[go: up one dir, main page]

JPH0730998B2 - Method for recovering argon from ammonia synthesis purge gas - Google Patents

Method for recovering argon from ammonia synthesis purge gas

Info

Publication number
JPH0730998B2
JPH0730998B2 JP61264976A JP26497686A JPH0730998B2 JP H0730998 B2 JPH0730998 B2 JP H0730998B2 JP 61264976 A JP61264976 A JP 61264976A JP 26497686 A JP26497686 A JP 26497686A JP H0730998 B2 JPH0730998 B2 JP H0730998B2
Authority
JP
Japan
Prior art keywords
methane
argon
gas
nitrogen
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61264976A
Other languages
Japanese (ja)
Other versions
JPS63118587A (en
Inventor
賢治 池田
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP61264976A priority Critical patent/JPH0730998B2/en
Publication of JPS63118587A publication Critical patent/JPS63118587A/en
Publication of JPH0730998B2 publication Critical patent/JPH0730998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/0285Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/20H2/N2 mixture, i.e. synthesis gas for or purge gas from ammonia synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、アンモニア合成パージガス中に含まれるア
ルゴンを深冷分離法によって分離回収する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for separating and recovering argon contained in an ammonia synthesis purge gas by a cryogenic separation method.

「従来の技術」 従来、ナフサの水蒸気改質ガスを原料とするアンモニア
合成反応においては、未分解のメタンおよび原料空気中
に含まれるアルゴンが合成系内で蓄積されて反応を阻害
するので、これらを未反応の水素と共にパージガスとし
て系外へ放出している。
“Prior Art” Conventionally, in an ammonia synthesis reaction using a steam reforming gas of naphtha as a raw material, undecomposed methane and argon contained in the raw material air are accumulated in the synthesis system to hinder the reaction. Is released to the outside of the system as a purge gas together with unreacted hydrogen.

ところで、上記のパージガスには通常水素、窒素、アル
ゴン、メタンが含まれており、このようなパージガスか
ら有用なアルゴンを回収する方法として第2図(フロー
図)に示すような深冷分離法が知られている。
By the way, the above-mentioned purge gas usually contains hydrogen, nitrogen, argon, and methane. As a method for recovering useful argon from such a purge gas, there is a cryogenic separation method as shown in FIG. 2 (flow chart). Are known.

この深冷分離法によりアルゴンを回収するには、まず水
素、窒素、アルゴン、メタンを含む原料ガスAを第1熱
交換器1および第2熱交換器2に順次導入し、これら交
換器内にて後述する分離生成ガスとの間で熱交換するこ
とにより該原料ガスAを所定の温度に冷却して原料ガス
A中の窒素、アルゴン、メタンを液化せしめ、さらにこ
の一部液化された原料ガスAを気液分離器3にて上記成
分の液化されてなる混合液Bと水素ガスCとに分離す
る。次に、上記混合液Bをフラッシュタンク4に導入
し、減圧することにより同混合液B中に溶存している微
量の水素ガス等からなるフラッシュガスDを分離し、後
記するラインL2からのメタン塔缶出液と合流し昇温後燃
料ガスとして採り出される。次いで、フラッシュタンク
4の底部から導出した混合液Bをメタン塔5に導入し、
加熱して精留することにより高沸点のメタンを主成分と
する缶出液Eと窒素、アルゴンを主成分とする留出分F
とに分離する。ここで、メタン塔5の底部にはリボイラ
ー6が設けられており、このリボイラー6は後述する高
圧循環圧縮機からラインL1を経て送出された高圧の窒素
により加熱されて上記混合液Bを精留している。また、
メタン塔5の頂部にはコンデンサー7が設けられてお
り、このコンデンサー7は上記の混合液B中のリボイラ
ー6によって気化せしめられた成分を冷却することによ
りその一部を凝縮してメタン塔5底部に還流せしめてい
る。上記の缶出液Eは、メタン塔5の底部からラインL2
を通って第1熱交換器1に入り原料ガスAと熱交換した
後、系外に排出されて燃料ガスになる。
In order to recover argon by this cryogenic separation method, first, a raw material gas A containing hydrogen, nitrogen, argon, and methane is sequentially introduced into the first heat exchanger 1 and the second heat exchanger 2, and the inside of these exchangers is introduced. The raw material gas A is cooled to a predetermined temperature by exchanging heat with a separated product gas, which will be described later, to liquefy nitrogen, argon and methane in the raw material gas A, and the partially liquefied raw material gas. The gas-liquid separator 3 separates A into a mixed liquid B obtained by liquefying the above components and a hydrogen gas C. Next, the mixed solution B is introduced into the flash tank 4 and decompressed to separate the flash gas D composed of a minute amount of hydrogen gas or the like dissolved in the mixed solution B, and the flash gas D from a line L 2 to be described later is separated. It joins with the effluent of the methane tower and is taken out as fuel gas after heating. Then, the mixed liquid B derived from the bottom of the flash tank 4 is introduced into the methane tower 5,
By heating and rectifying, the bottoms E containing methane having a high boiling point as a main component and the distillate F containing nitrogen and argon as main components
And separate. Here, a reboiler 6 is provided at the bottom of the methane tower 5, and the reboiler 6 is heated by high-pressure nitrogen sent from a high-pressure circulating compressor described later through a line L 1 to refine the mixed solution B. Stay. Also,
A condenser 7 is provided at the top of the methane tower 5, and the condenser 7 cools the components vaporized by the reboiler 6 in the mixed solution B to condense a part of the components and condense the bottom of the methane tower 5. It has been refluxed. The bottom liquid E above is a line L 2 from the bottom of the methane tower 5.
After passing through the first heat exchanger 1 to exchange heat with the raw material gas A, it is discharged to the outside of the system to become fuel gas.

その後、上記のコンデンサー7を通過した留出分Fをア
ルゴン塔8に導入し、精留することによりアルゴンを分
離して回収する。ここで、アルゴン塔8の底部にはリボ
イラー9が設けられており、このリボイラー9は後述す
る低圧循環窒素圧縮機からラインL3を経て送出された低
圧の窒素などを熱源として上記留出分Fを精留してい
る。このアルゴン塔8にて精留され分離された高純度の
液化アルゴンGは、アルゴン塔8より排出されて製品に
なる。一方、アルゴンより分離され、微量の水素、アル
ゴンなどを含む窒素ガスHは、アルゴン塔8の頂部から
導出された後、過冷器10、循環第2熱交換器11および循
環第1熱交換器12に順次導入され、それぞれで熱交換す
ることによって昇温する。さらに、この窒素ガスGは低
圧循環圧縮機13に導入されて5〜7Kg/cm2Gに圧縮され、
その一部H1はラインL4を介して再度循環第1熱交換器12
に導入されることにより前述の窒素ガスHと熱交換して
降温する。そして、上記の窒素ガスHの一部H1はさらに
分岐し、その一部H11はラインL5を通って膨張タービン1
4に導入されて膨張降圧して温度が降下し、そしてこの
膨張タービン14による第3図中一点鎖線で示したアルゴ
ン回収系の冷却に必要な寒冷に供される。また、上記の
窒素ガスHのラインL4を経たガスH1の上記H11を除いた
残部H12は、再度循環第2熱交換器11に導入され熱交換
されて降温した後、ラインL3を介してアルゴン塔8のリ
ボイラー9に導入されて同リボイラー9の熱源となる。
一方、上記低圧循環圧縮機13から排出された窒素ガスH
のうち、上記H1を除いた残部H2は、高圧循環窒素圧縮機
15に導入されて24〜35Kg/cm2Gまで加圧された後、循環
第1熱交換器12に導入されて前述と同様に降温する。そ
して、この高圧の窒素H2は、ラインL1を経てメタン塔5
のリボイラー6に導入されてこのリボイラー6の加熱源
となり、ここで熱交換されることによって自身は完全に
液化する。さらにこの液化した窒素H2は、減圧されてア
ルゴン塔8のリボイラー9に導入され、ここで前述の窒
素H12に合流して窒素H3となり、リボイラー9内にて熱
交換される。この窒素H3は、リボイラー9から排出され
た後、過冷器10を経てその一部H31がアルゴン塔8に導
入され還流液となる。また他の一部H32は、メタン塔5
のコンデンサー7に冷媒として導入される。さらに上記
液化窒素H3の残部H33は、第2熱交換器2に導入されて
該熱交換器2の温度分布を調整した後、第1熱交換器1
に導入され熱交換された後、系外に排出される。
Then, the distillate F having passed through the condenser 7 is introduced into the argon tower 8 and rectified to separate and collect argon. Here, a reboiler 9 is provided at the bottom of the argon tower 8, and this reboiler 9 uses the low-pressure nitrogen or the like sent from a low-pressure circulating nitrogen compressor described later via a line L 3 as a heat source to generate the distillate F. Is rectifying. The high-purity liquefied argon G rectified and separated in the argon tower 8 is discharged from the argon tower 8 to be a product. On the other hand, the nitrogen gas H separated from argon and containing a trace amount of hydrogen, argon, etc. is discharged from the top of the argon tower 8, and then the subcooler 10, the circulating second heat exchanger 11 and the circulating first heat exchanger are used. 12 are sequentially introduced, and the temperature is raised by exchanging heat with each. Further, this nitrogen gas G is introduced into the low pressure circulation compressor 13 and compressed to 5 to 7 kg / cm 2 G,
Part H 1 is circulated again via line L 4 First heat exchanger 12
Is introduced to heat exchange with the above-mentioned nitrogen gas H to lower the temperature. Then, a part H 1 of the above-mentioned nitrogen gas H is further branched, and a part H 11 thereof passes through the line L 5 and the expansion turbine 1
It is introduced into 4 to expand and reduce the pressure to lower the temperature, and the expansion turbine 14 is used for the refrigeration necessary for cooling the argon recovery system shown by the alternate long and short dash line in FIG. The remaining H 12 of the gas H 1 that has passed through the line L 4 of the nitrogen gas H excluding the above H 11 is again introduced into the second circulation heat exchanger 11 to be heat-exchanged to lower the temperature, and then the line L 3 It is introduced into the reboiler 9 of the argon tower 8 via the and becomes a heat source of the reboiler 9.
On the other hand, the nitrogen gas H discharged from the low-pressure circulation compressor 13
Of the above, the remaining H 2 excluding the above H 1 is the high pressure circulating nitrogen compressor.
After being introduced into 15 and pressurized to 24-35 Kg / cm 2 G, it is introduced into the first circulation heat exchanger 12 and the temperature is lowered in the same manner as described above. Then, this high-pressure nitrogen H 2 is passed through the line L 1 to the methane column 5
The reboiler 6 is introduced into the reboiler 6 to serve as a heating source for the reboiler 6, and heat is exchanged there to completely liquefy itself. Further, this liquefied nitrogen H 2 is decompressed and introduced into the reboiler 9 of the argon tower 8, where it joins the above-mentioned nitrogen H 12 to become nitrogen H 3 , which is heat-exchanged in the reboiler 9. After this nitrogen H 3 is discharged from the reboiler 9, a part H 31 of the nitrogen H 3 is introduced into the argon column 8 through the supercooler 10 and becomes a reflux liquid. Another part of H 32 is the methane tower 5
Is introduced into the condenser 7 as a refrigerant. Further, the remaining H 33 of the liquefied nitrogen H 3 is introduced into the second heat exchanger 2 to adjust the temperature distribution of the heat exchanger 2, and then the first heat exchanger 1
After being introduced into the system and undergoing heat exchange, it is discharged outside the system.

「発明が解決しようとする問題点」 ところで、上記のアルゴンの回収方法にあっては、装置
の運転条件に応じて処理流体を加圧するための圧縮機が
使用されているが、こ圧縮機の使用による動力費が設備
全体の動力費の大半を占め、よってこれが回収アルゴン
のコスト低減化を妨げるため、この回収アルゴンのコス
トの引き下げを容易に行なえないという不都合がある。
"Problems to be Solved by the Invention" By the way, in the above-mentioned argon recovery method, a compressor for pressurizing the treatment fluid according to the operating conditions of the apparatus is used. The power cost due to use occupies most of the power cost of the entire equipment, and this hinders the cost reduction of the recovered argon, so that the cost of the recovered argon cannot be easily reduced.

「問題点を解決するための手段」 そこでこの発明のアルゴンの回収方法では、メタン塔塔
底からの缶出液の採取をガス採取に変えてメタンサイク
ルを形成し、該サイクルメタンを同メタン塔における塔
底混合物の加熱源に供し、この加熱源として供された缶
出ガスの一部にフラッシュタンクから得られるガスを加
えて混合物とし、これをアルゴン塔塔頂よりの留出分で
ある窒素を昇温後圧縮して降温しアルゴン塔リボイラー
の熱源および還流液そしてメタン塔コンデンサーの冷媒
とする低圧循環窒素ガスとの熱交換に供すか、あるいは
この混合物に上記アルゴン塔から得られた窒素ガスの一
部または気液分離器から得られる水素ガスの一部の少な
くとも一方を加えてこれを上記の低圧循環窒素ガスとの
熱交換に供すことにより、高圧循環窒素圧縮機の使用を
取りやめ、これによって上記の問題点を解決した。
[Means for Solving Problems] Therefore, in the argon recovery method of the present invention, the collection of bottoms from the bottom of the methane column is changed to gas collection to form a methane cycle, and the cycle methane is converted to the same methane column. In the column bottom mixture in, the gas obtained from the flash tank was added to a part of the bottom gas used as this heating source to form a mixture, and this mixture was nitrogen distillate from the top of the argon column. Is heated and compressed to lower the temperature and then subjected to heat exchange with a low-pressure circulating nitrogen gas used as a heat source and a reflux liquid for the argon column reboiler and a refrigerant for the methane column condenser, or a nitrogen gas obtained from the argon column in this mixture. Of at least one of the hydrogen gas obtained from the gas-liquid separator and subjecting this to heat exchange with the above-mentioned low-pressure circulating nitrogen gas, high-pressure circulating nitrogen The use of compressors was discontinued and this solved the above problems.

「実施例」 以下、図面を参照してこの発明のアルゴンの回収方法を
詳しく説明する。
[Examples] Hereinafter, the method for recovering argon according to the present invention will be described in detail with reference to the drawings.

第1図はこの発明のアルゴンの回収方法の一例を説明す
るためのフロー図である。この図において、第2図に示
した構成要素と同一の要素には同一符号を付してその説
明を省略する。第1図に示したアルゴンの回収方法と第
2図に示した方法との異なるところは、メタン塔5から
の缶出物Eを液採りからガス採りに変更し、メタンガス
サイクルを形成してこのサイクルメタンを同メタン塔5
のリボイラー6の加熱源として用い、さらにこの加熱源
として供されたサイクルメタンEにフラッシュタンク4
から排出されるフラッシュガスDなどを混入しこれを循
環第2熱交換器11の冷媒として用いる点である。メタン
塔缶出物を液採りからガス採りにしたのは単にメタンサ
イクルを構成するだけでは第1熱交換器1および循環第
2熱交換器11の熱交換温度差が取れなくなるためであ
る。
FIG. 1 is a flow chart for explaining an example of the argon recovery method of the present invention. In this figure, the same components as those shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. The difference between the method for recovering argon shown in FIG. 1 and the method shown in FIG. 2 is that the bottom product E from the methane tower 5 is changed from liquid sampling to gas sampling to form a methane gas cycle. Cycle methane to the same methane tower 5
Used as a heating source for the reboiler 6 of the flash tank, and the flash tank 4 for the cycle methane E provided as the heating source.
The point is that flash gas D or the like discharged from the tank is mixed and used as the refrigerant of the circulation second heat exchanger 11. The reason why the methane column bottoms is taken from the liquid instead of the gas is that the heat exchange temperature difference between the first heat exchanger 1 and the circulating second heat exchanger 11 cannot be obtained only by constructing the methane cycle.

第1図に示した方法によりアルゴンを回収するには、第
2図に示した従来法と同様に原料ガスAを第1熱交換器
1、第2熱交換器2に順次導入し、さらに気液分離器
3、フラッシュタンク4に順次導入して水素ガスC、フ
ラッシュガスDを分離除去する。次に、フラッシュタン
ク4より導出した混合液Bをメタン塔5に導入し、精留
して缶出留分Eと留出分Fとに分離する。次いで、メタ
ン塔5から導出した缶出留分E(一般にメタン99%以上
アルゴン1%以下)をガス状で抜き出し、ラインL10
介して第1熱交換器1に導入し、加熱し気化せしめてメ
タン圧縮機16に導入する。ここで、メタン塔5において
混合液Bを加熱し上昇ガスを生成させるためのリボイラ
ー6には、加熱媒体としてメタン圧縮機16で約1.0Kg/cm
2Gに圧縮された循環エタンIが用いられる。この循環メ
タンIは、前述の缶出ガス(缶出留分)Eがメタン圧縮
機16に導入され圧縮されたものであって、ラインL11
通って第1熱交換器1に導入され冷却された後リボイラ
ー6に導入される。この場合に上記の循環メタンIは、
第1熱交換器1にて凝縮する温度近く(約−153℃)ま
で冷却され、これによりリボイラー6に導入されて熱交
換した際に凝縮して完全に液化メタンとなる。メタン塔
においては下部に99%以上の液が精留により留出してお
り、従来はこれをボイルするのに中圧窒素を利用してい
た。この場合メタン0.5Kg/cm2Gでの飽和温度−157℃に
温度差2℃を加えて−155℃となり凝縮するサイクル窒
素ガスの圧力は最小で23Kg/cm2G必要であった。これに
対しメタンは−155℃で飽和圧力が0.7Kg/cm2Gである。
したがって、メタン塔5における熱交換は、上記圧力1K
g/cm2Gの循環メタンIの凝縮と気液混合物Bの一部蒸発
とからなる潜熱どおしの交換となり、これによってメタ
ン塔5における精留操作が支障なく行なわれる。さらに
この場合、従来法における高圧窒素が凝縮する際に奪わ
れる潜熱は20〜30kcal/Nm3であるのに対し、この循環メ
タンIでは84kcal/Nm3であるため、非常に効率良く気液
混合物Bを加熱せしめることができ、したがってリボイ
ラー6に導入する熱媒体の量を大幅に減少させることが
できる。また、上記のメタン圧縮機16は、吸入圧力約0.
1Kg/cm2G、吐出圧力約1.0Kg/cm2Gで運転されることなど
から、従来法で用いられた高圧循環窒素圧縮機に比較し
て大幅に所要動力の低いものとなっている。
In order to recover argon by the method shown in FIG. 1, the raw material gas A is sequentially introduced into the first heat exchanger 1 and the second heat exchanger 2 as in the conventional method shown in FIG. The hydrogen gas C and the flash gas D are separated and removed by sequentially introducing them into the liquid separator 3 and the flash tank 4. Next, the mixed liquid B derived from the flash tank 4 is introduced into the methane column 5, and rectified to separate into a bottom fraction E and a bottom fraction F. Then, the bottom fraction E (generally 99% or more of methane and 1% or less of argon) derived from the methane tower 5 is withdrawn in the form of gas, introduced into the first heat exchanger 1 through a line L 10 , and heated and vaporized. It is introduced into the methane compressor 16. Here, the reboiler 6 for heating the mixed liquid B in the methane tower 5 to generate rising gas has a methane compressor 16 of about 1.0 kg / cm as a heating medium.
Circulating ethane I compressed to 2 G is used. This circulated methane I is the above-mentioned bottom gas (bottom fraction) E introduced into the methane compressor 16 and compressed, and is introduced into the first heat exchanger 1 through line L 11 and cooled. Then, it is introduced into the reboiler 6. In this case, the above circulating methane I is
It is cooled to a temperature close to the temperature at which it condenses in the first heat exchanger 1 (about −153 ° C.), and when it is introduced into the reboiler 6 and heat-exchanged, it condenses to become completely liquefied methane. In the methane column, 99% or more of the liquid is distilled out at the bottom by rectification, and conventionally, medium pressure nitrogen was used to boil this. In this case, a temperature difference of 2 ° C. was added to the saturation temperature of −157 ° C. at 0.5 Kg / cm 2 G of methane to give −155 ° C., and the pressure of the cycle nitrogen gas to be condensed required a minimum of 23 Kg / cm 2 G. On the other hand, methane has a saturation pressure of 0.7 Kg / cm 2 G at -155 ° C.
Therefore, the heat exchange in the methane tower 5 is performed at the above pressure of 1K.
The latent heat exchange consisting of the condensation of the circulating methane I of g / cm 2 G and the partial vaporization of the gas-liquid mixture B is carried out, whereby the rectification operation in the methane column 5 is carried out without any trouble. Furthermore, in this case, the latent heat lost when the high-pressure nitrogen is condensed in the conventional method is 20 to 30 kcal / Nm 3 , whereas this circulating methane I is 84 kcal / Nm 3 , so the gas-liquid mixture is very efficient. B can be heated, and thus the amount of heat medium introduced into the reboiler 6 can be greatly reduced. Further, the methane compressor 16 described above has a suction pressure of about 0.
1Kg / cm 2 G, and the like be operated at a discharge pressure of about 1.0Kg / cm 2 G, and has a significantly low in power requirements as compared to the high pressure circulation nitrogen compressor used in the conventional method.

リボイラー6から導出された循環メタンIは2方向に分
岐し、その一部はラインL12、バルブV1を介してラインL
10に至りここで上記のガス状の缶出留分Eと合流し混合
される。以上の構成のもとに循環メタンIは、メタン圧
縮機16、ラインL11、リボイラー6、ラインL12、バルブ
V1、ラインL10からなるメタンサイクルを循環し、熱交
換あるいは膨張圧縮を繰り返すようになっている。ここ
でバルブV1は、リボイラー6から導出された循環メタン
Iの上記メタンサイクルへの流入量を決定することによ
り、同メタンサイクルの循環量を調節するようになって
いる。
The circulating methane I derived from the reboiler 6 branches in two directions, part of which is line L 12 and line L via valve V 1.
It reaches 10 and is mixed and mixed with the above gaseous bottom fraction E. Based on the above configuration, the circulating methane I is methane compressor 16, line L 11 , reboiler 6, line L 12 , valve
A methane cycle consisting of V 1 and line L 10 is circulated to repeat heat exchange or expansion / compression. Here, the valve V 1 adjusts the circulation amount of the methane cycle by determining the inflow amount of the circulation methane I derived from the reboiler 6 into the methane cycle.

リボイラー6より導出された循環メタンIの分岐した残
部は、ラインL13にてフラッシュタンク4より排出され
たフラッシュガスDと合流し混合されて冷媒Jとなり、
循環第2熱交換器11、第1熱交換器1に順次導入されて
熱交換した後、燃料ガスとして系外に排出される。この
場合に、循環メタンIにフラッシュガスDを混入するこ
とにより、混合されてなる冷媒Jのメタン分圧が低下
し、よってこの冷媒Jの気化温度が低下する。また、こ
の冷媒Jに気液分離器3より排出された水素ガスCをバ
ルブV2を介して混入させてもよく、その場合にも冷媒J
の気化温度を低下せしめることができる。
The branched remaining portion of the circulating methane I derived from the reboiler 6 joins and is mixed with the flash gas D discharged from the flash tank 4 in the line L 13 to become the refrigerant J,
After being sequentially introduced into the second circulation heat exchanger 11 and the first heat exchanger 1 for heat exchange, they are discharged as a fuel gas to the outside of the system. In this case, by mixing the flash gas D into the circulating methane I, the partial pressure of methane of the mixed refrigerant J is lowered, so that the vaporization temperature of the refrigerant J is lowered. Further, the hydrogen gas C discharged from the gas-liquid separator 3 may be mixed into the refrigerant J through the valve V 2 , and in that case also the refrigerant J
The vaporization temperature of can be lowered.

その後、メタン塔5の塔頂留出分Fをアルゴン塔8中部
に導入して精留することにより高純度の液化アルゴンG
を分離し、これをアルゴン塔8の底部からラインL14
介して系外に排出し回収する。一方、アルゴンより分離
された窒素ガスHは、ラインL15を通って過冷器10、循
環第2熱交換器11、循環第1熱交換器12に順次導入され
て昇温し、さらに低圧循環圧縮機13に導入されて圧力5
〜9Kg/cm2Gに圧縮される。ここで、この窒素ガスHの一
部をバルブV3を介してラインL13に流し、前記の冷媒J
に混入させてもよく、その場合にも前記と同様に冷媒J
の気化温度を低下せしめることができる。
After that, the overhead fraction F of the methane tower 5 is introduced into the middle part of the argon tower 8 and rectified to obtain highly pure liquefied argon G.
Is separated, and this is discharged from the bottom of the argon column 8 through the line L 14 to the outside of the system and recovered. On the other hand, the nitrogen gas H separated from argon is sequentially introduced into the subcooler 10, the second circulation heat exchanger 11 and the first circulation heat exchanger 12 through the line L 15 to raise the temperature and further circulate at a low pressure. Pressure 5 introduced into compressor 13
Compressed to ~ 9Kg / cm 2 G. Here, a part of this nitrogen gas H is caused to flow into the line L 13 via the valve V 3 to generate the refrigerant J.
May be mixed with the refrigerant J, and in that case, the refrigerant J
The vaporization temperature of can be lowered.

低圧循環圧縮機13にて圧縮された窒素ガスHは、再度循
環第1熱交換器12を通過して降温した後、一部が膨張タ
ービン14に導入され、残部がラインL16を通って循環第
2熱交換器11を通過し、バルブV4にて減圧されてアルゴ
ン塔8のリボイラー9に導入される。さらに、このリボ
イラー9に導入された窒素Hは、熱交換して完全に液化
された後、第2図に示した従来法と同様に過冷器10にて
熱交換され、メタン塔5のコンデンサー7の冷媒および
アルゴン塔8の還流液に用いられるあるいは第1熱交換
器1、第2熱交換器2の冷媒として用いられて系外に排
出される。
The nitrogen gas H compressed by the low-pressure circulation compressor 13 passes through the circulation first heat exchanger 12 again to lower the temperature, then a part thereof is introduced into the expansion turbine 14, and the rest circulates through the line L 16. It passes through the second heat exchanger 11, is decompressed by the valve V 4, and is introduced into the reboiler 9 of the argon tower 8. Further, the nitrogen H introduced into the reboiler 9 is heat-exchanged and completely liquefied, and then heat-exchanged in the subcooler 10 as in the conventional method shown in FIG. It is used as the refrigerant of No. 7 and the reflux liquid of the argon tower 8 or as the refrigerant of the first heat exchanger 1 and the second heat exchanger 2, and is discharged out of the system.

なお、メタン塔5からの缶出ガスEにフラッシュタンク
4からのフラッシュガスDを加えてなる冷媒Jには、前
述のように気液分離器3からの水素ガスCおよびアルゴ
ン塔8からの窒素ガスHの一方あるいは両方を加えるこ
とができ、これらの選択はこのアルゴン回収系の運転状
態または回収ガスの回収量(率)に応じて適宜決定され
る。
In addition, as described above, the refrigerant J obtained by adding the flash gas D from the flash tank 4 to the bottom gas E from the methane tower 5 is the hydrogen gas C from the gas-liquid separator 3 and the nitrogen from the argon tower 8 as described above. One or both of the gases H can be added, and their selection is appropriately determined depending on the operating state of the argon recovery system or the recovery amount (rate) of the recovered gas.

本発明方法ではメタン塔リボイル源としてメタンを使用
したため、メタン塔コンデンサー7に送る液化窒素を上
記リボイラー以外の所で生成させる必要があり、このた
め前記メタンリッチの混合冷媒Jと低圧循環窒素を循環
第2熱交換器11で熱交換させることにより液化窒素を得
たのである。したがって、メタンリッチ混合液の液蒸発
温度と循環低圧窒素の液化温度との間には熱交換に必要
な温度差を維持することがプロセス運転上重要なポイン
トとなる。即ち循環低圧窒素の圧力を低く保てばメタン
リッチ冷媒液の蒸発温度を下げるため弁V2よりの水素ガ
スの混入または弁V3から窒素ガスの混入を増加させる必
要が生ずる。一方メタンリッチ冷媒液の蒸発温度を一定
に保持すれば循環低圧窒素の圧力を上昇させる必要があ
る。循環窒素圧力の上昇は動力増となり好ましくない。
逆に水素、窒素のサイクルメタンへの混入はそれぞれの
ガスの収率低下になる。これらを勘案した場合の循環低
圧窒素の最適圧力は8Kg/cm2G前後である。
Since methane was used as the methane tower reboil source in the method of the present invention, it is necessary to generate liquefied nitrogen to be sent to the methane tower condenser 7 at a place other than the reboiler. Therefore, the methane-rich mixed refrigerant J and the low pressure circulating nitrogen are circulated. Liquefied nitrogen was obtained by exchanging heat with the second heat exchanger 11. Therefore, maintaining the temperature difference required for heat exchange between the liquid evaporation temperature of the methane-rich mixed liquid and the liquefaction temperature of the circulating low-pressure nitrogen is an important point in process operation. That is, if the pressure of the circulating low-pressure nitrogen is kept low, it is necessary to increase the mixing of hydrogen gas from the valve V 2 or the mixing of nitrogen gas from the valve V 3 in order to lower the evaporation temperature of the methane-rich refrigerant liquid. On the other hand, if the evaporation temperature of the methane-rich refrigerant liquid is kept constant, it is necessary to raise the pressure of the circulating low-pressure nitrogen. An increase in circulating nitrogen pressure is not preferable because it increases power.
On the contrary, mixing of hydrogen and nitrogen into the cycle methane reduces the yield of each gas. The optimum pressure for circulating low-pressure nitrogen is 8 kg / cm 2 G when considering these factors.

このようなアルゴンの回収方法にあっては、メタンサイ
クルを形成してメタン塔5からの缶出ガスEを同メタン
塔5における塔底混合液Bの加熱源としたことなどによ
り、第2図に示した所要動力の高い高圧循環窒素圧縮機
15に代わって所要動力の低いメタン圧縮機16を使用する
ことができ、よって動力費を大幅に削減できることから
回収アルゴンのコストを低下せしめることができる。ま
た、上記の圧縮機15を使用しないことからこの圧縮機15
の点検等によるアルゴン回収系の運転の中断を無くすこ
とができ、これによりこのアルゴン回収系の稼動効率を
高めることができる。さらに、上記圧縮機15を使用しな
いことから、アルゴン回収系の設備費を大幅に削減する
ことができる。
In such an argon recovery method, a methane cycle is formed and the bottom gas E from the methane tower 5 is used as a heating source for the bottom mixed liquid B in the methane tower 5, and so on. High-pressure circulating nitrogen compressor with high required power shown in
A methane compressor 16 having a low required power can be used in place of 15, so that the cost of power can be significantly reduced, and thus the cost of recovered argon can be reduced. Also, since the above compressor 15 is not used, this compressor 15
It is possible to prevent interruption of the operation of the argon recovery system due to inspections, etc., and thereby to improve the operation efficiency of this argon recovery system. Furthermore, since the compressor 15 is not used, the facility cost of the argon recovery system can be significantly reduced.

「発明の効果」 以上に説明したように、この発明のアルゴンの回収方法
は、メタン塔からの缶出ガスを同メタン塔における混合
物の加熱源に供し、この加熱源として供されたサイクル
メタンの一部にフラッシュタンクから得られるガスを加
えて混合物とし、これをアルゴン塔の留出分である窒素
を昇温後圧縮して降温しアルゴン塔リボイラーの熱源お
よび還流液そしてメタン塔コンデンサーの冷媒とする低
圧循環窒素ガスとの熱交換に供するか、あるいはこの混
合物にアルゴン塔から得られる窒素ガスまたは気液分離
器から得られる水素ガスの少なくとも一方を加えてこれ
を上記の低圧循環窒素ガスとの熱交換に供すことによ
り、従来の方法における高圧循環窒素圧縮機の使用を取
りやめたものであるから、従来の方法に比較して回収ア
ルゴンのコストを引き下げることができ、またアルゴン
回収系の稼動効率を高めることができ、さらにこのアル
ゴン回収系の設備費を大幅に削減することができる。さ
らに、メタン塔リボイラーの加熱源をサイクルメタンと
したことにより、加熱量のコントロールが容易となり装
置の運転制御が容易となった。
"Effects of the Invention" As described above, the method for recovering argon of the present invention provides the bottom gas from the methane column as a heating source for the mixture in the methane column, and uses the cycle methane of the cycle methane provided as the heating source. Add the gas obtained from the flash tank to a part of the mixture to make a mixture.Then, the nitrogen, which is the distillate of the argon tower, is heated and then compressed to lower the temperature, and the heat source and reflux liquid of the argon tower reboiler and the refrigerant of the methane tower condenser are used. Or at least one of nitrogen gas obtained from an argon column or hydrogen gas obtained from a gas-liquid separator is added to this mixture, and this is mixed with the above-mentioned low-pressure circulating nitrogen gas. By using it for heat exchange, the use of the high-pressure circulating nitrogen compressor in the conventional method has been discontinued. The cost of the argon recovery system can be reduced, the operating efficiency of the argon recovery system can be improved, and the facility cost of the argon recovery system can be significantly reduced. Furthermore, by using cycle methane as the heating source of the methane tower reboiler, the amount of heating can be easily controlled and the operation control of the device can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のアルゴンの回収方法を説明するため
のフロー図、第2図は従来のアルゴンの回収方法を説明
するためのフロー図である。 1……第1熱交換器、2……第2熱交換器、 3……気液分離器、4……フラッシュタンク、 5……メタン塔、6……リボイラー、 7……コンデンサー、8……アルゴン塔、 9……リボイラー、11……循環第2熱交換器、 12……循環第1熱交換器、 13……低圧循環窒素圧縮機、 14……膨張タービン、16……メタン圧縮機
FIG. 1 is a flow chart for explaining the argon recovery method of the present invention, and FIG. 2 is a flow chart for explaining the conventional argon recovery method. 1 ... First heat exchanger, 2 ... Second heat exchanger, 3 ... Gas-liquid separator, 4 ... Flash tank, 5 ... Methane tower, 6 ... Reboiler, 7 ... Condenser, 8 ... … Argon tower, 9 …… Reboiler, 11 …… Circulating second heat exchanger, 12 …… Circulating first heat exchanger, 13 …… Low pressure circulating nitrogen compressor, 14 …… Expansion turbine, 16 …… Methane compressor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒素、水素、メタン、アルゴンを含む原料
ガスを冷却して気液分離器にて液化窒素、液化メタン、
液化アルゴンを主成分とする混合液と水素ガスとに分離
し、次に上記混合液をフラッシュタンクにて減圧し一部
を蒸発させ、次いでフラッシュタンクから導出した混合
液をメタン塔に導入して窒素およびアルゴンを主成分と
する留出分と液化メタンを主成分とする缶出液とに分離
し、その後メタン塔から導出した留出分をアルゴン塔に
導入してアルゴンを分離回収するアルゴンの回収方法に
おいて、 前記メタン塔下部から缶出留分をガス状で抜き出し、昇
温後加圧して再び降温し、該メタン塔リボイラーに導入
して加熱源とすることを特徴とするアンモニア合成パー
ジガスからのアルゴンの回収方法。
1. A raw material gas containing nitrogen, hydrogen, methane, and argon is cooled and liquefied nitrogen, liquefied methane, and
Separated into a mixed liquid containing liquefied argon as a main component and hydrogen gas, then decompressing the mixed liquid in a flash tank to partially evaporate it, and then introducing the mixed liquid derived from the flash tank into a methane column. Separate the distillate containing nitrogen and argon as the main components and the bottom product containing liquefied methane as the main component, and then introduce the distillate derived from the methane tower into the argon tower to separate and recover the argon. In the recovery method, a bottom fraction is extracted in a gaseous state from the lower part of the methane column, heated, pressurized and then cooled again, and introduced into the methane column reboiler to serve as a heating source. How to recover argon.
【請求項2】窒素、水素、メタン、アルゴンを含む原料
ガスを冷却して気液分離器にて液化窒素、液化メタン、
液化アルゴンを主成分とする混合液と水素ガスとに分離
し、次に上記混合液をフラッシュタンクにて減圧し一部
を蒸発させ、次いでフラッシュタンクから導出した混合
液をメタン塔に導入して窒素およびアルゴンを主成分と
する留出分と液化メタンを主成分とする缶出液とに分離
し、その後メタン塔から導出した留出分をアルゴン塔に
導入してアルゴンを分離回収するアルゴンの回収方法に
おいて、 前記メタン塔下部から缶出留分をガス状で抜き出し、昇
温後加圧して再び降温し、該メタン塔リボイラーに導入
して加熱源に供し、該メタン塔リボイラーを導出した液
を分岐してその一方を弁を介して上記昇温加圧工程へ戻
すと共に他方を前記フラッシュタンクからの蒸発ガスと
混合して気液混合流とし、前記アルゴン塔塔頂より導出
した窒素でなる低圧循環窒素と熱交換せしめることを特
徴とするアンモニア合成パージガスからのアルゴンの回
収方法。
2. A raw material gas containing nitrogen, hydrogen, methane and argon is cooled and liquefied nitrogen, liquefied methane,
Separated into a mixed liquid containing liquefied argon as a main component and hydrogen gas, then decompressing the mixed liquid in a flash tank to partially evaporate it, and then introducing the mixed liquid derived from the flash tank into a methane column. Separate the distillate containing nitrogen and argon as the main components and the bottom product containing liquefied methane as the main component, and then introduce the distillate derived from the methane tower into the argon tower to separate and recover the argon. In the recovery method, a bottom fraction is gaseously extracted from the lower part of the methane column, heated, pressurized and then cooled again, introduced into the methane column reboiler and supplied to a heating source, and a liquid derived from the methane column reboiler. And one of them is returned to the temperature raising and pressurizing step through a valve and the other is mixed with the evaporative gas from the flash tank to form a gas-liquid mixed flow, and the nitrogen discharged from the top of the argon column is discharged. A method for recovering argon from an ammonia synthesis purge gas, characterized in that it is heat-exchanged with low-pressure circulating nitrogen.
【請求項3】前記メタン塔リボイラーを導出した液を分
岐してその一方の流れに前記フラッシュタンクからの蒸
発ガスを混合し、さらに前記気液分離器より導出した水
素ガスの一部または前記アルゴン塔塔頂より導出した窒
素ガスの少なくとも一方を減圧して加え、得られた気液
混合流を前記低圧循環窒素との熱交換に供して該低圧循
環窒素ガスを冷却することを特徴とする特許請求の範囲
第2項記載のアンモニア合成パージガスからのアルゴン
の回収方法。
3. The liquid discharged from the methane tower reboiler is branched, and the vaporized gas from the flash tank is mixed into one of the flows, and a part of the hydrogen gas discharged from the gas-liquid separator or the argon gas is further mixed. At least one of nitrogen gas derived from the tower top is decompressed and added, and the obtained gas-liquid mixed flow is subjected to heat exchange with the low pressure circulating nitrogen to cool the low pressure circulating nitrogen gas. The method for recovering argon from the ammonia synthesis purge gas according to claim 2.
JP61264976A 1986-11-07 1986-11-07 Method for recovering argon from ammonia synthesis purge gas Expired - Fee Related JPH0730998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264976A JPH0730998B2 (en) 1986-11-07 1986-11-07 Method for recovering argon from ammonia synthesis purge gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264976A JPH0730998B2 (en) 1986-11-07 1986-11-07 Method for recovering argon from ammonia synthesis purge gas

Publications (2)

Publication Number Publication Date
JPS63118587A JPS63118587A (en) 1988-05-23
JPH0730998B2 true JPH0730998B2 (en) 1995-04-10

Family

ID=17410826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264976A Expired - Fee Related JPH0730998B2 (en) 1986-11-07 1986-11-07 Method for recovering argon from ammonia synthesis purge gas

Country Status (1)

Country Link
JP (1) JPH0730998B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519222A (en) * 2011-12-13 2012-06-27 杭州中泰深冷技术股份有限公司 Cryogenic separation method for preparing liquefied natural gas from coke-oven gas
CN102435044B (en) * 2011-12-13 2014-05-07 杭州中泰深冷技术股份有限公司 Cryogenic separating system for preparing liquefied natural gas with oven gas
CN102654348B (en) * 2012-05-22 2015-01-28 中国海洋石油总公司 Method for producing liquefied natural gas by using coke oven gas
CN105180595B (en) * 2015-09-16 2017-06-27 开封空分集团有限公司 A kind of system and method for producing hydrogen rich gas and liquid methane

Also Published As

Publication number Publication date
JPS63118587A (en) 1988-05-23

Similar Documents

Publication Publication Date Title
US4566886A (en) Process and apparatus for obtaining pure CO
US5295356A (en) Process and apparatus for the production of carbon monoxide and hydrogen
US3401531A (en) Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
JPH0412392B2 (en)
US5509271A (en) Process and installation for the separation of a gaseous mixture
US6173585B1 (en) Process for the production of carbon monoxide
JPS61110872A (en) Manufacture of nitrogen
JPH11351738A (en) Method and system for producing high purity oxygen
JPH0735470A (en) Method and device for manufacturing superhigh purity dinitrogen monoxide
JPS6096686A (en) Separation of hydrocarbon mixture
US4834785A (en) Cryogenic nitrogen generator with nitrogen expander
US4338107A (en) Wash system gas separation
TW201800333A (en) Process and device for cryogenic synthesis gas separation
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH0730998B2 (en) Method for recovering argon from ammonia synthesis purge gas
US4530708A (en) Air separation method and apparatus therefor
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3082092B2 (en) Oxygen purification method and apparatus
JPH07127971A (en) Argon separator
JP2621841B2 (en) Cryogenic separation method and apparatus for carbon monoxide
CA1221903A (en) Separation of ethane and higher hydrocarbons from natural gas
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPS63118586A (en) Method of recovering argon from ammonia synthesis purge gas
JP2000180051A (en) Manufacture of ultrahigh purity nitrogen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees