.5μmの円形で、微
細孔は観察されなかった。
Comparative Example 3 Spinning and drawing were performed in the same manner as in Example 1 except that fibers having a low degree of orientation were preheated to 75 ° C. and drawn. The fibers obtained in this case had no porous structure and had a density of 1.36 g / cm 3 . When the cross section of the fiber was observed by SEM, the fiber was circular with a diameter of 33.5 μm, and no fine pores were observed.

【0053】これらの結果を表1に示す。The results are shown in Table 1.

【0054】[0054]

【比較例4】ポリエチレンテレフタレート(ηsp/c=
0.73)のチップを公知の方法で乾燥後、315℃で
溶融し、ドラフト比18、紡速315m/minで繊維
を製造した。この繊維のΔnは0.004、破断延伸倍
率は6.0倍であった。巻取った未延伸糸を、延伸温度
180℃、延伸倍率5.9倍で延伸を行った。得られた
繊維は、多孔質構造を有しておらず、密度は1.39g/
cm3 であった。SEMで繊維の横断面を観察したとこ
ろ、繊維は直径が29.5μmの円形で、微細孔は観察
されなかった。
Comparative Example 4 Polyethylene terephthalate (ηsp / c =
The chips of 0.73) were dried by a known method and then melted at 315 ° C. to produce fibers at a draft ratio of 18 and a spinning speed of 315 m / min. This fiber had a Δn of 0.004 and a breaking draw ratio of 6.0 times. The wound undrawn yarn was drawn at a drawing temperature of 180 ° C. and a draw ratio of 5.9. The fiber obtained does not have a porous structure and has a density of 1.39 g /
It was cm 3 . When the cross section of the fiber was observed by SEM, the fiber was circular with a diameter of 29.5 μm, and no fine pores were observed.

【0055】これらの結果を表1に示す。The results are shown in Table 1.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】本発明の多孔質軽量繊維は、軽量で保温
性、機械的強度に優れ、また紫外、可視光の遮蔽性にも
優れたものであり、合成綿、不織布、織布等の衣料分野
や、建材、複合材にも適用できる。また不純物が混入す
ることもなく、特殊な後加工の必要もないため、コスト
アップもなく、繊維物性の低下もおこさず、極めて優れ
た繊維である。
INDUSTRIAL APPLICABILITY The porous lightweight fiber of the present invention is lightweight and excellent in heat retention and mechanical strength, and also has excellent ultraviolet and visible light shielding properties. It can also be applied to clothing fields, building materials, and composite materials. Further, since no impurities are mixed in and no special post-processing is required, there is no increase in cost and no deterioration in fiber physical properties, and it is an extremely excellent fiber.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D04H 3/00 K F Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area D04H 3/00 K F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレンテレフタレートからなる繊
維であって、繊維外周部が緻密な非多孔質層よりなり、
繊維内部には繊維軸方向につながった微細孔を有し、微
細孔の平均直径(D)が0.1〜10μmであり、繊維
軸方向の長さ(L)との比(L/D)が100を超える
多孔質部分を含み、かつ、繊維の密度が1.30g/cm3
以下であることを特徴とする多孔質軽量繊維。
1. A fiber made of polyethylene terephthalate, the outer peripheral portion of which is a dense non-porous layer,
The fibers have fine pores connected in the axial direction of the fiber, the average diameter (D) of the fine pores is 0.1 to 10 μm, and the ratio (L / D) to the length (L) in the axial direction of the fiber. Contains more than 100 porous parts and has a fiber density of 1.30 g / cm 3
A porous lightweight fiber characterized by being:
JP6100841A 1994-05-16 1994-05-16 Porous and light-weight polyethylene terephthalate fiber Withdrawn JPH07310231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6100841A JPH07310231A (en) 1994-05-16 1994-05-16 Porous and light-weight polyethylene terephthalate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6100841A JPH07310231A (en) 1994-05-16 1994-05-16 Porous and light-weight polyethylene terephthalate fiber

Publications (1)

Publication Number Publication Date
JPH07310231A true JPH07310231A (en) 1995-11-28

Family

ID=14284550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6100841A Withdrawn JPH07310231A (en) 1994-05-16 1994-05-16 Porous and light-weight polyethylene terephthalate fiber

Country Status (1)

Country Link
JP (1) JPH07310231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095624A1 (en) * 2009-02-17 2010-08-26 富士フイルム株式会社 Heat insulator
US8349422B2 (en) 2008-04-24 2013-01-08 Saudi Basic Industries Corporation Flexible intermediate bulk container
US9556540B2 (en) 2008-04-24 2017-01-31 Saudi Basic Industries Corporation Process for making opaque polyester film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349422B2 (en) 2008-04-24 2013-01-08 Saudi Basic Industries Corporation Flexible intermediate bulk container
US9556540B2 (en) 2008-04-24 2017-01-31 Saudi Basic Industries Corporation Process for making opaque polyester film
WO2010095624A1 (en) * 2009-02-17 2010-08-26 富士フイルム株式会社 Heat insulator

Similar Documents

Publication Publication Date Title
US20020150756A1 (en) Hollow fibers and manufacturing method of hollow fibers
US5043216A (en) Porous polyethylene fibers
JPH07310231A (en) Porous and light-weight polyethylene terephthalate fiber
JP4914794B2 (en) Method for producing core-sheath type composite fiber containing polycarbonate
JP2000239921A (en) Production of polyester fiber
JP2005325494A (en) Sea-island composite fiber manufacturing method, sea-island composite fiber, and low-density ultrafine fiber
JP2019173212A (en) Sea-island type conjugate fiber bundle
JPH03185103A (en) Conjugate fiber for artificial hair having thick single fiber and production thereof
JP7332307B2 (en) Method for producing highly hollow polyester fiber
JPS59216915A (en) Ultrafine fiber structure and production thereof
JPS63159518A (en) Polyester fiber
KR101143721B1 (en) High Gravity Polyester Multi-filament and Its manufacturing Method
KR100490790B1 (en) Method for manufacturing single component hollow fiber crimped fiber using capillary cooling device
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JP4033566B2 (en) Lightweight polyester fiber
JP4881124B2 (en) Polyester monofilament for screen wrinkles and method for producing the same
JPH1161560A (en) Biodegradable staple fiber and its production
JPH03234819A (en) Lightweight sea-island conjugate type polyester yarn
JP2562350B2 (en) Heat resistant composite fiber and method for producing the same
JP6304750B2 (en) High strength hollow polyester multifilament
JPS6330408B2 (en)
JPH04327214A (en) Conjugate fiber
JP3188054B2 (en) Mixed fiber long-fiber nonwoven fabric and method for producing the same
JPS6141318A (en) Manufacture of multifilament
JPH11293522A (en) Molten liquid crystalline polyester fiber and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731