[go: up one dir, main page]

JPH07302927A - Solar cell device - Google Patents

Solar cell device

Info

Publication number
JPH07302927A
JPH07302927A JP6092396A JP9239694A JPH07302927A JP H07302927 A JPH07302927 A JP H07302927A JP 6092396 A JP6092396 A JP 6092396A JP 9239694 A JP9239694 A JP 9239694A JP H07302927 A JPH07302927 A JP H07302927A
Authority
JP
Japan
Prior art keywords
solar cell
light
receiving surface
cell device
light reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6092396A
Other languages
Japanese (ja)
Inventor
Yasuyuki Minamino
康幸 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6092396A priority Critical patent/JPH07302927A/en
Publication of JPH07302927A publication Critical patent/JPH07302927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【目的】 集光タイプの追尾型太陽電池装置の諸問題を
解消し、簡便でかつ太陽光入射量の増大効果が大きな太
陽電池装置を提供すること。 【構成】 平板状の光反射体2上に該光反射体2の反射
光を受光する太陽電池1を配設して成るものであり、太
陽電池1の受光面を、光反射体2の反射面に対して略垂
直にするとともに光反射体2の反射面の垂直軸を中心に
回動可能としたことを特徴とする。
(57) [Summary] [Object] To provide a solar cell device that solves various problems of a concentrating-type tracking solar cell device, is simple, and has a large effect of increasing the amount of incident sunlight. A solar cell 1 for receiving the reflected light of the light reflector 2 is arranged on a flat light reflector 2, and the light receiving surface of the solar cell 1 is reflected by the light reflector 2. It is characterized in that it is substantially perpendicular to the surface and is rotatable about the vertical axis of the reflecting surface of the light reflector 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池の受光面に入射
光量を増大させるために、光反射体と太陽電池とを組み
合わせた太陽電池装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell device in which a light reflector and a solar cell are combined in order to increase the amount of light incident on the light receiving surface of the solar cell.

【0002】[0002]

【従来の技術とその課題】一般に、太陽電池の受光面を
東から西への太陽位置の移動に追尾できるように構成さ
れた追尾型太陽電池装置は、太陽電池の受光面を常時固
定して発電を行う太陽電池装置に比べて、一日当たり30
〜50%程度の発電量の増大が可能であることが知られて
いる。また、このような追尾型太陽電池装置に、例え
ば、図2(a),(b),図3(a),(b)に示すよ
うなレンズや反射鏡等による入射光量増大手段を備える
ことによって、集光量にほぼ比例して太陽光発電量を増
大させることが可能である。
2. Description of the Related Art In general, a tracking type solar cell device constructed so that the light receiving surface of the solar cell can be tracked as the sun moves from east to west, has a fixed light receiving surface of the solar cell. 30 per day compared to solar cells that generate electricity
It is known that the amount of power generation can be increased by about 50%. In addition, such tracking solar cell device is provided with an incident light amount increasing means such as a lens and a reflecting mirror as shown in FIGS. 2 (a), 2 (b), 3 (a) and 3 (b). Thus, it is possible to increase the amount of solar power generation almost in proportion to the amount of collected light.

【0003】すなわち、図2(a)に示すように、同心
円状にレンズ領域が多数形成された円型フレネルレンズ
L1を入射光量増大手段として用いた場合、レンズL1
を透過した光hはレンズL1の焦点f1に集光され、こ
の集光領域において発電量を増大させることができる。
また、この作用効果は図3(a)に示すような円型放物
面鏡M1においても同様であり、鏡M1で反射した光h
は焦点f3に集光され、この集光領域において発電量を
増大させることができる。
That is, as shown in FIG. 2A, when a circular Fresnel lens L1 having a large number of concentric lens regions is used as an incident light amount increasing means, the lens L1 is used.
The light h transmitted through is condensed at the focal point f1 of the lens L1, and the amount of power generation can be increased in this condensing region.
This effect is the same as in the circular parabolic mirror M1 as shown in FIG. 3A, and the light h reflected by the mirror M1 is h.
Is focused on the focal point f3, and the amount of power generation can be increased in this focusing region.

【0004】また、図2(b)に示すように、線状にレ
ンズ領域の多数が平行に形成された線型フレネルレンズ
を入射量増大手段として用いた場合は、レンズL2を透
過した光hはレンズL2の焦線f2に集光され、この集
光領域において発電量を増大させることができる。ま
た、この作用効果は図3(b)に示すような樋型(線
型)放物面鏡M2においても同様であり、鏡M2で反射
した光hは焦線f4に集光され、この集光領域において
発電量を増大させることができる(「最新太陽光発電技
術」浜川圭弘 編著,槇書店,1984年 7月 1日発行,
p.111〜p.112参照)。
Further, as shown in FIG. 2B, when a linear Fresnel lens in which a large number of lens regions are linearly formed in parallel is used as the incident amount increasing means, the light h transmitted through the lens L2 is The light is focused on the focal line f2 of the lens L2, and the amount of power generation can be increased in this focus area. This effect is the same as in the gutter-shaped (linear) parabolic mirror M2 as shown in FIG. 3B, and the light h reflected by the mirror M2 is focused on the focal line f4. The amount of power generation can be increased in the area ("Latest solar power generation technology" edited by Keihiro Hamakawa, Maki Shoten, published July 1, 1984,
See p.111 to p.112).

【0005】しかしながら、上述したような高倍率集光
型の入射光量増大手段を用いた太陽電池装置の場合、集
光領域がきわめて狭いために、非常に高精度な太陽位置
の追尾を行わなければ、発電量の高い集光領域を形成さ
せたり、所望の太陽電池の受光面に集光領域を形成させ
ることは不可能であり、その機能を充分に発揮させるこ
とができない。このため、例えばコンピュータ制御によ
る2軸追尾制御が必要となったり、集光に伴う発熱を冷
却させるための冷却機構が必要となる等の理由により、
装置が複雑化したり大型化せざるを得なくなる。
However, in the case of the solar cell device using the high-magnification condensing type incident light amount increasing means as described above, since the condensing area is extremely narrow, it is necessary to track the sun position with extremely high accuracy. However, it is impossible to form a light-collecting region with a high power generation amount or to form a light-collecting region on the light receiving surface of a desired solar cell, and it is not possible to sufficiently exert its function. For this reason, for example, two-axis tracking control under computer control is required, and a cooling mechanism for cooling the heat generated by light collection is required.
Inevitably the device becomes complicated and large.

【0006】また、例えば側面鏡等を太陽電池の受光面
近傍に所定角度傾斜させることにより、入射光量の増大
を図った太陽電池装置も考えられるが、このような場
合、太陽位置の追尾は比較的粗くてもよいが、大がかり
な側面鏡を用いても集光倍率が低く、充分な発電量の増
大を望めないという問題点を有する。
A solar cell device in which the amount of incident light is increased by tilting a side mirror or the like at a predetermined angle in the vicinity of the light receiving surface of the solar cell is conceivable. In such a case, tracking of the sun position is compared. Although it may be rough, even if a large-scale side mirror is used, there is a problem in that the condensing magnification is low and a sufficient increase in power generation cannot be expected.

【0007】そこで、本発明はこのような集光タイプの
追尾型太陽電池装置の諸問題を解消し、簡便でかつ太陽
光入射量の増大効果が大きな太陽電池装置を提供するこ
とを目的とする。
Therefore, an object of the present invention is to solve the problems of the concentrating type tracking solar cell device and to provide a solar cell device which is simple and has a large effect of increasing the amount of incident sunlight. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明の太陽電池装置は、平板状の光反射体上に
該光反射体の反射光を受光する太陽電池を配設して成る
ものであり、太陽電池の受光面を、前記光反射体の反射
面に対して略垂直にするとともに光反射体の反射面の垂
直軸を中心に回動可能としたことを特徴とする。
In order to achieve the above object, the solar cell device of the present invention comprises a flat light reflector and a solar cell for receiving the reflected light of the light reflector. It is characterized in that the light receiving surface of the solar cell is substantially perpendicular to the reflecting surface of the light reflector and is rotatable about the vertical axis of the reflecting surface of the light reflector.

【0009】北緯35°地点(日本の京都付近)において
は、朝方・夕方、及び冬期における太陽高度は非常に低
く、このような低太陽高度の場合、太陽電池の受光面が
水平面の日射量よりも、垂直面の日射量の方が多くな
る。この傾向は、さらに緯度が高くなればなるほど顕著
になる。そこで、本発明では太陽電池の受光面を光反射
体の反射面に対して垂直となる位置関係にするべく配設
することを基本とし、一軸の回動軸で太陽光追尾を行う
ことができるものとしている。なお、光反射体の反射面
は必ずしも水平面に一致するとは限らず、例えば東西南
北のいずれかの方向へ傾斜させてもよい。
At the north latitude of 35 ° (near Kyoto, Japan), the sun altitude in the morning, evening and winter is very low. In such low solar altitude, the light receiving surface of the solar cell is more than the solar radiation on the horizontal plane. However, the amount of solar radiation on the vertical surface is higher. This tendency becomes more remarkable as the latitude increases. Therefore, in the present invention, the light receiving surface of the solar cell is basically arranged so as to be in a positional relationship perpendicular to the reflection surface of the light reflector, and sunlight tracking can be performed by a single rotation axis. I am supposed to. Note that the reflecting surface of the light reflector does not always coincide with the horizontal plane, and may be tilted in any of north, south, east, and west directions, for example.

【0010】また、本発明の太陽電池装置は、太陽電池
の受光面より前方でかつ下方に光反射体の反射面が位置
するように構成している。すなわち、太陽電池の受光面
を一軸の回動軸でもって回動させ、一日のうちに東方向
から西方向へ約 180°回動させるので、回動軸から東方
向及び西方向にはできるだけ遠くまで、例えば北緯35°
より緯度が高い場合は太陽電池の受光面高さ(垂直幅)
の2.5 倍以上に反射面が形成されているのが好ましい。
また、回動軸から南方向には、冬至前後の南中時の太陽
高度のとき、反射光が太陽電池の受光面上端に届くよう
な位置までに反射面を設けるとよい。
Further, the solar cell device of the present invention is constructed such that the reflecting surface of the light reflector is located in front of and below the light receiving surface of the solar cell. In other words, the light receiving surface of the solar cell is rotated by one axis of rotation, and it is rotated about 180 ° from east to west in one day. To a distance, for example 35 ° north latitude
If the latitude is higher, the height of the light receiving surface of the solar cell (vertical width)
It is preferable that the reflective surface is formed 2.5 times or more.
Further, in the southward direction from the rotation axis, it is advisable to provide a reflecting surface up to a position where the reflected light reaches the upper end of the light receiving surface of the solar cell at the time of the sun altitude around the middle of the winter solstice.

【0011】なお、光反射体の反射面に用いる部材とし
ては、高い反射率の面を有するものであればよいが、例
えば鏡、金属板、金属箔、樹脂等の表面に金属等の高反
射層を形成したものなどが適している。
The member used for the reflecting surface of the light reflector may be any member as long as it has a surface with a high reflectance. For example, a mirror, a metal plate, a metal foil, a resin, or the like may have a high reflection of metal on the surface. A layered product is suitable.

【0012】また、例えば夏至前後の南中時には太陽高
度が高くなるため、上記のままでは太陽電池の受光面へ
の入射光量が少なくなる。すなわち、太陽高度が高い場
合には入射角が小さいので、太陽光の反射光が太陽電池
の受光面上端より上方へはずれてしまうことがある。
Further, for example, since the altitude of the sun is high in the middle of the south before and after the summer solstice, the amount of light incident on the light receiving surface of the solar cell is small as it is. That is, since the incident angle is small when the sun altitude is high, the reflected light of sunlight may deviate upward from the upper end of the light receiving surface of the solar cell.

【0013】そこで、例えば光反射体の反射面に平面状
領域とこの領域より反射角が異なる反射角変化領域とを
形成し、この反射角変化領域を、東西方向に長く、かつ
上方に凸形状の曲面反射手段とした場合、この曲面反射
手段により反射光の反射角度を平面状の反射面の場合よ
り鈍角にさせることで、反射光を太陽電池の受光面に到
達させるようにしてもよい。ここで、反射角変化領域を
曲面とするとよい理由について説明する。例えば、角度
を変えた平面鏡の多数でもって疑似曲面とすることがで
きるが、平面鏡の数が少ない場合、図4に示すように平
面鏡P1と平面鏡P2との間において、光hの反射が大
きく変化するため、水平面に対して反射角が大きく異な
る反射光k1,k2により太陽電池S0の受光面に不連
続領域Dが形成され、太陽電池S0が特に直列に接続さ
れた多数のセルで構成される太陽電池モジュールでは、
入射光量の分布が生じて発電電流が制限されて発電量が
低減するという問題が生じるからである。
Therefore, for example, a flat area and a reflection angle changing area having a reflection angle different from that of the area are formed on the reflecting surface of the light reflector, and the reflection angle changing area is elongated in the east-west direction and convex upward. When the curved reflecting means is used, the reflected light may reach the light receiving surface of the solar cell by making the reflected angle of the reflected light obtuse than that of the planar reflecting surface. Here, the reason why the reflection angle changing area is preferably a curved surface will be described. For example, a large number of plane mirrors with different angles can be used to form a pseudo curved surface. However, when the number of plane mirrors is small, the reflection of the light h greatly changes between the plane mirrors P1 and P2 as shown in FIG. Therefore, the discontinuous region D is formed on the light receiving surface of the solar cell S0 by the reflected lights k1 and k2 whose reflection angles differ greatly from the horizontal plane, and the solar cell S0 is composed of a large number of cells connected in series. In the solar cell module,
This is because the distribution of the amount of incident light occurs, the generated current is limited, and the amount of generated power decreases.

【0014】この曲面反射手段は、例えばパイプとか雨
樋状のものを伏せた長尺物の表面を光反射率が高くなる
ように処理し、これらを長手方向が東西方向となるよう
に並べ、不要時にはこれを取り除くことにより安価で簡
便な構成で実現されるが、光反射体の全体もしくは一部
分を形状記憶材料で構成させて、ある温度以上で反射曲
面が形成されるようにしたり、伸びた状態で平面状とな
り縮んだ状態で曲面状となる反射シート体を用い、この
反射シート体の一端部にある温度以上で伸びた元の状
態、ある温度以下では元の状態から縮むバネ手段を複数
取り付け、これの他端を反射シート体が配設された基台
等に固定して、曲面反射部分の数を周囲の温度に応じて
自動的に変化させるようにしてもよい。また、曲面状の
反射シート体上を覆う平面状の反射板を適宜移動させる
ことによって、曲面反射領域の面積を可変するようにし
てもよい。また、空気の出し入れが可能で、かつ空気が
多量に入った状態で半円柱状の反射面が多数条に形成さ
れ、空気が抜けた状態で平板状となる合成ゴム等の袋状
の弾性体から成る反射シート体を用い、空気の出し入れ
を遠隔制御するようにしてもよい。
The curved surface reflecting means processes, for example, the surface of a long object, such as a pipe or rain gutter, which is laid down so as to have a high light reflectance, and arranges these so that the longitudinal direction is in the east-west direction. By removing this when unnecessary, it can be realized with a cheap and simple structure, but by configuring the light reflector in whole or in part with a shape memory material, a reflection curved surface is formed at a certain temperature or more, or it is extended. A reflective sheet body that is flat in a state and curved in a contracted state is used. It may be attached, and the other end thereof may be fixed to a base or the like on which the reflection sheet body is arranged, and the number of curved surface reflection portions may be automatically changed according to the ambient temperature. Further, the area of the curved reflection region may be changed by appropriately moving the planar reflection plate that covers the curved reflection sheet body. A bag-shaped elastic body made of synthetic rubber or the like that allows air to be taken in and out, has a large number of semi-cylindrical reflecting surfaces formed when a large amount of air is contained, and becomes flat when air is released. You may make it control the air intake and exit remotely using the reflective sheet body which consists of.

【0015】[0015]

【作用】上記構成の太陽電池装置によれば、従来よりき
わめて簡便な構成で太陽光の入射量増大効果が大きな太
陽電池装置を提供することができる。特に、光反射体の
反射面と太陽電池の受光面を略垂直としたので、太陽高
度が低い場合においても、この効果を顕著とすることが
できる。
According to the solar cell device having the above-described structure, it is possible to provide a solar cell device having a significantly simpler structure than the conventional one and having a large effect of increasing the incident amount of sunlight. In particular, since the reflecting surface of the light reflector and the light receiving surface of the solar cell are made substantially vertical, this effect can be remarkable even when the altitude of the sun is low.

【0016】また、光反射体の反射面を平面領域と、該
平面領域とは光の反射角が大きく異なる反射角変化領域
とを形成させ、太陽電池の受光面近傍での反射光をこの
反射角変化領域で反射せしめることにより、太陽高度が
高い場合でも反射光を太陽電池の受光面へ好適に入射さ
せることが可能となる。
Further, the reflecting surface of the light reflector is formed with a flat area and a reflection angle changing area having a large reflection angle of light from the flat area, and the reflected light in the vicinity of the light receiving surface of the solar cell is reflected by the flat area. By reflecting the light in the angle changing region, the reflected light can be appropriately incident on the light receiving surface of the solar cell even when the altitude of the sun is high.

【0017】また、反射角変化領域を周囲温度に応じて
自動的に増減させることで、季節に応じて、或いは太陽
高度に応じて反射角制御領域の面積を増減させ、太陽電
池に対して常に最適の受光を行わせることが可能とな
る。
Further, the area of the reflection angle control area is increased / decreased according to the season or the sun altitude by automatically increasing / decreasing the reflection angle change area according to the ambient temperature. It is possible to perform optimum light reception.

【0018】特に、反射面が平面状領域と反射角変化領
域である曲面状領域とを備えたものを採用した場合に
は、季節に応じた太陽光入射量の増大を期待することが
でき、太陽電池の受光面を固定したものに比して一日当
たりの発電量は北緯35°付近では約2倍以上となる。
In particular, when a reflecting surface having a plane region and a curved region which is a reflection angle changing region is adopted, it is possible to expect an increase in the amount of incident sunlight depending on the season. Compared to a solar cell with a fixed light-receiving surface, the amount of power generated per day is more than double at around 35 ° N.

【0019】[0019]

【実施例】本発明に係る一実施例を詳細に説明する。図
1に示す太陽電池装置S1は建物の屋上に設置し、北緯
35°付近の夏至の南中時に適用させた例である。1は受
光面1a(この図では真南に向いている)を一主面に有
し、この受光面1aの裏面側に受光面1aと略平行に回
動軸1bを設けた、平面の広さが1.4 m ×4 m 程度の太
陽電池モジュール(太陽電池ともいう)であり、その発
電領域は多数の多結晶シリコン(Si)からなるセル
(太陽電池素子)を直並列させて、屋内や屋外の負荷
(各種電気機器、蓄電池、各種電力変換装置、他系統電
源等)へ電力を供給できるようにしている。
EXAMPLE An example according to the present invention will be described in detail. The solar cell device S1 shown in FIG. 1 is installed on the roof of a building and
This is an example applied to the south solstice of the summer solstice around 35 °. Reference numeral 1 designates a light receiving surface 1a (which faces toward the south in this figure) on one main surface, and a rotary shaft 1b provided on the back side of the light receiving surface 1a substantially parallel to the light receiving surface 1a. Is a solar cell module (also called a solar cell) with a size of about 1.4 m × 4 m, and its power generation area is made up of many polycrystalline silicon (Si) cells (solar cell elements) that are arranged in parallel and are used indoors or outdoors. It is possible to supply power to the loads (various electric devices, storage batteries, various power conversion devices, other system power sources, etc.).

【0020】ここで、太陽電池1の受光面1aと回動軸
1bとは、水平設置台3上に配置した平面の広さが9 m
×7 m 程度の光反射体2の反射面2aに対して略垂直な
位置関係とするべく配設されている。また、回動軸1b
の光反射体2側の一端は水平設置台3にベアリングを介
して回動自在に軸支されており、さらに、この回動軸1
bに形成されたウォームホイールが、これにかみ合うウ
ォームを固定したモーターの回動軸と連結され、モータ
ーの回動に応じて回動軸1bの回動を可能にしている。
モーターの回動制御は制御回路で行い、モーターの回動
を左右いずれかの方向へ回動せしめるようにして、回動
軸1bを回動させ太陽電池1の受光面が東西方向へ約18
0 °の範囲で回動できるように構成している。
Here, the light receiving surface 1a of the solar cell 1 and the rotating shaft 1b have a plane area of 9 m arranged on the horizontal installation table 3.
It is arranged so as to have a substantially vertical positional relationship with the reflection surface 2a of the light reflector 2 of about 7 m. Also, the rotating shaft 1b
One end of the light reflector 2 side is rotatably supported by a horizontal installation base 3 via a bearing.
A worm wheel formed on b is connected to a rotating shaft of a motor having a worm engaged with the worm wheel, and allows the rotating shaft 1b to rotate in response to the rotation of the motor.
The rotation of the motor is controlled by a control circuit, and the rotation axis 1b is rotated so that the rotation of the motor can be rotated in either the left or right direction.
It is constructed so that it can be rotated in the range of 0 °.

【0021】光反射体2の反射面2aはステンレス板で
構成され、水平設置台3上に固定されている。また、回
動軸1bからできるだけ遠くにまで反射面を形成して反
射光の有効利用を図るために、東西方向には太陽電池1
の高さ1.4 m の2.5 倍、すなわち回動軸1aを中心に東
西それぞれの方向へ3.5 m の広がりを有している。南方
向には北緯35°地点の冬至前後において、太陽光の反射
光が太陽電池1の上辺に達する位置(1.4 m ×tan(35°
+23.5°) ≒2.3 m ) まで広げている。
The reflecting surface 2a of the light reflector 2 is made of a stainless plate and is fixed on the horizontal installation table 3. Further, in order to effectively utilize the reflected light by forming a reflecting surface as far as possible from the rotating shaft 1b, the solar cell 1 is arranged in the east-west direction.
It is 2.5 times the height of 1.4 m, that is, 3.5 m in the east and west directions about the rotating shaft 1a. In the south direction, the position where the reflected light of the sunlight reaches the upper side of the solar cell 1 (1.4 m × tan (35 °
Widening up to + 23.5 °) ≈ 2.3 m).

【0022】また、光反射体2上の太陽電池1の南側近
傍には、直径約400mm 、長さ約 5mの塩化ビニル製の円
管の一部(中心角度で約80°)を切り出し、表面をAl
箔で覆った上凸面状の曲面反射板4を複数並設し、夏至
の頃には6本、春分・秋分の頃には4本、冬至の頃には
0本配設することによって季節に応じて(太陽高度に応
じて)太陽光の反射光が太陽電池1の受光面1aに最適
に到達するべく本数を制御している。
Further, in the vicinity of the south side of the solar cell 1 on the light reflector 2, a part of a vinyl chloride circular tube having a diameter of about 400 mm and a length of about 5 m (a center angle of about 80 °) is cut out and the surface is cut. Is Al
By arranging a number of upwardly convex curved reflectors 4 covered with foil, 6 in the summer solstice, 4 in the spring and autumn equinoxes, and 0 in the winter solstice Accordingly, the number of reflected rays of sunlight is controlled so as to reach the light receiving surface 1a of the solar cell 1 optimally (according to the altitude of the sun).

【0023】次に、この太陽電池装置S1の作動につい
て説明する。太陽電池1の受光面1aは毎日6時には真
東を向く位置からタイマーをスタートさせ、制御回路で
もってモーターの回動制御を行わせ、時刻とともに回動
軸1bを西方向へ徐々に回動させ、12時に真南、18
時には真西に向く位置とさせ、この時点で真東を向くよ
うに回動軸1bを回動制御し、次の日に備えるようにし
ている。
Next, the operation of this solar cell device S1 will be described. The light-receiving surface 1a of the solar cell 1 starts the timer from the position facing the east at 6 o'clock every day, causes the control circuit to control the rotation of the motor, and gradually rotates the rotation shaft 1b in the west direction with time. , South at 12 o'clock, 18
Sometimes, the position is set to face west, and at this point, the rotation shaft 1b is controlled to face to the east so as to prepare for the next day.

【0024】上記曲面反射手段の態様の他に、光反射体
の全体もしくは一部分を形状記憶材料で構成させ、ある
温度以上で反射曲面が形成されるようにしたり、伸びた
状態で平面状となり縮んだ状態で曲面状となる反射シー
ト体を用いたり、曲面状の反射シート体上を覆う平面状
の反射板を移動制御することによって、曲面反射領域の
面積を可変するようにしてもよい。また、空気の出し入
れが可能で、かつ空気が多量に入った状態で半円柱状の
反射面が多数条に形成され、空気が抜けた状態で平板状
となる合成ゴム等の袋状の弾性体から成る反射シート体
を用い、空気の出し入れを遠隔制御するようにしてもよ
い。
In addition to the above-mentioned curved reflecting means, the whole or a part of the light reflector is made of a shape memory material so that a reflecting curved surface is formed at a certain temperature or higher, or when it is extended, it becomes flat and shrinks. The area of the curved reflective region may be varied by using a reflective sheet body that is curved in a closed state or by controlling the movement of a planar reflective plate that covers the curved reflective sheet body. A bag-shaped elastic body made of synthetic rubber or the like that allows air to be taken in and out, has a large number of semi-cylindrical reflecting surfaces formed when a large amount of air is contained, and becomes flat when air is released. You may make it control the air intake and exit remotely using the reflective sheet body which consists of.

【0025】また、太陽電池の回動は上記実施例のよう
に固定された回動軸回りに限定されるものではなく、光
反射体の反射面の垂直軸回りに回動するように構成すれ
ばよいので、例えば太陽電池が光反射体の反射面を移動
しながら回動するようにして、太陽高度が高い場合等に
おいて、曲面反射領域からの反射光の受光を避けるよう
に制御してもよい。
Further, the rotation of the solar cell is not limited to the fixed rotation axis as in the above embodiment, but it may be configured to rotate about the vertical axis of the reflection surface of the light reflector. Therefore, for example, the solar cell may be rotated while moving on the reflecting surface of the light reflector so as to avoid receiving reflected light from the curved reflecting area when the altitude of the sun is high. Good.

【0026】なお、この実施例においては回動軸の回動
をタイマーを使用して12時間ほどかけて行うようにし
たが、どのような時期においても太陽電池の受光面が最
適方向を向くように、例えば各期間毎に設定した運転ス
ケジュールに基づいて制御回路を動作させて回動軸の回
動を行わせてもよい。また、回動軸を回動させるモータ
ーの駆動を間欠的に行わせることにより、回動軸の間欠
回動を行わせて、モーターの消費電力の低減化と太陽位
置の追尾精度の向上を図ることができる。
In this embodiment, the rotation of the rotating shaft is performed using a timer for about 12 hours, but the light receiving surface of the solar cell is oriented in the optimum direction at any time. In addition, for example, the control circuit may be operated based on the operation schedule set for each period to rotate the rotating shaft. Further, by intermittently driving the motor for rotating the rotating shaft, the rotating shaft is intermittently rotated, thereby reducing the power consumption of the motor and improving the tracking accuracy of the sun position. be able to.

【0027】なおまた、反射角変化領域は上述した態様
に限定されるものではなく、本発明の要旨を逸脱しない
範囲内で適宜変更実施が可能である。さらにまた、光反
射体2の反射面2aはAl板、Al箔で表面を覆ったベ
ニヤ板やダンボール板、ハニカム板、鏡、ステンレス板
で構成してもよい。また、太陽電池は上記材質に限定さ
れるものではなく、非晶質や単結晶でもよく、Si以外
の周知の材料を適宜用いることができ、この太陽電池の
数もこれに限定されるものではない。
Further, the reflection angle changing region is not limited to the above-mentioned embodiment, but can be appropriately changed and implemented within a range not departing from the gist of the present invention. Furthermore, the reflecting surface 2a of the light reflector 2 may be composed of an Al plate, a veneer plate whose surface is covered with an Al foil, a cardboard plate, a honeycomb plate, a mirror, or a stainless plate. Further, the solar cell is not limited to the above material, may be amorphous or single crystal, can be appropriately used well-known materials other than Si, the number of this solar cell is not limited to this. Absent.

【0028】なおさらに、太陽電池の回動軸を根元で折
り曲げられるようにし、折り畳み可能に構成しておけ
ば、強風時や不使用時には太陽電池を設置面上に倒して
固定するようにしてもよい。
Furthermore, if the rotation axis of the solar cell can be bent at the root and is made foldable, the solar cell can be fixed by tilting it on the installation surface when strong winds or when not in use. Good.

【0029】[0029]

【発明の効果】以上説明したごとく本発明によれば、従
来よりきわめて簡便な構成によって太陽光入射量の増大
効果が大きな太陽電池装置を提供できる。さらに、従来
の集光タイプの太陽電池装置のように、特別な冷却機構
も不要であり、太陽光を追尾する場合にもその追尾精度
が粗くても発電量に大きな影響が無い信頼性の優れた太
陽電池装置を提供できる。
As described above, according to the present invention, it is possible to provide a solar cell device having a great effect of increasing the amount of incident sunlight, which has a much simpler structure than the conventional one. Furthermore, unlike the conventional concentrating solar cell device, no special cooling mechanism is required, and even when tracking the sunlight, even if the tracking accuracy is rough, it does not significantly affect the amount of power generation and is highly reliable. A solar cell device can be provided.

【0030】また、例えば太陽電池の受光面の南側に平
面状反射手段に加え、例えば反射角度を大きくさせる反
射角変化領域を設けることにより、太陽高度が高い場合
にも太陽電池の受光面への入射光量が減少しない優れた
太陽電池装置を提供できる。さらに、太陽高度に応じて
この反射角変化領域の面積を増減することにより、適時
の太陽光の受光が可能な優れた太陽電池装置を提供でき
る。
Further, for example, by providing a reflection angle changing region for increasing the reflection angle in addition to the planar reflecting means on the south side of the light receiving surface of the solar cell, the light receiving surface of the solar cell can be exposed even when the altitude of the sun is high. It is possible to provide an excellent solar cell device in which the amount of incident light does not decrease. Furthermore, by increasing or decreasing the area of the reflection angle changing region according to the sun altitude, it is possible to provide an excellent solar cell device capable of receiving sunlight at a proper time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例を示す図であり、(a)
は平面図、(b)は正面図、(c)は側面図である。
FIG. 1 is a diagram showing an embodiment according to the present invention, (a)
Is a plan view, (b) is a front view, and (c) is a side view.

【図2】(a)は円型フレネルレンズの斜視図であり、
(b)は線型フレネルレンズの斜視図である。
FIG. 2A is a perspective view of a circular Fresnel lens,
(B) is a perspective view of a linear Fresnel lens.

【図3】(a)は円型放物面鏡の斜視図であり、(b)
は樋型(線型)放物面鏡の斜視図である。
FIG. 3A is a perspective view of a circular parabolic mirror, and FIG.
FIG. 3 is a perspective view of a gutter-shaped (linear) parabolic mirror.

【図4】太陽電池の受光面に反射光の不連続領域が形成
される様子を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing how a discontinuous region of reflected light is formed on the light receiving surface of the solar cell.

【符号の説明】[Explanation of symbols]

1 ・・・ 太陽電池 2 ・・・ 光
反射体 S1 ・・・ 太陽電池装置
1 ... Solar cell 2 ... Light reflector S1 ... Solar cell device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平板状の光反射体上に該光反射体の反射光
を受光する太陽電池を配設して成る太陽電池装置であっ
て、前記太陽電池の受光面を、前記光反射体の反射面に
対して略垂直にするとともに光反射体の反射面の垂直軸
を中心に回動可能としたことを特徴とする太陽電池装
置。
1. A solar cell device comprising a flat light reflector and a solar cell for receiving the reflected light of the light reflector, wherein the light receiving surface of the solar cell is the light reflector. The solar cell device is characterized in that the solar cell device is substantially perpendicular to the reflective surface and is rotatable about the vertical axis of the reflective surface of the light reflector.
JP6092396A 1994-04-28 1994-04-28 Solar cell device Pending JPH07302927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092396A JPH07302927A (en) 1994-04-28 1994-04-28 Solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092396A JPH07302927A (en) 1994-04-28 1994-04-28 Solar cell device

Publications (1)

Publication Number Publication Date
JPH07302927A true JPH07302927A (en) 1995-11-14

Family

ID=14053262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092396A Pending JPH07302927A (en) 1994-04-28 1994-04-28 Solar cell device

Country Status (1)

Country Link
JP (1) JPH07302927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002052654A1 (en) * 2000-12-26 2004-04-30 株式会社林原生物化学研究所 Solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002052654A1 (en) * 2000-12-26 2004-04-30 株式会社林原生物化学研究所 Solar cell

Similar Documents

Publication Publication Date Title
US4148301A (en) Water-borne rotating solar collecting and storage systems
US8743462B2 (en) Concentrating daylight collector
US4284839A (en) Internal refractor focusing solar energy collector apparatus and method
US7442871B2 (en) Photovoltaic modules for solar concentrator
US20090250095A1 (en) Low-profile solar tracking module
JP5337961B2 (en) Solar tracking module device
US9660122B2 (en) Compact LCPV solar electric generator
US20100206302A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
EP2221553A2 (en) Two-part Solar Energy Collection System with Replaceable Solar Collector Component
US20100206379A1 (en) Rotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
US4269168A (en) Focusing reflector solar energy collector apparatus and method
US4434787A (en) Solar powered reactor
WO2011145883A2 (en) Photovoltaic power generation apparatus comprising a cylindrical light-collecting device
US20110259397A1 (en) Rotational Trough Reflector Array For Solar-Electricity Generation
JP6867771B2 (en) Fixed-mounted tracking solar panels and methods
CN101610044B (en) Inexpensive high-precision two-dimensional sun tracking mechanism for concentrating to generate power
US12051759B2 (en) Photovoltaic solar collection system and natural illumination apparatus for building integration
JP2004271063A (en) Solar power generator
RU2206837C2 (en) Solar module with concentrator (alternatives)
JP2013162038A (en) Concentrating photovoltaic power generation system
JPH07302927A (en) Solar cell device
WO2003098125A1 (en) Solar reflector and assembly thereof
JPH08148711A (en) Solar cell equipment
JP2011129847A (en) Reflecting concentrated solar power generating module
JPWO2002052204A1 (en) Solar radiation concentrator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070123

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070201

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130209

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees