JPH07306720A - Method and device for producing mixed gas of specific concentration - Google Patents
Method and device for producing mixed gas of specific concentrationInfo
- Publication number
- JPH07306720A JPH07306720A JP6098714A JP9871494A JPH07306720A JP H07306720 A JPH07306720 A JP H07306720A JP 6098714 A JP6098714 A JP 6098714A JP 9871494 A JP9871494 A JP 9871494A JP H07306720 A JPH07306720 A JP H07306720A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- flow rate
- gas
- fluids
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Accessories For Mixers (AREA)
- Control Of Non-Electrical Variables (AREA)
Abstract
Description
【0001】[0001]
【発明の分野】本発明は2種又は2種以上のガスを所定
濃度に混合する装置及び方法に関する。FIELD OF THE INVENTION The present invention relates to an apparatus and method for mixing two or more gases to a given concentration.
【0002】[0002]
【発明の背景】半導体産業において、SiH4 、PH3
等の特殊材料ガスが使用されている。これらのSiH
4 、PH3 ガスは通常H2 、N2 、He、Ar等のバラ
ンスガスで希釈しシリンダー容器に充填して使用されて
いる。この場合製造プロセスの条件を変動させることな
く得られた半導体の供給品質を一定に保持するために所
定濃度では2つのガスの混合割合の変動は0あるいは最
少の許容範囲内に抑えられなければならない。例えばH
2 10容量部に対しPH3 1容量部を含む混合ガスを得
ようとする時、常にPH3 :H2 は10:1(容量基
準)で混合されなければならないということである。BACKGROUND OF THE INVENTION In the semiconductor industry, SiH 4 , PH 3
And other special material gases are used. These SiH
4 , PH 3 gas is usually diluted with a balance gas such as H 2 , N 2 , He, Ar, etc. and filled in a cylinder container for use. In this case, in order to keep the supply quality of the obtained semiconductor constant without changing the conditions of the manufacturing process, the fluctuation of the mixing ratio of the two gases must be suppressed to 0 or within the minimum allowable range at a predetermined concentration. . For example H
When an attempt is made to obtain a mixed gas containing PH 3 1 parts by volume with respect to 2 10 parts by volume, always PH 3: H 2 is 10: 1 is that it must be mixed with (volume basis).
【0003】従来、例えばPH3 等のドーパントとH2
等の希釈ガスとを図1に示されるような装置で混合され
ていた。しかしながら従来の方法では常に一定濃度のド
ーパントガスと希釈ガスとの混合ガスは得られなかっ
た。例えば希釈ガス10リットルに対し、ドーパントガ
ス1リットルの混合物を得ようとしても、常に容量比で
10:1の混合物が得られるとは限らない。Conventionally, for example, a dopant such as PH 3 and H 2
Was mixed in a device as shown in FIG. However, the conventional method cannot always obtain a mixed gas of a dopant gas and a diluent gas having a constant concentration. For example, even if an attempt is made to obtain a mixture of 1 liter of the dopant gas with respect to 10 liters of the diluent gas, the mixture having a volume ratio of 10: 1 is not always obtained.
【0004】そのため従来では予め一定割合を持ったガ
ス混合物が充填されたボンベを使用して、半導体の製造
を行なっていた。しかしこれではいろいろな割合のドー
パントガスと希釈ガスとの混合ガスを得るためには複数
本の混合ガスボンベを用意しなければならなかった。又
混合ガスを使用するためにボンベの変換を比較的に頻繁
に行なわなければならない上に、シリンダー容器交換の
たびに混合ガス濃度の変動が相対濃度にして±5%の範
囲内で発生していた。Therefore, conventionally, semiconductors have been manufactured by using a cylinder filled with a gas mixture having a predetermined ratio in advance. However, in this case, a plurality of mixed gas cylinders had to be prepared in order to obtain mixed gas of various ratios of the dopant gas and the diluent gas. In addition, since the cylinder must be changed relatively frequently in order to use the mixed gas, the fluctuation of the mixed gas concentration occurs within ± 5% of the relative concentration each time the cylinder container is replaced. It was
【0005】[0005]
【本発明の概要】本発明は2種以上のガスそれぞれが単
独で充填されているボンベから所定の割合で混合する装
置及び方法に関する。SUMMARY OF THE INVENTION The present invention is directed to an apparatus and method for mixing two or more gases, each of which is individually filled, in a predetermined ratio.
【0006】本発明は、第1流体に対して第2流体を所
定比率で混合する装置であり、第1流体が流通する第1
流路、第2流体が流通する第2流路、第1流体のガス流
量を検出する手段、第1流体の流量に基づく信号を発生
する手段、その手段からの信号により第2流体をガス流
量をリアルタイムでコントロールするコントロール手段
を含み第2流体の流量は y=axb +c (式中xは、第1流体の流量、yは第2流体の流量、a
及びb及びcは第2流体対第1流体の比によって変化す
るが、2つの流体の一定の比率においては、実験的に求
められた定数である)に従ってコントロールされる2つ
の流体を所定比率で混合する装置に関する。The present invention is a device for mixing a second fluid with a first fluid at a predetermined ratio, and a first fluid through which the first fluid flows.
A flow path, a second flow path through which the second fluid flows, a means for detecting the gas flow rate of the first fluid, a means for generating a signal based on the flow rate of the first fluid, and a gas flow rate of the second fluid by a signal from the means The flow rate of the second fluid is y = ax b + c including a control means for controlling in real time, where x is the flow rate of the first fluid, y is the flow rate of the second fluid, and a
And b and c vary with the ratio of the second fluid to the first fluid, but for a given ratio of the two fluids, the two fluids controlled according to Regarding a mixing device.
【0007】又本発明は第1流体に対して第2流体を所
定比率で混合する方法において、第1流体のガス流量を
検出し、第1流体の流量に基づく信号により、式 y=axb +c (式中xは、第1流体の流量、yは第2流体の流量、a
及びb及びcは第2流体対第1流体の比によって変化す
るが、2つの流体の一定に比率においては実験的に求め
られた定数である)に基づいて第2流体のガス流量をリ
アルタイムにコントロールすることを特徴とする第1流
体及び第2流体を所定比率で混合する方法に関する。Further, the present invention is a method of mixing a second fluid with a first fluid at a predetermined ratio, by detecting a gas flow rate of the first fluid and using a signal based on the flow rate of the first fluid, an equation y = ax b + C (where x is the flow rate of the first fluid, y is the flow rate of the second fluid, a
And b and c change depending on the ratio of the second fluid to the first fluid, but are constants experimentally obtained at a constant ratio of the two fluids), and the gas flow rate of the second fluid is calculated in real time. The present invention relates to a method of mixing a first fluid and a second fluid in a predetermined ratio, which is characterized by controlling.
【0008】本発明を図面によって説明する。図2にお
いて、第1流路からH2 、He等の希釈ガスを流し、第
2流路からSiH4 、PH3 等のドーパントガスを流
し、MFMからの出力電圧によって y=axb +c (式中xは、第1流体の流量、yは第2流体の流量、a
及びb及びcは第2流体対第1流体の比によって変化す
るが、2つの流体の一定の比率においては実験的に求め
られた定数である)によってドーパントガスの流量をリ
アルタイムにコントロールする。The present invention will be described with reference to the drawings. In FIG. 2, a diluting gas such as H 2 and He is caused to flow from the first flow passage, a dopant gas such as SiH 4 and PH 3 is caused to flow from the second flow passage, and y = ax b + c (equation Where x is the flow rate of the first fluid, y is the flow rate of the second fluid, and a
And b and c vary according to the ratio of the second fluid to the first fluid, which is an experimentally determined constant for a constant ratio of the two fluids) to control the dopant gas flow rate in real time.
【0009】例えば希釈ガスがH2 であり、そしてドー
パントガスがPH3 であり、そしてドーパーンガス濃度
が10%である混合物を得ようとする時、例えばa=
0.992、b=0.995となる。濃度が20%とな
る時は例えばa=0.823、b=0.854、c=0
となる。このデータは時間の経過と共に少しずつ変化す
るので零点チェックを1〜2時間毎に行なうことが好ま
しい。零点チェックとはガスの供給を停止し、第1流体
の流量に基づく信号を発生する手段からの信号により、
上記aおよび/またはbおよび/またはcの更正を行な
う。For example, when one wants to obtain a mixture in which the diluent gas is H 2 and the dopant gas is PH 3 and the Dopane gas concentration is 10%, for example, a =
It becomes 0.992 and b = 0.995. When the concentration becomes 20%, for example, a = 0.823, b = 0.854, c = 0
Becomes Since this data changes little by little as time passes, it is preferable to perform the zero point check every 1 to 2 hours. The zero point check is a signal from the means for stopping the supply of gas and generating a signal based on the flow rate of the first fluid,
The above a and / or b and / or c is corrected.
【0010】図2についてさらに詳しい説明をする。1
は希釈ガス用の第1流路、2はドーパントガス用の第2
流路、3は弁、4はフィルター、5は弁、6はMFM
(マスフローメータ)、7は弁、8は弁、9はフィル
タ、10は弁、11はマスフローコントローラ、12は
弁、13はパージガス用の弁、14は内圧測定用の圧力
計、15はバッファータンク、16は混合ガスの圧力を
調整のための電子調圧器。A more detailed description will be given with reference to FIG. 1
Is the first flow path for the diluent gas, 2 is the second flow path for the dopant gas
Flow path, 3 valves, 4 filters, 5 valves, 6 MFM
(Mass flow meter), 7 is a valve, 8 is a valve, 9 is a filter, 10 is a valve, 11 is a mass flow controller, 12 is a valve, 13 is a purge gas valve, 14 is a pressure gauge for measuring internal pressure, and 15 is a buffer tank. , 16 are electronic pressure regulators for adjusting the pressure of the mixed gas.
【0011】希釈ガスは弁3、フィルター4,弁5を通
り、MFM7で流量が計測される。一方ドーパントガス
は弁8、フィルター9、弁10を通りMFC11で流量
が制御される。これらの希釈ガスとドーパントガスはそ
れぞれ弁11と弁12を通過し、弁内の合流点において
混合攪拌が行なわれ、バッファータンクへ導入される。
この場合、希釈ガスラインのMFM12における流量を
出力電圧として演算回路へ入力し、ドーパントガスライ
ンのMFCにおいて、添加すべき流量に相当する電圧を
演算し、MFCに入力する。この制御方法により、ユー
スポイント(半導体製造装置側)における需要流量に追
従して、常時一定濃度の混合ガスを発生させることが可
能となる。バッファータンク15からの混合ガスは電子
調圧器16により圧力が調整され、弁17を通り、ユー
スポイントに送られる。装置を停止した時、系内に残留
するドーパントガスを追い出すためにパージガスを導入
する。The dilution gas passes through the valve 3, the filter 4 and the valve 5, and the flow rate is measured by the MFM 7. On the other hand, the flow rate of the dopant gas is controlled by the MFC 11 through the valve 8, the filter 9 and the valve 10. These diluent gas and dopant gas pass through the valve 11 and the valve 12, respectively, are mixed and stirred at the confluence of the valves, and are introduced into the buffer tank.
In this case, the flow rate in the MFM 12 of the dilution gas line is input as an output voltage to the arithmetic circuit, the MFC of the dopant gas line calculates a voltage corresponding to the flow rate to be added, and the voltage is input to the MFC. With this control method, it is possible to constantly generate a mixed gas of a constant concentration by following the demand flow rate at the use point (semiconductor manufacturing apparatus side). The pressure of the mixed gas from the buffer tank 15 is adjusted by the electronic pressure regulator 16, and the mixed gas is sent to the use point through the valve 17. When the apparatus is stopped, a purge gas is introduced to expel the dopant gas remaining in the system.
【0012】本発明は1種類のガスに対し2種類又はそ
れ以上のガスを混合する態様をも包含する。これは、図
3に示される態様となる。図3に示される装置はガスA
についてガスB及びガスCを均一に混合する。この場合
ガスAとガスBとの関係は式 y=axb +c (式中xは、ガスAの流量、yはガスBの流量、a及び
b及びcはガスB、ガスAの比によって変化するが、2
つの流体の一定の比率においては、実験的に求められた
定数である)となる。又ガスAとガスCとの関係は式 y′=a′xb ′+c′─── (式中xは、ガスAの流量、y′はガスCの流量、a′
及びb′及びc′はガスC対ガスAの比によって変化す
るが、2つの流体の一定の比率においては、実験的に求
められた定数である)となる。The present invention also includes a mode in which two or more kinds of gases are mixed with one kind of gas. This becomes the mode shown in FIG. The device shown in FIG.
Gas B and gas C are mixed uniformly. In this case, the relationship between the gas A and the gas B is expressed by the following equation: y = ax b + c (where x is the flow rate of the gas A, y is the flow rate of the gas B, and a, b and c are changed depending on the ratio of the gas B and the gas A). But 2
It is an experimentally determined constant for a given ratio of two fluids). Further, the relationship between the gas A and the gas C is expressed by the following equation: y '= a'xb' + c '(where x is the flow rate of the gas A, y'is the flow rate of the gas C, a'
And b'and c'depend on the ratio of gas C to gas A, but for a given ratio of the two fluids are experimentally determined constants).
【0013】このような第1流体(ガスA)に対し混合
すべきガスは何種類あっても、図3に示されるガスCと
同じ系を第1流路1に接続すれば良い。図3において2
8は弁、29はフィルター、30は弁、31はガスC用
のMFC、27は弁、33はガスC用のパージガス弁で
ある。No matter how many kinds of gases should be mixed with the first fluid (gas A), the same system as the gas C shown in FIG. 3 may be connected to the first flow path 1. 2 in FIG.
8 is a valve, 29 is a filter, 30 is a valve, 31 is an MFC for gas C, 27 is a valve, and 33 is a purge gas valve for gas C.
【0014】図2で示される装置はドーパントガス(S
iH4 )と希釈ガス(He)の例を示したが本発明にお
いてガスの種類は問わない。The device shown in FIG. 2 has a dopant gas (S
Examples of iH 4 ) and diluent gas (He) have been shown, but the type of gas does not matter in the present invention.
【0015】ユースポイントでの使用を停止すると配管
内圧が上限値に達し、または第1流路の流量が下限値に
達し、その時、両方のガスの供給を停止する。そのユー
スポイントの使用を開始した時、配管内圧が下限値に達
し、その時両方のガスの供給を開始する。When the use at the point of use is stopped, the internal pressure of the pipe reaches the upper limit value or the flow rate of the first flow path reaches the lower limit value, at which time the supply of both gases is stopped. When the use of the use point is started, the internal pressure of the pipe reaches the lower limit value, and then supply of both gases is started.
【0016】ある期間(例えば1年に1回)ごとに基準
濃度分析計をつなぎ込むことにより、2台の流量制御装
置の出力値を読み取り、上記aおよびbおよびcの更正
を行なう。By connecting the reference concentration analyzer every certain period (for example, once a year), the output values of the two flow rate control devices are read and the above a, b and c are calibrated.
【0017】本発明の実施例を以下に示す。ただし、発
明内容の1例であり、本発明はこの内容に限定されるも
のではない。Examples of the present invention will be described below. However, this is one example of the content of the invention, and the present invention is not limited to this content.
【0018】実施例1 本実施例は流量の比例制御方式(希釈ガスのMFM流量
に対し、成分ガスのMFCを濃度一定となるように流量
制御する方法)の混合装置に於いてMFMの流量読値と
MFCの流量設定値の相関関係を明確にし、またその関
係式を用いて比例制御した時の発生濃度が一定となるこ
とを確認した事例である。Example 1 In this example, the flow rate reading of the MFM was carried out in a mixing apparatus of a proportional flow rate control system (a method of controlling the flow rate so that the concentration of MFC of the component gas becomes constant with respect to the MFM flow rate of the diluent gas). This is an example in which the correlation between the flow rate setting value of MFC and the flow rate setting value of MFC was clarified, and the concentration was confirmed to be constant when proportional control was performed using the relational expression.
【0019】希釈ガスとしてHe、成分ガスとしてSi
H4 を用い、Heガスの供給圧力をレギュレーターRV
−2で3.5kg/cm2 Gに、SiH4 ガスの供給圧
力をRV−1で4kg/cm2 Gに調整した。そのシス
テムフローを図4に示す。He as a dilution gas and Si as a component gas
Use H 4 and adjust the He gas supply pressure to regulator RV
-2 was adjusted to 3.5 kg / cm 2 G, and the SiH 4 gas supply pressure was adjusted to 4 kg / cm 2 G with RV-1. The system flow is shown in FIG.
【0020】分析計には超音波発信式混合ガス濃度計を
用いた。またMFC−2により分析計には常に500c
c/minの流量の混合ガスがサンプリングされるよう
に調整した。MFC−3により混合ガス発生流量を0〜
7l/minの範囲において500cc/minピッチ
で調整した。An ultrasonic wave transmission type mixed gas concentration meter was used as an analyzer. Also, the analyzer is always 500c by MFC-2.
It was adjusted so that the mixed gas at a flow rate of c / min was sampled. The mixed gas generation flow rate is set to 0 by MFC-3.
Adjustment was performed at a pitch of 500 cc / min in the range of 7 l / min.
【0021】各混合ガス発生流量に対し、既定の発生濃
度(20%)となるようにMFC−1によりSiH4 ガ
ス添加流量を調整した。発生濃度が既定の発生濃度と一
致した時のHeガスの流量読み値(X)とSiH4 ガス
の流量設定値(Y)を最小限乗法により回帰した。回帰
の方法はべき数(Y=axb +c)で回帰した。回帰し
た結果Y=0.982x-0.968の相関関係を得た。The SiH 4 gas addition flow rate was adjusted by MFC-1 so that a predetermined generation concentration (20%) was obtained for each mixed gas generation flow rate. The He gas flow rate reading (X) and the SiH 4 gas flow rate set value (Y) when the generated concentration coincided with the predetermined generated concentration were regressed by the least-multiplication method. Regressed by the number method regression to (Y = ax b + c) . As a result of regression, a correlation of Y = 0.982 × −0.968 was obtained.
【0022】上述の方法により得られたべき数を用いて
比例制御する方法と従来の流量の設定値通りの比例制御
の方法とで発生濃度の比較を行った。The generated concentration was compared between the method of proportional control using the power number obtained by the above method and the conventional method of proportional control according to the set value of the flow rate.
【0023】後段側のMFC−3により、流量を0〜7
l/minまで変化させた時の発生濃度(図5参照)
は、べき数を用いた比例制御では流量の変化に対し常に
一定であることが確認された。The flow rate is set to 0 to 7 by the MFC-3 on the rear stage side.
Generated concentration when changing to 1 / min (see Fig. 5)
It has been confirmed that is proportional to the flow rate change in proportional control using a power.
【0024】濃度を10%、30%、40%とした時も
同様の方法を用いて発生濃度の確認を行った。各濃度で
の流量と発生濃度の関係を図6に示す。When the concentrations were 10%, 30% and 40%, the generated concentration was confirmed by the same method. FIG. 6 shows the relationship between the flow rate and the generated concentration at each concentration.
【0025】実施例2 自動運転のための混合装置のフローを図7に示す。Example 2 The flow of the mixing apparatus for automatic operation is shown in FIG.
【0026】自動運転とは、ユースポイントにおいて混
合ガスの使用を停止した場合、MFMの流量指示値が3
00cc/min以下になったときに空圧弁AV−3,
4,5,6を閉め、混合ガスの供給を停止する。またユ
ースポイントに於いて混合ガスを使用し始めると、配管
内圧が低下したことを圧力センサー(P)が検知し、そ
の指示値が3.3kg/cm2 G以下の指示値になった
ときに空圧弁AV−3,4,5,6を開け供給を開始す
る。また混合ガスの供給圧力はオートプレッシャーレギ
ュレーター(UR)により3kg/cm2 Gとし、発生
濃度設定値を20%にした。Automatic operation means that when the use of the mixed gas is stopped at the point of use, the flow rate instruction value of the MFM is 3
When it becomes less than 00cc / min, the pneumatic valve AV-3,
Close 4, 5 and 6 to stop the supply of the mixed gas. Also, when the mixed gas is started to be used at the point of use, the pressure sensor (P) detects that the internal pressure of the pipe has dropped, and when the indicated value becomes less than 3.3 kg / cm 2 G. Pneumatic valves AV-3, 4, 5 and 6 are opened to start supply. The supply pressure of the mixed gas was set to 3 kg / cm 2 G by an auto pressure regulator (UR), and the generated concentration set value was set to 20%.
【0027】希釈ガスとしてHeを用い供給圧力を3.
5kg/cm2 Gに調整し、成分ガスとしてSiH4 を
用い供給圧力を4.0kg/cm2 Gに調整した。He was used as a dilution gas and the supply pressure was set to 3.
It was adjusted to 5kg / cm 2 G, to adjust the supply pressure using SiH 4 as a component gas to 4.0kg / cm 2 G.
【0028】装置出口にMFCを設置してユースポイン
トに於ける流量変動を模擬的に発生させ、混合装置の混
合ガス発生流量を7→5→3→1→0.5→0→0.5
→1→3→5→7l/minと変化させた。流量の変化
に係わらず発生濃度は一定である事が確認された。(図
8参照)。An MFC is installed at the outlet of the apparatus to simulate the flow rate fluctuation at the point of use, and the mixed gas generation flow rate of the mixing apparatus is changed to 7 → 5 → 3 → 1 → 0.5 → 0 → 0.5.
→ 1 → 3 → 5 → 7 l / min. It was confirmed that the generated concentration was constant regardless of the change in flow rate. (See Figure 8).
【0029】実施例3 実施例1でべき数の関係を得たときのMFM及びMFC
のゼロ点出力(ガスの流れがない状態での出力電圧)を
共に0mVとする。Example 3 MFM and MFC when obtaining the power relation in Example 1
The zero point output (output voltage in the state where there is no gas flow) is set to 0 mV.
【0030】このときのゼロ点の出力を基準電圧とし、
この電圧値が経時的に変化し、ガスの流れがない状態に
於いてMFMの出力電圧がemV及びMFCの出力電圧
がdmVになった時元のべき数のY=axb の演算式を
Y−d=a(x−e)b に書き換えて、新しい演算式と
しゼロ点を校正する。The output at the zero point at this time is set as a reference voltage,
When the voltage value changes with time and the output voltage of the MFM becomes emV and the output voltage of the MFC becomes dmV in a state where there is no gas flow, the calculation formula of Y = ax b , which is the original exponent, is Y Rewrite as −d = a (x−e) b to make a new arithmetic expression and calibrate the zero point.
【0031】 Y=axb +c → Y=axb +c′ 従来の方法と上述の方法による制御を用いて発生濃度の
経時変化の確認を行った。Y = ax b + c → Y = ax b + c ′ Using the conventional method and the control by the above-mentioned method, the time-dependent change in the generated concentration was confirmed.
【0032】確認の方法として希釈ガスにHe、成分ガ
スとしてSiH4 を用いて、発生濃度を20%に設定し
発生流量を3l/minに調整した。As a confirmation method, He was used as a diluting gas and SiH 4 was used as a component gas, the generation concentration was set to 20%, and the generation flow rate was adjusted to 3 l / min.
【0033】12カ月間2カ月おきに発生濃度の確認を
行ったところ、ゼロ点の校正を行わない場合には発生濃
度の設定を20%にしても発生濃度に1.2%のズレが
発生した。しかしゼロ点の変化にともないゼロ点を校正
した演算式の書き換えによる制御方法では、この期間に
おける発生濃度に変化はみられなかった。(図9参照)When the density of generation was confirmed every two months for 12 months, a deviation of 1.2% was generated even if the density of generation was set to 20% if the zero point was not calibrated. did. However, with the control method by rewriting the arithmetic expression calibrating the zero point with the change of the zero point, the generated concentration during this period did not change. (See Figure 9)
【図1】従来技術の2種類のガスの混合装置の概略図。FIG. 1 is a schematic view of a conventional two-gas mixing device.
【図2】本発明の混合装置の概略図。FIG. 2 is a schematic view of the mixing apparatus of the present invention.
【図3】本発明の別の態様の混合装置の概略図。FIG. 3 is a schematic view of a mixing apparatus according to another aspect of the present invention.
【図4】実施例1を実施するためのシステムフローの概
略図。FIG. 4 is a schematic diagram of a system flow for carrying out the first embodiment.
【図5】流量と発生濃度との関係を示すグラフ。FIG. 5 is a graph showing the relationship between flow rate and generated concentration.
【図6】各種濃度における流量と発生濃度との関係を示
すグラフ。FIG. 6 is a graph showing the relationship between flow rate and generated concentration at various concentrations.
【図7】本発明の自動運転のための装置の概略図。FIG. 7 is a schematic view of an apparatus for automatic driving according to the present invention.
【図8】時間と流量と発生濃度との関係を示すグラフ。FIG. 8 is a graph showing the relationship between time, flow rate, and generated concentration.
【図9】時間と発生濃度との関係を示すグラフ。FIG. 9 is a graph showing the relationship between time and generated concentration.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 来島 貴彦 埼玉県東松山市新郷75−1 大阪酸素工業 株式会社開発センター内 (72)発明者 林 茂樹 埼玉県東松山市新郷75−1 大阪酸素工業 株式会社開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahiko Kurushima 75-1 Shingo, Higashimatsuyama City, Saitama Prefecture, Osaka Oxygen Industry Co., Ltd. (72) Inventor Shigeki Hayashi 75-1 Shingo, Higashimatsuyama City, Saitama Prefecture Osaka Oxygen Industry Co., Ltd. In the development center
Claims (7)
混合する装置であり、第1流体が流通する第1流路、第
2流体が流通する第2流路、第1流体のガス流量を検出
する手段、第1流体の流量に基づく信号を発生する手
段、その手段からの信号により第2流体のガス流量をリ
アルタイムでコントロールするコントロール手段を含み
第2流体の流量は y=axb +c (式中xは、第1流体の流量、yは第2流体の流量、a
及びbおよびcは第2流体対第1流体の比によって変化
するが、2つの流体の一定の比率においては、実験的に
求められた定数である)に従ってコントロールされる2
つの流体を所定比率で混合する装置。1. A device for mixing a second fluid with a first fluid at a predetermined ratio, wherein a first flow path through which the first fluid flows, a second flow path through which the second fluid flows, and a first fluid The flow rate of the second fluid is y = ax, including a means for detecting the gas flow rate, a means for generating a signal based on the flow rate of the first fluid, and a control means for controlling the gas flow rate of the second fluid in real time by the signal from the means. b + c (where x is the flow rate of the first fluid, y is the flow rate of the second fluid, a
And b and c vary with the ratio of the second fluid to the first fluid, but for a given ratio of the two fluids are experimentally determined constants) 2
A device that mixes two fluids at a specified ratio.
1流路の流量が下限値に達した時に両方のガスの供給を
停止し、配管内圧が下限値に達した時、両方のガスの供
給を開始する請求項1記載の装置。2. When the internal pressure of the pipe reaches the upper limit or when the flow rate of the first flow path reaches the lower limit, the supply of both gases is stopped, and when the internal pressure of the pipe reaches the lower limit, both The apparatus according to claim 1, wherein the supply of gas is started.
流量に基づく信号を発生する手段からの信号により、上
記aおよび/またはbおよび/またはcの更正を行なう
請求項1記載の装置。3. The apparatus according to claim 1, wherein said a and / or b and / or c is calibrated by a signal from a means for generating a signal based on the flow rate of the first fluid when the supply of gas is stopped. .
込むことにより、2台の流量制御装置の出力値を読み取
り、上記aおよび/またはbおよび/またはcの更正を
行なう請求項1記載の装置。4. The method according to claim 1, wherein the output values of the two flow rate control devices are read by connecting the reference concentration analyzer at every certain period to calibrate the a and / or b and / or c. apparatus.
混合する方法において、第1流体のガス流量を検出し、
第1流体の流量に基づく信号により、式 y=axb +c (式中xは第1流体の流量、yは第2流体の流量、a及
びbおよびcは第2流体対第1流体の比によって変化す
るが、2つの流体の一定の比率においては、実験的に求
められた定数である)に基づいて第2流体のガス流量を
リアルタイムにコントロールすることを特徴とする第1
流体及び第2流体を所定比率で混合する方法。5. A method of mixing a second fluid with a first fluid at a predetermined ratio, wherein the gas flow rate of the first fluid is detected,
A signal based on the flow rate of the first fluid yields the equation y = ax b + c, where x is the flow rate of the first fluid, y is the flow rate of the second fluid, and a and b and c are the ratio of the second fluid to the first fluid. However, the constant flow rate of the two fluids is a constant obtained experimentally), and the gas flow rate of the second fluid is controlled in real time.
A method of mixing a fluid and a second fluid in a predetermined ratio.
それぞれを所定比率で混合する方法において、第1流体
のガス流量を検出し、第1流体の流量に基づく信号を、
第2流体の流量を制御するそれぞれの手段に送り、第2
流体それぞれについて、式 y=axb +c , y′=a′xb ′+c′─── (式中xは第1流体の流量、y,y′──は第2流体そ
れぞれの流量、a,a′──及びb,b′──及びc,
c′──は第2流体各々対第1流体の比によって変化す
るが、2つの流体の一定の比率においては、実験的に求
められた定数である)に基づいて第2流体それぞれのガ
ス流量をリアルタイムにコントロールすることを特徴と
する第1流体と第2流体それぞれとを所定比率で混合す
る方法。6. A method of mixing two or more kinds of second fluids with a first fluid at a predetermined ratio, wherein a gas flow rate of the first fluid is detected, and a signal based on the flow rate of the first fluid is detected.
Sending to respective means for controlling the flow rate of the second fluid,
For each fluid, wherein y = ax b + c, y '= a'x b' + c'─── ( wherein x is the first fluid flow, y, Y'── the respective second fluid flow, a , A '-and b, b'-and c,
c '-varies depending on the ratio of each of the second fluids to the first fluid, but at a constant ratio of the two fluids, it is an experimentally determined constant). Is controlled in real time, and the first fluid and the second fluid are mixed at a predetermined ratio.
所定比率で混合する装置であり、第1流体が流通する第
1流路、複数の第2流体のそれぞれが流通する第2流
路、第1流体のガス流量を検出する手段、第1流体の流
量に基づく信号を発生する手段、その手段からの信号に
より複数の第2流体それぞれのガス流量をリアルタイム
でコントロールするコントロール手段を含み第2流体そ
れぞれの流量は y=axb +c , y′=a′xb ′+c′─── (式中xは第1流体の流量、y,y′──は第2流体そ
れぞれの流量、a,a′──及びb,b′──及びc,
c′──は第2流体各々対第1流体の比によって変化す
るが、2つの流体の一定の比率においては、実験的に求
められた定数である)に従ってコントロールされる第1
流体と第2流体それぞれとを所定比率で混合する装置7. An apparatus for mixing two or more kinds of second fluids at a predetermined ratio with respect to a first fluid, wherein a first flow path through which the first fluid flows, and a plurality of second fluids through which each flows. Two flow paths, means for detecting the gas flow rate of the first fluid, means for generating a signal based on the flow rate of the first fluid, and control means for controlling the gas flow rate of each of the plurality of second fluids in real time by the signal from the means. And the flow rate of each second fluid is y = ax b + c, y ′ = a′x b ′ + c ′ ── (where x is the flow rate of the first fluid, y and y ′ ─ are the respective second fluids) Flow rate, a, a '-and b, b'-and c,
c '-varies depending on the ratio of each of the second fluids to the first fluid, but for a given ratio of the two fluids is a constant determined experimentally)
Device for mixing fluid and second fluid at a predetermined ratio
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09871494A JP3535566B2 (en) | 1994-05-12 | 1994-05-12 | Method and apparatus for producing mixed gas of predetermined concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09871494A JP3535566B2 (en) | 1994-05-12 | 1994-05-12 | Method and apparatus for producing mixed gas of predetermined concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07306720A true JPH07306720A (en) | 1995-11-21 |
JP3535566B2 JP3535566B2 (en) | 2004-06-07 |
Family
ID=14227194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09871494A Expired - Fee Related JP3535566B2 (en) | 1994-05-12 | 1994-05-12 | Method and apparatus for producing mixed gas of predetermined concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3535566B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11285628A (en) * | 1998-04-02 | 1999-10-19 | Matsushita Electric Ind Co Ltd | Gas mixing device and production of gas discharge panel |
JP2013119045A (en) * | 2011-12-06 | 2013-06-17 | Nissan Tanaka Corp | Method for producing mixed gas and gas mixing apparatus |
JP2016524210A (en) * | 2013-04-26 | 2016-08-12 | グラコ ミネソタ インコーポレーテッド | Multi-component harmony system and method |
JP2021159900A (en) * | 2020-04-03 | 2021-10-11 | 大陽日酸株式会社 | Mixed gas supply device and method |
KR20220111811A (en) * | 2021-02-02 | 2022-08-10 | 주식회사 원익홀딩스 | Gas Mixing system and control method for regeneration of Purifier fillings |
CN114909606A (en) * | 2021-02-07 | 2022-08-16 | 上海弗川自动化技术有限公司 | Accurate proportion mist supply equipment |
-
1994
- 1994-05-12 JP JP09871494A patent/JP3535566B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11285628A (en) * | 1998-04-02 | 1999-10-19 | Matsushita Electric Ind Co Ltd | Gas mixing device and production of gas discharge panel |
JP2013119045A (en) * | 2011-12-06 | 2013-06-17 | Nissan Tanaka Corp | Method for producing mixed gas and gas mixing apparatus |
US9486749B2 (en) | 2011-12-06 | 2016-11-08 | Nissan Tanaka Corporation | Method for producing mixed gas and gas mixing device |
JP2016524210A (en) * | 2013-04-26 | 2016-08-12 | グラコ ミネソタ インコーポレーテッド | Multi-component harmony system and method |
JP2021159900A (en) * | 2020-04-03 | 2021-10-11 | 大陽日酸株式会社 | Mixed gas supply device and method |
KR20220111811A (en) * | 2021-02-02 | 2022-08-10 | 주식회사 원익홀딩스 | Gas Mixing system and control method for regeneration of Purifier fillings |
CN114909606A (en) * | 2021-02-07 | 2022-08-16 | 上海弗川自动化技术有限公司 | Accurate proportion mist supply equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3535566B2 (en) | 2004-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5365435A (en) | System and method for quantitative determination of mixing efficiency at oil or gas well | |
US7325560B2 (en) | In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration | |
US6941965B2 (en) | Method and apparatus for providing a determined ratio of process fluids | |
CN1087422C (en) | Method and appts. for fault detection and correction in coriolis effect mass flowmeters | |
JP2000077394A (en) | Semiconductor manufacture device | |
AU2003277178B2 (en) | Two-wire bus instrument | |
JPH07306720A (en) | Method and device for producing mixed gas of specific concentration | |
US7281840B2 (en) | Chemical mixing apparatus | |
CN108607462B (en) | Liquid mixing device and liquid flow control method | |
US20050135185A1 (en) | System and method for forming a slurry | |
JP4329921B2 (en) | Inspection gas mixing apparatus and mixing method | |
JP3758717B2 (en) | Gas mixing equipment | |
JP2670211B2 (en) | How to adjust the developer | |
JP2008505752A (en) | Chemical mixing apparatus, system and method | |
JPS6290713A (en) | Method and apparatus for controlling fluid mixing ratio | |
JP3355463B2 (en) | Method and apparatus for measuring moisture in sample gas | |
JP2000235952A (en) | Gas mixing and feeding method and its device | |
JPH0132525B2 (en) | ||
JPH1043572A (en) | Raw material mixing device and production of mixed raw material | |
SU1682794A1 (en) | Gas consumption measuring method | |
JPH0871389A (en) | Preparation of developing solution | |
JP3857490B2 (en) | Two-phase fluid measuring method and measuring device | |
JPH06324747A (en) | Flow rate control method | |
US20210039055A1 (en) | Mixing manifold and delivery system for gas delivery | |
JPH09318532A (en) | Calibrator for gas analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040312 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080319 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080319 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |