[go: up one dir, main page]

JPH07303400A - Controller of motor for driving movable body - Google Patents

Controller of motor for driving movable body

Info

Publication number
JPH07303400A
JPH07303400A JP6113795A JP11379594A JPH07303400A JP H07303400 A JPH07303400 A JP H07303400A JP 6113795 A JP6113795 A JP 6113795A JP 11379594 A JP11379594 A JP 11379594A JP H07303400 A JPH07303400 A JP H07303400A
Authority
JP
Japan
Prior art keywords
magnetic flux
motor
command
loss
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6113795A
Other languages
Japanese (ja)
Inventor
Hidenori Takasaki
秀紀 高崎
Yoichi Yamamoto
陽一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP6113795A priority Critical patent/JPH07303400A/en
Publication of JPH07303400A publication Critical patent/JPH07303400A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To extend the travel distance of a movable body by comparing a torque command which is input to a vector controller with a set value and changing a magnetic flux command in accordance with the the comparison result. CONSTITUTION:A previous torque command T* and a preset value which is a value (voltage) obtained through a resistor for setting 85 from a source of D.C. constant voltage are compared by a comparator 88 and the output of the comparator 88 for switching a switch 80 is on/off-controlled. By switching the switch 80, a magnetic flux command PHI* is changed step by step. In other words, the magnetic flux command PHI* is automatically adjusted according to the magnitude of a step-in amount of an accelerator pedal 71. To be more specific, the magnetic flux PHI* is made small when the step-in amount of the accelerator pedal 71 is large and the magnetic flux command PHI* is made large when the step-in amount of the accelerator pedal 71 is small and thereby a motor 1 can be efficiently operated. By this method, the travel distance of a movable body can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車等の移動体
を駆動するモータの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device for driving a moving body such as an electric vehicle.

【0002】[0002]

【従来の技術】従来技術としての電気自動車の誘導モー
タを弱め界磁制御する技術は例えば特開昭5-13071 号公
報[以下、これを『従来例』という]に開示されてい
る。この従来例は、開示電流の変化に伴う不安定性を防
止し、磁気音を低減させるものであり、その構成とし
て、車両駆動演算部で算出されたトルク指令とモータ速
度を弱め界磁演算部に入力し、磁束指令を演算すると共
にトルク指令はトルク遅れ要素で遅延し、基準トルクと
磁束指令からベクトル演算を行い、誘導モータのトルク
制御をする弱め界磁制御付き電気自動車制御装置であ
る。
2. Description of the Related Art A conventional technique for weakening the field control of an induction motor of an electric vehicle is disclosed in, for example, Japanese Patent Laid-Open No. 513071 [hereinafter, referred to as "conventional example"]. This conventional example is intended to prevent instability due to a change in disclosed current and reduce magnetic noise.As its configuration, the torque command and the motor speed calculated by the vehicle drive calculation unit are weakened to the field calculation unit. This is an electric vehicle control device with a field weakening control for inputting and calculating a magnetic flux command, delaying a torque command by a torque delay element, performing vector calculation from a reference torque and a magnetic flux command, and performing torque control of an induction motor.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来例のこの
技術では、負荷の大きさに応じて、磁束指令を変える点
が考慮されておらず、また、バッテリの損失についても
考慮されていないので、電気自動車の走行可能距離を延
ばすことができなかった。ここにおいて、本発明は、従
来例の隘路を払拭し、走行距離を伸ばした移動体を駆動
するモータの制御装置を提供することを目的とする。
However, in this conventional technique, the fact that the magnetic flux command is changed according to the magnitude of the load is not taken into consideration, and the loss of the battery is not taken into consideration. , I could not extend the mileage of electric vehicles. Here, an object of the present invention is to provide a control device for a motor that wipes a bottleneck of a conventional example and drives a moving body having a long travel distance.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、バッテリにより直流電圧を供給させる
ベクトル制御インバータにより移動体駆動用モータを駆
動制御する移動体駆動用モータの制御装置において、ベ
クトル制御装置へ入力されるトルク指令と設定値とを比
較する比較器と、この比較器の出力に応じて前記磁束指
令の値を変える磁束指令切替器とを備えた移動体駆動用
モータの制御装置である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a controller for a moving body driving motor, which drives and controls the moving body driving motor by a vector control inverter for supplying a DC voltage by a battery. In, a moving body drive motor comprising a comparator for comparing a torque command input to the vector control device with a set value, and a magnetic flux command switcher for changing the value of the magnetic flux command according to the output of the comparator. Control device.

【0005】[0005]

【作用】本発明はこのような回路構成であるから、モー
タ(誘導電動機)の発生損失の一方の鉄損は磁束と駆動
周波数に依存するので、負荷の大きさに応じて磁束指令
の大きさを変え、他方の銅損は同一出力を得るためには
モータの磁束を大きくして少ない電流で済ませて銅損が
減らし、この結果として軽負荷時には磁束を小さくして
効率が向上させている。
Since the present invention has such a circuit configuration, one iron loss of the generated loss of the motor (induction motor) depends on the magnetic flux and the driving frequency. Therefore, the magnitude of the magnetic flux command depends on the magnitude of the load. In order to obtain the same output, the copper loss of the other is increased by increasing the magnetic flux of the motor to reduce the current, and the copper loss is reduced. As a result, the magnetic flux is reduced at light load to improve the efficiency.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の一実施例として電気自動車に適
用したときの回路構成を示すブロック図である。一方で
運転者がアクセルペダル7を踏み込むと、所謂センサを
介して直流定電圧(源)72からの可変抵抗73を経たトル
ク指令T* が、先のアクセルペダル7の踏み込みの量に
比例して、トルク電流演算器6に入力する。他方で直流
定電圧(源)83からの電圧が抵抗81,82 分圧手段で高・
低電圧のいずれかが、磁束指令Φ* として出力してい
る。この磁束指令Φ* は係数器84を経てモータ1 の励磁
リアクタンスM倍されてベクトル制御器5が具える演算
器51へ入る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a circuit configuration when applied to an electric vehicle as an embodiment of the present invention. On the other hand, when the driver depresses the accelerator pedal 7, the torque command T * via the variable resistance 73 from the DC constant voltage (source) 72 via a so-called sensor is proportional to the amount of depression of the accelerator pedal 7 previously. , To the torque current calculator 6. On the other hand, the voltage from the DC constant voltage (source) 83 is high due to the resistors 81 and 82 voltage dividing means.
One of the low voltages is output as the magnetic flux command Φ * . This magnetic flux command Φ * is multiplied by the exciting reactance M of the motor 1 via the coefficient unit 84 and enters the arithmetic unit 51 included in the vector controller 5.

【0007】 また、磁束指令Φ* はトルク電流演算器
6にも与えられ、ここでトルク指令T* を磁束指令Φ*
で割算し、トルク電流指令Iτ* がトルク電流演算器6
から出力する。そのトルク電流指令Iτ* はベクトル制
御器5が具える演算器51へ入ると共に、乗算器87へも与
えられる。ベクトル制御器5では、入力したトルク電流
指令Iτ* と磁束指令Φ* を基に電動機1の1次電流指
令振幅I1 * 並びにトルク電流指令Iτ* と磁束指令Φ
*との位相角θを演算導出する。
Further, the magnetic flux command Φ * is also given to the torque current calculator 6, where the torque command T * is changed to the magnetic flux command Φ *.
The torque current command Iτ * is divided by the torque current calculator 6
Output from. The torque current command Iτ * is input to the calculator 51 included in the vector controller 5 and also applied to the multiplier 87. In the vector controller 5, based on the input torque current command Iτ * and magnetic flux command Φ * , the primary current command amplitude I 1 * of the electric motor 1, the torque current command Iτ *, and the magnetic flux command Φ *.
Calculate and derive the phase angle θ with * .

【0008】 またトルク電流指令Iτ* は、ベクトル
制御器5内で割算器57において磁束指令Φ* で除算さ
れ、かつ係数器52の係数K1 が乗算されて電動機1の滑
り周波数ωs を作り、この滑り周波数ωs に電動機1に
連結されたパルス発振器3からの実速度の検出値を加算
器53で加算して電動機1の1次周波数指令ω1 * を算出
して、それをベクトル制御発振器54へ与えて、ここでス
カラ量の入力をベクトル量の出力に変換して加算器55へ
送る。その加算器55では演算器51からの位相角θをを加
算したベクトル量が乗算器56へ入力する。この乗算器56
では演算器51からの1次電流指令振幅I1 * と加算器55
からのベクトル量を乗算して1次電流指令i1 * を導出
し、減算器92において変流器91からの電動機1の実電
流との偏差を求め、先に係数器9で係数K2 を乗算した
電流偏差に応じた値でインバータ4をドライブし、バッ
テリ10を電源とするインバータ (自己消弧素子から成
る) 制御して、電動機1を先のアクセルベダル71での踏
込み量に相当するトルクで駆動する。
Further, the torque current command I τ * is divided by the magnetic flux command Φ * in the divider 57 in the vector controller 5 and is multiplied by the coefficient K 1 of the coefficient unit 52 to calculate the slip frequency ω s of the electric motor 1. The primary frequency command ω 1 * of the electric motor 1 is calculated by adding the detected value of the actual speed from the pulse oscillator 3 connected to the electric motor 1 to the slip frequency ω s by the adder 53, and the calculated value is a vector. It is given to the control oscillator 54, where the input of the scalar quantity is converted into the output of the vector quantity and sent to the adder 55. In the adder 55, the vector amount obtained by adding the phase angle θ from the calculator 51 is input to the multiplier 56. This multiplier 56
Then, the primary current command amplitude I 1 * from the calculator 51 and the adder 55
To derive the primary current command i 1 * , obtain the deviation from the actual current of the electric motor 1 from the current transformer 91 in the subtractor 92, and first obtain the coefficient K 2 in the coefficient unit 9. A torque corresponding to the amount of depression of the electric motor 1 is driven by driving the inverter 4 with a value according to the multiplied current deviation and controlling the inverter (consisting of a self-extinguishing element) using the battery 10 as a power source. Drive with.

【0009】 ところで、ここに本発明の因って来る原
理的理論を、以下に展開する。バッテリを電源とする電
気自動車駆動装置のパワーフローを、図2に示す。つま
り、バッテリ供給パワーは、モータ出力パワー21, モー
タ損失22, インバータ損失23,バッテリ損失等の総和で
ある。従って、電気自動車の一充電走行距離を伸ばすた
めには、各電力損失を小さくすれば良いことになる。こ
れらの損失のうち、バッテリ損失は主に銅損であり、バ
ッテリ電圧が一定であれば、モータ出力パワー21で決ま
る損失である。
By the way, the theoretical theory which is the cause of the present invention will be developed below. FIG. 2 shows the power flow of an electric vehicle drive device using a battery as a power source. That is, the battery supply power is the sum of the motor output power 21, the motor loss 22, the inverter loss 23, the battery loss, and the like. Therefore, in order to extend the one-charge traveling distance of the electric vehicle, it is sufficient to reduce each power loss. Of these losses, the battery loss is mainly copper loss, and is the loss determined by the motor output power 21 if the battery voltage is constant.

【0010】 本発明は、所要トルクに応じて磁束の大
きさを切り替えることで、インバータ損失23とモータ損
失22を小さくする方法である。図3にバッテリで駆動す
るインバータドライブ装置の基本構成図を示す。図3に
おいて、バッテリ10を電源とし平滑回路11を経たインバ
ータ2で発生する損失は、主にパワトランジスタT1
6 の損失と、制御回路100 の損失に分けられる。にパ
ワトランジスタT1 〜T6 の損失は、流れる電流に対す
る電圧降下がほぼ一定であるため、モータ1に流れるモ
ータ電流I1 に略比例する。
The present invention is a method for reducing the inverter loss 23 and the motor loss 22 by switching the magnitude of the magnetic flux according to the required torque. FIG. 3 shows a basic configuration diagram of a battery-driven inverter drive device. In FIG. 3, the loss generated in the inverter 2 that uses the battery 10 as a power source and passes through the smoothing circuit 11 is mainly due to the power transistors T 1 to
It is divided into the loss of T 6 and the loss of the control circuit 100. In addition, the loss of the power transistors T 1 to T 6 is substantially proportional to the motor current I 1 flowing in the motor 1 because the voltage drop with respect to the flowing current is almost constant.

【0011】 一方、制御回路100 の損失は、モータ電
流I1 に関係なく一定である。すなわち、モータ電流が
1 のときのインバータ2のインバータ損失23をWINV
[ワット、以下『W』と記す]とすると、次式(1) で表
せる。 WINV =WK +WT0・I1 /I10 ………………………………(1) ただし、WK は制御回路の損失[W]、WT0はモータ定
格電流I10におけるトランジスタ損失[W]、I10はモ
ータ定格電流[アンペア、以下『A』と記す]
On the other hand, the loss of the control circuit 100 is constant regardless of the motor current I 1 . That is, the inverter loss 23 of the inverter 2 when the motor current is I 1 is set to W INV
[Watt, hereinafter referred to as “W”] can be expressed by the following equation (1). W INV = W K + W T0 · I 1 / I 10 ………………………… (1) where W K is the loss of the control circuit [W] and W T0 is the motor rated current I 10 . Transistor loss [W], I 10 is the motor rated current [ampere, hereinafter referred to as "A"]

【0012】 次に、モータ1で発生する損失のモータ
損失22をWM とすれば、式(2) で表される。 WM =Wc1+Wc2+Wi +Wm ………………………………(2) ただし、Wc1は1次抵抗銅損[W]、Wc2は2次抵抗銅
損[W]、Wi は鉄損[W]、Wm は機械損[W] ここで、各損失は次の各式で表される。 Wc1=3・r1 ・ (I1)2 …………………………(3) Wc2=3・r2 ・ (I2)2 …………………………(4) Wi =K1 ・[( Φ・f1)のα冪乗]……………(5) ただし、I1 はモータ1次電流[A] I2 はモータ2次電流[A] Φはモータ磁束(ガウス) f1 は1次周波数(ヘルツ) K1 は定数 α =1.6〜2 以上より、磁束と電流が小さい程、インバータ2とモー
タ1の損失も小さくなることが分かる。
Next, when the motor loss 22 of the loss generated in the motor 1 is W M , it is expressed by the equation (2). W M = W c1 + W c2 + W i + W m ……………………………… (2) where W c1 is the primary resistance copper loss [W] and W c2 is the secondary resistance copper loss [W ], W i is iron loss [W], W m is mechanical loss [W] where each loss is expressed by the following equations. W c1 = 3 · r 1 · (I 1 ) 2 ………………………… (3) W c2 = 3 · r 2 · (I 2 ) 2 …………………… ( 4) W i = K 1 · [(Φ · f 1 ) α power] ………… (5) where I 1 is the motor primary current [A] and I 2 is the motor secondary current [A] Φ is a motor magnetic flux (Gauss) f 1 is a primary frequency (Hertz) K 1 is a constant α = 1.6 to 2 or more From the above, it can be seen that the smaller the magnetic flux and the current, the smaller the loss of the inverter 2 and the motor 1. .

【0013】 一方、モータ出力パワー21の発生トルク
Tおよびモータ1次電流I1 は T=K2 ・Φ・I2 ………………………………(6) ただし、K2 は定数 I1 ={ (Im )2+ (I2 )21/2 ………………………(7) ただし、Im は磁化電流[A] Im =K3 ・Φ ………………………………(8) ただし、K3 は定数 で表されので、(6),(7),(8)式からモータ1
次電流I1 は I1 =[( K3 ・Φ)2+{T/( K2 ・Φ) }2 1/2 ………(9) となり、所要トルクTに対する電流は図5に示される。
On the other hand, the generated torque T of the motor output power 21 and the motor primary current I 1 are T = K 2 · Φ · I 2 ………………………… (6) where K 2 is Constant I 1 = {(I m ) 2 + (I 2 ) 2 } 1/2 ………………………… (7) where I m is the magnetizing current [A] I m = K 3 Φ ... ……………………………… (8) However, since K 3 is expressed as a constant, the motor 1 is calculated from the equations (6), (7), (8).
The next current I 1 becomes I 1 = [(K 3 · Φ) 2 + {T / (K 2 · Φ)} 2 ] 1/2 (9), and the current for the required torque T is shown in FIG. Be done.

【0014】 これより、所要トルクTがトルクT0
り小さい時はモータ磁束ΦについてΦ=Φ1 のときよ
り、Φ=Φ2 のときの方がモータ1次電流I1 が小さ
く、モータ磁束Φも小さいため、インバータ2とモータ
1の損失も小さくなる。ここに、T0 は磁束Φ1 と磁束
Φ2 のトルクTが一致するトルクである。例えば、モー
タ磁束Φ1 =100%,モータ磁束Φ2 =50%とする
と、所要トルクTがトルクT0 より大きいときは、モー
タ磁束Φ1 =100%とし、所要トルクTがトルクT0
より小さいときは、モータ磁束Φ2 =50%に切り替え
ることで、省エネルギーが可能となる。
Therefore, when the required torque T is smaller than the torque T 0, the motor primary current I 1 is smaller when Φ = Φ 2 than when Φ = Φ 1 for the motor magnetic flux Φ, and the motor magnetic flux Φ Is also small, the loss of the inverter 2 and the motor 1 is also small. Here, T 0 is the torque at which the torques T of the magnetic flux Φ 1 and the magnetic flux Φ 2 match. For example, when the motor magnetic flux Φ 1 = 100% and the motor magnetic flux Φ 2 = 50%, when the required torque T is larger than the torque T 0 , the motor magnetic flux Φ 1 = 100% and the required torque T is the torque T 0.
When it is smaller, the energy can be saved by switching to the motor magnetic flux Φ 2 = 50%.

【0015】 従って、本発明はこの理論に基づき以下
のような回路を構成している。上述の通り、移動体を省
エネ運転を行い走行距離を伸延させるには、トルク電流
指令Iτ* の大きさに応じて磁束指令Φ* を変えること
で、発生トルクの電流分を小さくすることができ、その
原理をを利用すればバッテリ消耗を少なくするこが可能
である。ここにおいて本発明は、モータ(誘導電動機)
の発生損失の一方の鉄損は磁束と駆動周波数に依存する
ので、負荷の大きさに応じて磁束指令の大きさを変え、
他方の銅損は同一出力を得るためにはモータの磁束を大
きくして少ない電流で済ませて銅損が減らし、この結果
として軽負荷時には磁束を小さくして効率が向上させる
手段を取る。
Therefore, the present invention constitutes the following circuit based on this theory. As described above, in order to extend the traveling distance by performing the energy-saving operation of the moving body, it is possible to reduce the current amount of the generated torque by changing the magnetic flux command Φ * according to the magnitude of the torque current command Iτ *. By using that principle, it is possible to reduce battery consumption. Here, the present invention relates to a motor (induction motor).
Since one of the generated losses, the iron loss, depends on the magnetic flux and the drive frequency, change the magnitude of the magnetic flux command according to the magnitude of the load.
On the other hand, in order to obtain the same output, the copper loss is reduced by increasing the magnetic flux of the motor to reduce the copper loss, and as a result, the magnetic flux is reduced when the load is light to improve the efficiency.

【0016】 そこで、本実施例は先のトルク指令T*
と直流定電圧 (源)86 から設定用の抵抗85を経た数値
(電圧) である予め設定された数値とが比較器88で比較
演算され、比較器88からの切替えスイッチ80の切替え出
力のオン・オフを制御する。このスイッチ80の切替えで
磁束指令Φ* が段階的に変えられる、つまりアクセルペ
ダル71の踏込み量の大小により、磁束指令Φ* は自動的
に調整されることになる。このことは、アクセルペダル
71の踏込み量の大きいときは磁束指令Φ* を小さくし、
アクセルペダル71の踏込み量の小さいときは磁束指令Φ
* を大きくして、効率的なモータ運転を行うものであ
る。
Therefore, in this embodiment, the above torque command T * is used.
And DC constant voltage (source) 86 through setting resistance 85
The comparator 88 performs a comparison operation with a preset numerical value, which is (voltage), to control ON / OFF of the switching output of the selector switch 80 from the comparator 88. The magnetic flux command Φ * is changed stepwise by switching the switch 80, that is, the magnetic flux command Φ * is automatically adjusted depending on the amount of depression of the accelerator pedal 71. This is the accelerator pedal
When the stepping amount of 71 is large, decrease the magnetic flux command Φ * ,
When the accelerator pedal 71 is slightly depressed, the magnetic flux command Φ
By increasing * , efficient motor operation is performed.

【0017】 このように、本実施例における切替スイ
ッチ80と抵抗81,82,85と定電圧 (源) 83,86 と比較器88
により磁束指令 (Φ* ) 切替器を構成する。なお、本実
施例は2段階の磁束指令Φ* を行う回路構成にしたが、
これに限らず3段階以上にも同様な手法で行うことが可
能である。さらに、ブレーキペダルについては言及して
いないが、これは従来例と変わるところがないので省略
する。
As described above, the changeover switch 80, the resistors 81, 82, 85, the constant voltage (source) 83, 86, and the comparator 88 in this embodiment are used.
Constitutes a magnetic flux command (Φ * ) switch. Although the present embodiment has a circuit configuration for performing the two-stage magnetic flux command Φ * ,
The method is not limited to this, and the same method can be performed in three or more steps. Further, although the brake pedal is not mentioned, it is omitted because it is the same as the conventional example.

【0018】[0018]

【発明の効果】以上述べたように本発明によれば、トル
ク指令に対応して磁束指令を段階的に調整するので、バ
ッテリからインバータによる電動機運転の移動体の駆動
における損失が極力縮小されて、高効率化ガ得られ走行
距離ガ延びるという特段の効果を奏することができる。
As described above, according to the present invention, since the magnetic flux command is adjusted stepwise in accordance with the torque command, the loss in driving the moving body of the electric motor operation by the inverter from the battery is reduced as much as possible. Therefore, it is possible to obtain a special effect that the efficiency is improved and the traveling distance is extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における回路構成を示すブロ
ック図
FIG. 1 is a block diagram showing a circuit configuration according to an embodiment of the present invention.

【図2】バッテリを電源とする電気自動車駆動装置のパ
ワーフローを示す図
FIG. 2 is a diagram showing a power flow of an electric vehicle drive device using a battery as a power source.

【図3】バッテリで駆動するインバータドライブ装置の
基本的回路構成図
FIG. 3 is a basic circuit configuration diagram of a battery-driven inverter drive device.

【図4】モータの所要トルクに対するモータ1次電流の
モータ磁束をパラメータとする特性曲線図
FIG. 4 is a characteristic curve diagram in which the motor magnetic flux of the motor primary current with respect to the required torque of the motor is used as a parameter.

【符号の説明】[Explanation of symbols]

1 モータ(誘導電動機) 2 インバータ(自己消弧素子から成る) 21 モータ出力パワー 22 モータ損失 23 インバータ損失 3 パルス発振器 4 パルス幅変調器(PWM) 5 ベクトル制御器 51 演算器 52 係数器(K1 ) 53 加算器 54 ベクトル制御発振器 55 加算器 56 乗算器 57 割算器 6 トルク電流演算器(割算器) 71 アクセルペダル 72 直流定電圧 (源) 73 可変抵抗 (センサ) 81 抵抗 82 抵抗 83 直流定電圧 (源) 84 係数器(1/M,Mは電動機1の励磁リアクタン
ス) 85 抵抗 86 直流定電圧 (源) 88 比較器 9 係数器 (K2) 91 変流器 92 減算器 10 平滑回路 100 制御回路
1 motor (induction motor) 2 inverter (consisting of self-extinguishing element) 21 motor output power 22 motor loss 23 inverter loss 3 pulse oscillator 4 pulse width modulator (PWM) 5 vector controller 51 calculator 52 coefficient unit (K 1 ) 53 Adder 54 Vector controlled oscillator 55 Adder 56 Multiplier 57 Divider 6 Torque current calculator (divider) 71 Accelerator pedal 72 DC constant voltage (source) 73 Variable resistance (sensor) 81 Resistance 82 Resistance 83 DC Constant voltage (source) 84 Coefficient unit (1 / M, M is the excitation reactance of the motor 1) 85 Resistance 86 DC constant voltage (source) 88 Comparator 9 Coefficient unit (K 2 ) 91 Current transformer 92 Subtractor 10 Smoothing circuit 100 control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バッテリにより直流電圧を供給させるベ
クトル制御インバータにより移動体駆動用モータを駆動
制御する移動体駆動用モータの制御装置において、 ベクトル制御装置へ入力されるトルク指令と設定値とを
比較する比較器と、この比較器の出力に応じて前記磁束
指令の値を変える磁束指令切替器とを備えたことを特徴
とする移動体駆動用モータの制御装置。
1. In a control device for a moving body driving motor, which drives and controls a moving body driving motor by a vector control inverter that supplies a DC voltage from a battery, a torque command input to the vector controlling device is compared with a set value. And a magnetic flux command switcher that changes the value of the magnetic flux command according to the output of the comparator.
JP6113795A 1994-04-28 1994-04-28 Controller of motor for driving movable body Pending JPH07303400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6113795A JPH07303400A (en) 1994-04-28 1994-04-28 Controller of motor for driving movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6113795A JPH07303400A (en) 1994-04-28 1994-04-28 Controller of motor for driving movable body

Publications (1)

Publication Number Publication Date
JPH07303400A true JPH07303400A (en) 1995-11-14

Family

ID=14621284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6113795A Pending JPH07303400A (en) 1994-04-28 1994-04-28 Controller of motor for driving movable body

Country Status (1)

Country Link
JP (1) JPH07303400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001585A (en) * 2014-06-11 2016-01-07 現代自動車株式会社Hyundaimotor Company Fuel cell system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001585A (en) * 2014-06-11 2016-01-07 現代自動車株式会社Hyundaimotor Company Fuel cell system and control method thereof

Similar Documents

Publication Publication Date Title
JP2555038B2 (en) Induction motor type electric vehicle controller
US20090224710A1 (en) System and methods involving dynamic closed loop motor control and flux weakening
JPH08322106A (en) Motor control method
JPH05184182A (en) Inverter control device
JP2638949B2 (en) Control method of induction machine
JPH07303400A (en) Controller of motor for driving movable body
JPH06121405A (en) Electric vehicle control device
JP3287877B2 (en) Electric vehicle torque control device
KR940002922B1 (en) Induction motor control apparatus and method
JP2021166461A (en) Inverter control device, electric vehicle system
JPH11235075A (en) Flat linear induction motor
JP4147970B2 (en) Induction motor control method
JPH06343201A (en) Electric vehicle electrical system
JP3507235B2 (en) Inverter device for driving induction motor
JP2521985B2 (en) Control method of induction motor
JP2024052227A (en) Electric vehicles
JP7148463B2 (en) Control devices, electric vehicles
JP4706716B2 (en) Induction motor control method
JP3323901B2 (en) Control device for linear motor electric vehicle
JP2910517B2 (en) Induction motor control device
JPH0585470B2 (en)
JPS62213503A (en) Controlling method for induction motor of electric vehicle
JPS62247785A (en) Control method of induction motor for electric vehicle
JPH0746708A (en) Controller for induction motor for electric car
JPH07298406A (en) Regenerative braking circuit of electric automobile