[go: up one dir, main page]

JPH07306539A - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPH07306539A
JPH07306539A JP9955394A JP9955394A JPH07306539A JP H07306539 A JPH07306539 A JP H07306539A JP 9955394 A JP9955394 A JP 9955394A JP 9955394 A JP9955394 A JP 9955394A JP H07306539 A JPH07306539 A JP H07306539A
Authority
JP
Japan
Prior art keywords
surface layer
layer
image
photoconductive
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9955394A
Other languages
Japanese (ja)
Inventor
Akitomo Tejima
章友 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9955394A priority Critical patent/JPH07306539A/en
Publication of JPH07306539A publication Critical patent/JPH07306539A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent flawing of an image by continuously increasing contents of nitrogen, carbon, oxygen, etc., to be incorporated into the amorphous silicon (a-Si) of a surface layer from the part in contact with a photoconductive layer to the extreme surface layer. CONSTITUTION:An a-Si photoreceptor consists of a base, a charge implantation blocking layer, the photoconductive layer and a functionally gradient material type surface layer. The surface layer is composed of the a-Si contg. at least one among the nitrogen, carbon and oxygen. The surface layer is composed of the contents of the nitrogen, carbon and oxygen at the ratios continuously increasing from the part in contact with the photoconductive layer to the extreme surface layer. The thickness of the surface layer is made thicker than the depth of flawing caused at an ordinary treatment. As a result, the appearance of the flaws on the image does not arise even if the photoreceptor has the flaws. Even more, charges do not accumulate at the boundary between the surface layer and the photoconductive layer and, therefore, generation of residual potential is prevented and there is no possibility of generating pinholes in the image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特に複写機やプリンタに
使用される感光体中でも最近注目されているアモルファ
スシリコン(a−Si)感光体である光導電部材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoconductive member which is an amorphous silicon (a-Si) photoconductor, which has recently attracted attention among photoconductors used in copying machines and printers.

【0002】[0002]

【従来の技術】a−Si感光体は、長寿命、長波長感度
大、無公害といった非常に魅力的な特性を有するため、
精力的に研究がなされている。従来のa−Si感光体
は、基本的には図8に示す如く、支持体、電荷注入阻止
層、光導電層、及び表面層からなるものが多く、様々な
改善工夫により高帯電能、高感度、高解像度が達成され
ている。しかし画像に傷が入り易いという問題があっ
た。
2. Description of the Related Art Since an a-Si photoconductor has very attractive characteristics such as long life, long wavelength sensitivity, and no pollution,
Research is being done vigorously. As shown in FIG. 8, many conventional a-Si photoconductors are basically composed of a support, a charge injection blocking layer, a photoconductive layer, and a surface layer. High sensitivity and high resolution have been achieved. However, there is a problem that the image is easily scratched.

【0003】[0003]

【発明が解決しようとする課題】前記のような画像への
傷入りは、感光体に入った傷によって表面層が消失した
ためと考えられる。a−Si光導電層の抵抗はせいぜい
1012Ωcm程度で、単層膜としては帯電能が不充分で、
感光体としては使えない。この比較的低抵抗のa−Si
に充分な帯電能を持たせ、感光体として機能させるため
に、従来型a−Si感光体では、電荷注入阻止層と表面
層を設けている。一般には感光体に傷が入ることにより
この表面層が消失し、そこの帯電能がなくなって画像に
傷が入る訳である。感光体に入る傷により表面層が消失
することが、画像に傷が入る原因と考えられるので、表
面層の厚さを通常の取り扱いで入る傷の深さより厚くす
れば、画像への傷入りは防止できるが、露光的に発生し
た電荷が表面の帯電電荷と結合するのが難しくなり、残
留電位が増大する。残留電位が過大になれば、表面層の
ブレイクダウンが起こるため、残留電位は飽和傾向を示
すが、このブレイクダウンにより表面層にピンホールが
発生し、画像にもピンホールが発生する虞れがある。本
発明は表面層を厚膜化すると同時に、表面層のa−Si
に混入されるN,C,O等の含有量を、光導電層に接す
る部分から最表面層まで連続的に増大させることによ
り、傷の問題を解決し得る光導電部材を提供しようとす
るものである。なお、一般的に表面層中のC,O,Nの
含有量は、約60at%で均一分布である。
It is considered that the scratches on the image as described above are caused by the loss of the surface layer due to the scratches on the photoreceptor. The resistance of the a-Si photoconductive layer is about 10 12 Ωcm at most, and the chargeability is insufficient as a single layer film.
It cannot be used as a photoconductor. This relatively low resistance a-Si
In order to have sufficient chargeability and to function as a photoconductor, the conventional a-Si photoconductor is provided with a charge injection blocking layer and a surface layer. In general, when the photoconductor is scratched, the surface layer disappears, the chargeability there is lost, and the image is scratched. It is considered that the loss of the surface layer due to scratches entering the photoconductor causes damage to the image.Therefore, if the thickness of the surface layer is made thicker than the depth of scratches that would occur during normal handling, damage to the image will not occur. Although it can be prevented, it becomes difficult for the charges generated by exposure to combine with the charged charges on the surface, and the residual potential increases. If the residual potential becomes excessive, breakdown of the surface layer occurs, so the residual potential tends to saturate, but this breakdown may cause pinholes in the surface layer, which may cause pinholes in the image. is there. The present invention thickens the surface layer and at the same time a-Si of the surface layer.
An object of the present invention is to provide a photoconductive member capable of solving the problem of scratches by continuously increasing the content of N, C, O, etc. mixed in the film from the portion in contact with the photoconductive layer to the outermost surface layer. Is. In addition, generally, the content of C, O, and N in the surface layer is about 60 at%, which is a uniform distribution.

【0004】[0004]

【課題を解決するための手段】このため本発明は、アモ
ルファスシリコンを母材とする光導電部材において、光
導電層の上に形成される表面層が、窒素、炭素、酸素の
うち、少なくとも1つを含むアモルファスシリコンで構
成されており、前記窒素、炭素、酸素の含有量が前記光
導電層に接する部分から最表面層まで連続的に増大する
組成にしてなるもので、これを課題解決のための手段と
するものである。
Therefore, according to the present invention, in a photoconductive member having amorphous silicon as a base material, the surface layer formed on the photoconductive layer is at least one of nitrogen, carbon and oxygen. It is composed of amorphous silicon containing one, and has a composition in which the contents of nitrogen, carbon, and oxygen continuously increase from the portion in contact with the photoconductive layer to the outermost surface layer. It is a means to

【0005】[0005]

【作用】本発明では、通常の取り扱いで入る傷の深さよ
り表面層が厚いので、感光体に傷が入っても画像に傷が
現れることはない。しかも表面層と光導電層の界面に電
荷が蓄積することがないため、残留電位発生を抑止で
き、ピンホールが発生する虞れもない。
According to the present invention, since the surface layer is thicker than the depth of the scratches that would otherwise occur during normal handling, scratches will not appear on the image even if the photoreceptor is scratched. Moreover, since no electric charge is accumulated at the interface between the surface layer and the photoconductive layer, the generation of residual potential can be suppressed and there is no risk of pinholes.

【0006】[0006]

【実施例】以下本発明を図面の実施例について説明す
る。まず本発明を分かり易く説明するために、従来型感
光体、表面層単純厚膜化感光体、及び本発明の表面層傾
斜機能材料化感光体について、図3、図4及び図5に示
す帯電前及び帯電(正帯電)・露光時のバンド図を説明
する。図3に示すように従来型感光体では、表面層が薄
い(0.2〜0.3μm)ため、露光によって発生した
電子は表面層をトンネリングし、表面の帯電電荷と結合
して消滅する。これに対し表面層を単純厚膜化した感光
体では、図4に示すように表面層が厚いため、露光によ
って発生した電子は、表面層を容易にトンネリングでき
ず、表面層と光導電層の界面に電子が蓄積されて残留電
位を発生させる。本発明では、帯電、露光時には図5に
示すようなバンドプロファイルになるため、表面層で電
子に対する障壁は全く発生せず、従って残留電位も発生
しない。即ち、本発明によれば画像への傷入り防止と、
残留電位抑制を両立させることが可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments of the drawings. First, in order to explain the present invention in an easy-to-understand manner, a conventional type photoconductor, a surface layer simple thick film type photoconductor, and a surface layer functionally graded material type photoconductor of the present invention are shown in FIGS. 3, 4 and 5. A band diagram before and during charging (positive charging) / exposure will be described. As shown in FIG. 3, in the conventional photoconductor, since the surface layer is thin (0.2 to 0.3 μm), the electrons generated by the exposure tunnel through the surface layer and are combined with the surface charge to disappear. On the other hand, in the photoconductor having a simple thick surface layer, the surface layer is thick as shown in FIG. 4, and therefore electrons generated by exposure cannot easily tunnel the surface layer, and the electrons of the surface layer and the photoconductive layer are not easily tunneled. Electrons are accumulated at the interface to generate a residual potential. In the present invention, since the band profile shown in FIG. 5 is obtained at the time of charging and exposure, no barrier for electrons is generated in the surface layer, and therefore no residual potential is generated. That is, according to the present invention, to prevent damage to the image,
It is possible to achieve both suppression of residual potential.

【0007】図1に本発明の1実施例のa−Si感光体
の構造を示す。また成膜には図2のような平行平板型R
FプラズマCVD装置を用いた。そして原理検証のた
め、図2の装置で50mm×50mmのAl基板に成膜し、
特性評価を行った。成膜方法は、先ず50mm×50mm×
2mmAl基板を基板ホルダにセットした後、チャンバー
をロータリポンプと油拡散ポンプで真空に引くと共に、
ヒータで基板温度を上げる。基板温度が所定温度に達し
て真空度が10-6Torrに到達したところで、真空吸引系
をメカニカルブースターポンプとロータリポンプの系に
切り換え、原料ガスを導入する。各原料ガスはマスフロ
ーコントローラで所定流量に調整された後合流し、リン
グ状ガスパイプ(φ120mm)の中心側に設けられた穴
(φ1mm)を通して、中心方向に噴射される。ガス圧を
所定圧に調節した後、RF電源から、RF電極に所定の
RFパワーを投入し、放電を起こして原料ガスのプラズ
マを生成する。所定時間成膜を行った後成膜条件を変
え、次の層の成膜を行う。このようにして電荷注入阻止
層、光導電層、表面層を順に成膜する。各層成膜後、不
純物除去や、基板温度変更のため、30分間程RFパワ
ー及び原料ガスの供給を止め、真空に引き続ける。
FIG. 1 shows the structure of an a-Si photosensitive member according to an embodiment of the present invention. For film formation, a parallel plate type R as shown in FIG.
An F plasma CVD apparatus was used. Then, for the purpose of verifying the principle, a film is formed on a 50 mm × 50 mm Al substrate by the apparatus of FIG.
The characteristics were evaluated. First, the film forming method is 50 mm x 50 mm x
After setting the 2mmAl substrate on the substrate holder, the chamber is evacuated by the rotary pump and the oil diffusion pump,
Raise the substrate temperature with a heater. When the substrate temperature reaches a predetermined temperature and the degree of vacuum reaches 10 -6 Torr, the vacuum suction system is switched to the system of mechanical booster pump and rotary pump, and the source gas is introduced. The raw material gases are adjusted to a predetermined flow rate by a mass flow controller and then merged, and then injected toward the center through a hole (φ1 mm) provided on the center side of the ring-shaped gas pipe (φ120 mm). After adjusting the gas pressure to a predetermined pressure, a predetermined RF power is applied to the RF electrode from the RF power source to cause discharge and generate plasma of the raw material gas. After forming the film for a predetermined time, the film forming conditions are changed to form the next layer. In this way, the charge injection blocking layer, the photoconductive layer and the surface layer are sequentially formed. After forming each layer, in order to remove impurities and change the substrate temperature, supply of RF power and raw material gas is stopped for about 30 minutes, and vacuuming is continued.

【0008】次に各層の成膜条件を以下に説明する。 (1)電荷注入阻止層 基板温度:250℃ 原料ガス流量:SiH4 ( 100%):40SCCM,0.5
%B2 6 (H2 ベース):16SCCM ガス圧:150mTorr RFパワー:10W 成膜時間:12分 膜厚:0.2μm (2)光導電層 基板温度:250℃ 原料ガス流量:SiH4 ( 100%):60SCCM,50pp
m B2 6 (H2 ベース):10SCCM ガス圧:150mTorrRFパワー:50W 成膜時間:6.5時間 膜厚:22μm
Next, the film forming conditions for each layer will be described below. (1) Charge injection blocking layer Substrate temperature: 250 ° C. Source gas flow rate: SiH 4 (100%): 40 SCCM, 0.5
% B 2 H 6 (H 2 base): 16 SCCM Gas pressure: 150 mTorr RF power: 10 W Film formation time: 12 minutes Film thickness: 0.2 μm (2) Photoconductive layer Substrate temperature: 250 ° C. Source gas flow rate: SiH 4 ( 100%): 60SCCM, 50pp
m B 2 H 6 (H 2 base): 10 SCCM Gas pressure: 150 mTorr RF power: 50 W Film formation time: 6.5 hours Film thickness: 22 μm

【0009】(3)表面層 基板温度:350℃ 原料ガス流量:SiH4 ( 100%),NH3 ( 100
%),N2 ( 100%)の混合ガスを用い、表面層のバン
ドプロファイルが図5(a)のような形、即ち最表面層
の 0.2μmはバンドギャップ 3.8eV一定で、残りの 1.3
μmは、 3.8eVから光導電層の 1.8eVまでほぼ直線的に
減少するよう、膜厚 0.1μm毎の成膜条件を下記のよう
に設定した。ここで最表面層 0.2μmの組成を一定にし
たのは、摩耗等により削れて最表面のN等の含有量が減
少し、画像ボケ等が発生するのを防止するためである。
(3) Surface layer Substrate temperature: 350 ° C. Source gas flow rate: SiH 4 (100%), NH 3 (100
%) And N 2 (100%) are used, and the band profile of the surface layer is as shown in FIG. 5 (a), that is, 0.2 μm of the outermost layer has a constant band gap of 3.8 eV and the remaining 1.3
The film forming conditions for each film thickness of 0.1 μm were set as follows so that μm decreases almost linearly from 3.8 eV to 1.8 eV of the photoconductive layer. Here, the reason why the composition of the outermost surface layer of 0.2 μm is made constant is to prevent the occurrence of image blurring due to abrasion and the like to reduce the content of N and the like on the outermost surface.

【表1】 [Table 1]

【表2】 ガス圧:1Torr RFパワー:100W 膜厚:1.5μm[Table 2] Gas pressure: 1 Torr RF power: 100 W Film thickness: 1.5 μm

【0010】比較のため傾斜機能材料化せず、均一窒素
濃度で1.5μmの厚さの単純厚膜表面層を持つ感光体
も試作した成膜条件は、原料ガス流量がSiH4 :35
SCCM,NH3 :200SCCM,N2 :1000SCCM,成膜
思案が39′45″である外は前記の条件と同一にし
た。このようにして試作した2種類の感光体の帯電露光
特性を静電気帯電試験装置(MODEL EPA-8200,株式会社
川口電機製作所)で評価した。波長が660mmと780
mm、露光量が1mW/cm2 のときの帯電露光特性を図6
に示す。単純厚膜表面層の場合、5秒経過後も40V程
度の残留電位があるのに対し、傾斜機能材料型表面層の
場合は、3秒程度で残留電位はほぼ0Vになる。また感
度も傾斜機能材料化により若干向上している。即ち、表
面層を傾斜機能材料化することにより、厚膜にしても残
留電位の発生を防止できることが分かる。
[0010] film forming condition photosensitive member was fabricated with a functional gradient without material reduction, simple thick surface layer of a thickness of 1.5μm at a uniform nitrogen concentration for comparison, the raw material gas flow rate SiH 4: 35
SCCM, NH 3: 200SCCM, N 2:. 1000SCCM, deposition cyan outside a 39'45 "was the same as the conditions in this manner the two types of charging exposure characteristics of the photosensitive member was fabricated by electrostatically charged Evaluated with a test device (MODEL EPA-8200, Kawaguchi Electric Co., Ltd.) Wavelengths of 660 mm and 780
Fig. 6 shows the charging exposure characteristics when the exposure amount is mm and the exposure amount is 1 mW / cm 2 .
Shown in. In the case of the simple thick film surface layer, there is a residual potential of about 40 V even after 5 seconds, whereas in the case of the functionally gradient material type surface layer, the residual potential becomes almost 0 V in about 3 seconds. Also, the sensitivity has been slightly improved by using a functionally graded material. That is, it can be seen that the use of the functionally graded material for the surface layer can prevent the generation of residual potential even if the film is thick.

【0011】一方傷の問題は、表面層を厚膜化すれば、
画像に入る傷が全くなくなることは別途確認してある。
以前A社製a−Si感光ドラム(表面層厚0.3μm)
を使用していて、非常に画像に傷が入り易いという問題
があった。そこで表面層の厚さを1.0μmに厚く成膜
してもらった感光ドラムで印刷試験を行ったところ、長
期間使用しても全く画像に傷が入らないことが確認でき
た。しかも長期間使用している内に徐々に画像にピンホ
ールが増えるようになった。これは残留電位を引き起こ
す表面層と光導電層との界面の蓄積電荷により、表面層
に加わる高電界によって表面層のブレイクダウンが発生
し、それが徐々に増大して行ったためと考えられる。前
記の如く残留電位の発生しない傾斜機能材料型表面層を
持った感光体では、このようなピンホール発生の虞れは
ない。
On the other hand, the problem of scratches is that if the surface layer is thickened,
It has been separately confirmed that there are no scratches in the image.
Previously A-Si photosensitive drum manufactured by Company A (surface layer thickness 0.3 μm)
However, there is a problem that the image is very likely to be scratched. Therefore, a printing test was conducted using a photosensitive drum having a surface layer thickly formed to 1.0 μm, and it was confirmed that the image was not scratched at all even after long-term use. Moreover, the pinholes gradually increased in the image during long-term use. It is considered that this is because the breakdown of the surface layer was caused by the high electric field applied to the surface layer due to the accumulated charges at the interface between the surface layer and the photoconductive layer which caused the residual potential, and the breakdown was gradually increased. In the photoconductor having the functionally gradient material type surface layer in which the residual potential does not occur as described above, there is no fear of such pinholes.

【0012】表面層を厚膜化することにより画像への傷
入りが防止できることが確認されているので、本発明の
方式で画像に傷が入らないことを立証するためにスクラ
ッチ試験を行った。スクラッチ試験には、連続加重式表
面性測定機(トライギヤTYPE:22新東科学株式会社)を
使用した。先ず長期間使用したA社製感光ドラムを綿密
に調べたところ、最も深い傷の深さは0.7μmであっ
た。そこでA社製感光ドラムの一部を切り出し、前記ス
クラッチ試験機で0.7μmの傷が入る荷重を調べたと
ころ9.1gであった。次に前記の条件で成膜した傾斜
機能材料型表面層を持った感光体のスクラッチ試験を行
ったところ、9.1gの荷重で0.65μmの深さの傷
が入った。これは表面層の厚さ1.5μmより充分に小
さい。またこの深さの所の窒素濃度は充分大きく、バン
ドギャップは3eV以上あるので、充分表面層として機能
する。従って感光ドラムを試作して印刷試験を行うまで
もなく、本発明による傾斜機能材料型表面層を有するa
−Si感光体で画像への傷入り防止が可能なことが分か
る。表面層のC,O又はNの含有量及び傾斜は図7に示
す通りである。
Since it has been confirmed that damage to the image can be prevented by increasing the thickness of the surface layer, a scratch test was conducted to prove that the image of the present invention is not damaged. For the scratch test, a continuous weight type surface texture measuring machine (Tri-gear TYPE: 22 Shinto Kagaku Co., Ltd.) was used. First, when the photosensitive drum manufactured by Company A, which had been used for a long period of time, was closely examined, the deepest scratch depth was 0.7 μm. Then, a part of the photosensitive drum manufactured by Company A was cut out, and the load at which a 0.7 μm scratch was generated was examined by the scratch tester, and it was 9.1 g. Next, when a scratch test was conducted on the photoconductor having the functionally gradient material type surface layer formed under the above conditions, a scratch having a depth of 0.65 μm was formed under a load of 9.1 g. This is well below the surface layer thickness of 1.5 μm. Further, the nitrogen concentration at this depth is sufficiently high and the band gap is 3 eV or more, so that it sufficiently functions as a surface layer. Therefore, it is necessary to prepare a photosensitive drum and perform a print test, and
It can be seen that the -Si photoconductor can prevent damage to the image. The content and slope of C, O or N in the surface layer are as shown in FIG.

【0013】[0013]

【発明の効果】以上詳細に説明した如く本発明の傾斜機
能材料型表面層を有するa−Si感光体としての光導電
層では、通常の取り扱いで入る傷の深さより表面層が厚
いので、感光体に若干傷が入っても画像に傷が現れるこ
とはない。しかも帯電・露光時に図5に示すようなハン
ドプロファイルになっているので、表面層と光導電層の
界面に電荷が蓄積することはなく、残留電位発生を抑止
できる。従ってピンホールが発生する虞れもない。即
ち、本発明の手法により画像への傷入り防止と、残留電
位やピンホールの発生防止とが両立できるわけである。
As described in detail above, in the photoconductive layer as the a-Si photoconductor having the functionally gradient material type surface layer of the present invention, the surface layer is thicker than the depth of the scratches that would be introduced during normal handling. Even if the body is slightly scratched, the image will not be scratched. Moreover, since the hand profile is as shown in FIG. 5 at the time of charging / exposure, electric charges are not accumulated at the interface between the surface layer and the photoconductive layer, and the generation of residual potential can be suppressed. Therefore, there is no risk of pinholes. That is, the method of the present invention can prevent damage to an image and prevent the occurrence of residual potential and pinholes at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るa−Si感光体の構造図
である。
FIG. 1 is a structural diagram of an a-Si photoconductor according to an embodiment of the present invention.

【図2】本発明の実施例に係るa−Si感光体成膜装置
の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of an a-Si photoconductor film forming apparatus according to an embodiment of the present invention.

【図3】従来型のa−Si感光体のバンド図である。FIG. 3 is a band diagram of a conventional a-Si photoconductor.

【図4】表面層単純厚膜化a−Si感光体のバンド図で
ある。
FIG. 4 is a band diagram of a surface-layer simple thick film a-Si photoconductor.

【図5】本発明の実施例に係る表面層傾斜機能材料化a
−Si感光体のバンド図である。
FIG. 5 is a surface layer functionally gradient material a according to an embodiment of the present invention.
FIG. 3 is a band diagram of a —Si photoconductor.

【図6】表面層を単純厚膜化した場合と傾斜機能材料化
した場合のa−Si感光体の帯電露光特性を示す説明図
である。
FIG. 6 is an explanatory diagram showing charging exposure characteristics of an a-Si photoconductor when the surface layer is made thick and when it is made a functionally gradient material.

【図7】表面層のC,O及びNの含有量及び傾斜を示す
説明図である。
FIG. 7 is an explanatory diagram showing the contents and slopes of C, O and N in the surface layer.

【図8】従来のa−Si感光体の構成図である。FIG. 8 is a configuration diagram of a conventional a-Si photoconductor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アモルファスシリコンを母材とする光導
電部材において、光導電層の上に形成される表面層が、
窒素、炭素、酸素のうち、少なくとも1つを含むアモル
ファスシリコンで構成されており、前記窒素、炭素、酸
素の含有量が前記光導電層に接する部分から最表面層ま
で連続的に増大する組成にすることを特徴とする光導電
部材。
1. A photoconductive member comprising amorphous silicon as a base material, wherein a surface layer formed on the photoconductive layer comprises:
It is composed of amorphous silicon containing at least one of nitrogen, carbon and oxygen, and has a composition in which the contents of the nitrogen, carbon and oxygen continuously increase from the portion in contact with the photoconductive layer to the outermost surface layer. A photoconductive member comprising:
JP9955394A 1994-05-13 1994-05-13 Photoconductive member Withdrawn JPH07306539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9955394A JPH07306539A (en) 1994-05-13 1994-05-13 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9955394A JPH07306539A (en) 1994-05-13 1994-05-13 Photoconductive member

Publications (1)

Publication Number Publication Date
JPH07306539A true JPH07306539A (en) 1995-11-21

Family

ID=14250366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9955394A Withdrawn JPH07306539A (en) 1994-05-13 1994-05-13 Photoconductive member

Country Status (1)

Country Link
JP (1) JPH07306539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049327A1 (en) * 2004-11-05 2006-05-11 Canon Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic apparatus utilizing the same
JP2006154805A (en) * 2004-11-05 2006-06-15 Canon Inc Electrophotographic photoreceptor
JP2006267507A (en) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049327A1 (en) * 2004-11-05 2006-05-11 Canon Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic apparatus utilizing the same
JP2006154805A (en) * 2004-11-05 2006-06-15 Canon Inc Electrophotographic photoreceptor
US7229731B2 (en) 2004-11-05 2007-06-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus using the electrophotographic photosensitive member
JP2006267507A (en) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
JPH07306539A (en) Photoconductive member
JP2004077650A (en) Electrophotographic apparatus
JPH0711706B2 (en) Electrophotographic photoreceptor
US5465137A (en) Printing member for electrostatic photocopying
JP2599642B2 (en) Copier
JPS58145951A (en) Amorphous silicon photoreceptor
JPH1039530A (en) Electrophotographic photoreceptor
JP2966056B2 (en) Silicon photoreceptor
JPS62257172A (en) Electrophotographic sensitive body
JPH06100841B2 (en) Electrophotographic photoreceptor
JP2657491B2 (en) Electrophotographic photoreceptor
JP4231179B2 (en) Electrophotographic photoreceptor
JPS6358454A (en) Electrophotographic sensitive body
JP2756570B2 (en) Electrophotographic photoreceptor
JP2756569B2 (en) Electrophotographic photoreceptor
JPS6113251A (en) Electrostatic image recording body
JP2001343770A (en) Photoconductor and image forming apparatus
JPH0511305B2 (en)
JPS6382422A (en) Production of electrophotographic sensitive body
JPS6382419A (en) Production of electrophotographic sensitive body
JPH02275466A (en) Electrophotographic sensitive body
JPS63202754A (en) Overcoat type electrophotographic sensitive body
JPS6382417A (en) Manufacturing method of electrophotographic photoreceptor
JPH0350264B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731