[go: up one dir, main page]

JPH07297496A - Method for manufacturing group III nitride semiconductor laser - Google Patents

Method for manufacturing group III nitride semiconductor laser

Info

Publication number
JPH07297496A
JPH07297496A JP10605894A JP10605894A JPH07297496A JP H07297496 A JPH07297496 A JP H07297496A JP 10605894 A JP10605894 A JP 10605894A JP 10605894 A JP10605894 A JP 10605894A JP H07297496 A JPH07297496 A JP H07297496A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
group iii
iii nitride
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10605894A
Other languages
Japanese (ja)
Inventor
Masayoshi Koike
正好 小池
Norikatsu Koide
典克 小出
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Original Assignee
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyoda Gosei Co Ltd filed Critical Research Development Corp of Japan
Priority to JP10605894A priority Critical patent/JPH07297496A/en
Priority to US08/423,940 priority patent/US5604763A/en
Priority to EP95105899A priority patent/EP0688070B1/en
Priority to DE69503193T priority patent/DE69503193T2/en
Publication of JPH07297496A publication Critical patent/JPH07297496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

(57)【要約】 【目的】AlxGaYIn1-X-YN(X=0,Y=0,X=Y=0 を含む) で表
される3族窒化物半導体レーザの鏡面を容易に得るこ
と。 【構成】サファイア基板上の一部の領域に酸化亜鉛(Z
nO)2を、他の部分に窒化アルミニウム(AlN)8
から成る中間層を形成し、その中間層の上に3族窒化物
半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) の複数
の層3,4,5からなる半導体レーザ素子層を形成し、
酸化亜鉛のみをエッチングする溶液を用いた湿式エッチ
ングにより酸化亜鉛(ZnO)の中間層2のみを除去し
て、サファイア基板1と半導体レーザ素子層の最下層3
との間に間隙20を形成し、半導体レーザ素子層を間隙
20を利用してへき開し、そのへき開面をレーザの共振
器の鏡面とすることにより、3族窒化物半導体レーザを
製造する方法。
(57) [Abstract] [Purpose] Easily create a mirror surface of a group III nitride semiconductor laser represented by Al x Ga Y In 1-XY N (including X = 0, Y = 0, X = Y = 0) To get. [Structure] Zinc oxide (Z
nO) 2 and aluminum nitride (AlN) 8 on other parts
Forming an intermediate layer consisting of a plurality of layers of group III nitride semiconductors (including Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0) on the intermediate layer. Forming a semiconductor laser device layer composed of 3, 4, 5;
Only the intermediate layer 2 of zinc oxide (ZnO) is removed by wet etching using a solution that etches only zinc oxide, and the sapphire substrate 1 and the bottom layer 3 of the semiconductor laser device layer are removed.
A method for producing a Group 3 nitride semiconductor laser by forming a gap 20 between the first and second layers, cleaving the semiconductor laser element layer using the gap 20, and making the cleaved surface the mirror surface of the resonator of the laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3族窒化物半導体レーザ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a group III nitride semiconductor laser.

【0002】[0002]

【従来の技術】3族窒化物半導体レーザは特開平4−2
42985号公報に記載のように、電子線照射処理によ
る((AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) のp型化
技術を用いたものが知られている。
2. Description of the Related Art A group III nitride semiconductor laser is disclosed in Japanese Patent Laid-Open No. 4-2.
As described in Japanese Patent No. 42985, a p-type technique by electron beam irradiation treatment (including (Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0) was used. Things are known.

【0003】この半導体レーザはサファイア基板上にA
lNのバッファ層を形成して、その上に3族窒化物半導
体((AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) のヘテロ
pn接合を形成したものである。
This semiconductor laser has a sapphire substrate
A buffer layer of 1N is formed, and a hetero-pn junction of a group III nitride semiconductor (including (Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = 0) is formed thereon. It was formed.

【0004】[0004]

【発明が解決しようとする課題】このレーザは、サファ
イア基板ごとへき開しなければ、3族窒化物半導体レー
ザ素子層のへき開面が得られない。しかし、サファイア
基板自体のへき開が困難であり、しかも、サファイアと
3族窒化物半導体のA軸が30度ずれているために、3
族窒化物半導体レーザ素子層の良質なへき開面が得られ
ないという問題がある。
In this laser, the cleaved surface of the group III nitride semiconductor laser device layer cannot be obtained unless cleaved together with the sapphire substrate. However, it is difficult to cleave the sapphire substrate itself, and the A-axis of the sapphire and the group III nitride semiconductor are deviated by 30 degrees.
There is a problem that a good cleavage surface of the group nitride semiconductor laser device layer cannot be obtained.

【0005】本発明は、サファイア基板上に形成した3
族窒化物半導体から成るレーザ素子層の良質なへき開面
を得ることにより、レーザの出力を向上させることであ
る。
According to the present invention, 3 formed on a sapphire substrate is used.
It is to improve the laser output by obtaining a good cleavage surface of the laser element layer made of a group nitride semiconductor.

【0006】[0006]

【課題を解決するための手段】本発明は、サファイア基
板上の一部の領域に酸化亜鉛(ZnO)を、他の部分に
窒化アルミニウム(AlN)から成る中間層を形成し、
その中間層の上に3族窒化物半導体(AlxGaYIn1-X-YN;X=
0,Y=0,X=Y=0 を含む)の複数の層からなる半導体レーザ
素子層を形成し、酸化亜鉛のみをエッチングする溶液を
用いた湿式エッチングにより酸化亜鉛(ZnO)の中間
層のみを除去して、サファイア基板と半導体レーザ素子
層の最下層との間に間隙を形成し、半導体レーザ素子層
を間隙を利用してへき開し、そのへき開面をレーザの共
振器の鏡面とすることにより、3族窒化物半導体レーザ
を製造する方法である。
According to the present invention, zinc oxide (ZnO) is formed in a part of a sapphire substrate and an intermediate layer made of aluminum nitride (AlN) is formed in another part of the sapphire substrate.
Group III nitride semiconductor (Al x Ga Y In 1-XY N; X =
(0, Y = 0, X = Y = 0 is included), a semiconductor laser device layer including a plurality of layers is formed, and only an intermediate layer of zinc oxide (ZnO) is formed by wet etching using a solution that etches only zinc oxide. To form a gap between the sapphire substrate and the bottom layer of the semiconductor laser device layer, cleave the semiconductor laser device layer using the gap, and make the cleaved surface the mirror surface of the laser cavity. Is a method for manufacturing a group III nitride semiconductor laser.

【0007】[0007]

【作用及び発明の効果】酸化亜鉛(ZnO)及びAlN
の格子定数はサファイアと3族窒化物半導体(AlxGaYIn
1-X-YN;X=0,Y=0,X=Y=0 を含む) との格子定数に近く、
いずれの物質もサファイア基板上に良質の3族窒化物半
導体を成長させることができるバッファ層として機能す
る。そして、酸化亜鉛(ZnO)の中間層のみをエッチ
ングにより除去することで、その部分において、サファ
イア基板と3族窒化物半導体レーザ素子層との間に間隙
を形成することができる。そして、この間隙を利用し
て、3族窒化物半導体レーザ素子層だけをへき開するこ
とができる。よって、レーザ素子の共振器を形成する極
めて良質な鏡面を得ることができる。したがって、レー
ザ素子の出力を大きく向上させることができる。
[Operation and effect of the invention] Zinc oxide (ZnO) and AlN
The lattice constants of sapphire and group III nitride semiconductors (Al x Ga Y In
1-XY N; including X = 0, Y = 0, X = Y = 0)
Both materials function as a buffer layer capable of growing a good-quality Group III nitride semiconductor on the sapphire substrate. Then, by removing only the intermediate layer of zinc oxide (ZnO) by etching, a gap can be formed between the sapphire substrate and the group III nitride semiconductor laser device layer in that portion. Then, by utilizing this gap, only the group III nitride semiconductor laser device layer can be cleaved. Therefore, it is possible to obtain an extremely high quality mirror surface that forms the resonator of the laser element. Therefore, the output of the laser element can be greatly improved.

【0008】[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0を含む) 半導
体レーザダイオード用単結晶の作製には横型有機金属化
合物気相成長装置を用いた。図1に示すように、(00
01)方向の面方位を有するサファイア基板1を準備
し、そのサファイア基板1をメタノール等の有機薬品で
洗浄した。その後、サファイア基板1をRFスパッタリ
ング装置のチャンバー内にセットして、チャンバーを真
空に排気した。その後、アルゴン・酸素の混合ガスによ
りZnOのターゲットをスパッタして、図2に示すよう
に、サファイア基板1の上面に一様に厚さ100nm
で、ZnOから成る中間層2を形成した。
EXAMPLES The present invention will be described below based on specific examples. (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) A horizontal organometallic compound vapor phase epitaxy apparatus was used for the production of a single crystal for a semiconductor laser diode. As shown in FIG. 1, (00
A sapphire substrate 1 having a plane orientation of 01) direction was prepared, and the sapphire substrate 1 was washed with an organic chemical such as methanol. Then, the sapphire substrate 1 was set in the chamber of the RF sputtering apparatus, and the chamber was evacuated to vacuum. After that, a ZnO target is sputtered with a mixed gas of argon and oxygen, and the thickness of the ZnO target is uniformly 100 nm on the upper surface of the sapphire substrate 1, as shown in FIG.
Thus, the intermediate layer 2 made of ZnO was formed.

【0009】次に、このZnOの中間層2の上にホトレ
ジストを一様に塗布して、所定パターンに露光した後、
現像して、ZnOの中間層2を残す部分にホトレジスト
を残した。そして、その所定パターンのホトレジストを
マスクとして、マスクされていない部分のZnOの中間
層2を王水によりエッチングして除去した。
Next, a photoresist is uniformly coated on the ZnO intermediate layer 2 and exposed in a predetermined pattern.
After development, the photoresist was left in the portion where the intermediate layer 2 of ZnO was left. Then, using the photoresist having the predetermined pattern as a mask, the unmasked portion of the intermediate layer 2 of ZnO was removed by etching with aqua regia.

【0010】このようにして、図3、図4に示すよう
に、格子状にZnOの中間層2が形成された。次に、こ
のサファイア基板1を有機洗浄の後、結晶成長装置の結
晶成長部に設置する。成長炉を真空排気の後、水素を供
給し1200℃程度まで昇温する。これによりサファイア基
板1の表面に付着していた炭化水素系ガスがある程度取
り除かれる。
In this way, as shown in FIGS. 3 and 4, the ZnO intermediate layer 2 was formed in a lattice pattern. Next, this sapphire substrate 1 is placed in a crystal growth portion of a crystal growth apparatus after being washed with an organic material. After evacuation of the growth furnace, hydrogen is supplied and the temperature is raised to about 1200 ° C. As a result, the hydrocarbon gas attached to the surface of the sapphire substrate 1 is removed to some extent.

【0011】次に、上記の様に処理されたサファイア基
板1上に半導体レーザ素子層を形成する工程について、
図5、図6、図7を参照して説明する。図5は図4のA
−A断面図であり、図6は図4のB−B断面図である。
即ち、図6と図5の切断方向は90度の角を成してい
る。
Next, regarding the step of forming a semiconductor laser device layer on the sapphire substrate 1 processed as described above,
This will be described with reference to FIGS. 5, 6 and 7. FIG. 5 shows A of FIG.
6 is a sectional view taken along line A-A, and FIG. 6 is a sectional view taken along line BB in FIG.
That is, the cutting directions of FIGS. 6 and 5 form an angle of 90 degrees.

【0012】サファイア基板1の温度を 600℃程度まで
降温し、トリメチルアルミニウム(TMA) 及びアンモニア
(NH3) を供給して、図5に示すように、サファイア基板
1上に一様に50nm程度の膜厚を持つAlN 層8を形成す
る。次に、TMA の供給のみを止め、基板温度を1040℃ま
で上げ、TMA,トリメチルガリウム(TMG) 及びシラン(SiH
4 ) を供給しSiドープn型GaAlN 層3(n層)を成長す
る。
The temperature of the sapphire substrate 1 is lowered to about 600 ° C., and trimethyl aluminum (TMA) and ammonia are added.
By supplying (NH 3 ), as shown in FIG. 5, an AlN layer 8 having a uniform film thickness of about 50 nm is formed on the sapphire substrate 1. Next, only the supply of TMA was stopped, the substrate temperature was raised to 1040 ° C, and TMA, trimethylgallium (TMG) and silane (SiH
4 ) is supplied to grow the Si-doped n-type GaAlN layer 3 (n layer).

【0013】一旦、ウェハを成長炉から取り出し、GaAl
N 層3の表面の一部をSiO2 でマスクした後、再び成長
炉に戻して真空排気して水素及びNH3 を供給し1040℃ま
で昇温する。次に、図5、図7に示すように、TMG を供
給して、SiO2でマスクされていない部分に厚さ 0.5μm
のGaN 層4を成長させる。次に、TMA 及びビスシクロペ
ンタディエニルマクネシウム(Cp2Mg) を更に供給して、
図5、図7に示すように、ドープGaAlN 層5(p層)を
0.5μm成長する。
Once the wafer is taken out of the growth furnace, GaAl
After masking a part of the surface of the N layer 3 with SiO 2, it is returned to the growth furnace and evacuated to supply hydrogen and NH 3 to raise the temperature to 1040 ° C. Next, as shown in FIG. 5 and FIG. 7, TMG is supplied to a portion not masked with SiO 2 to have a thickness of 0.5 μm.
GaN layer 4 is grown. Next, by further supplying TMA and biscyclopentadienylmacnesium (Cp 2 Mg),
As shown in FIGS. 5 and 7, the doped GaAlN layer 5 (p layer) is
It grows 0.5 μm.

【0014】次に、マスクとして使用したSiO2 を弗酸
系エッチャントにより除去する。次に、図5、図7に示
すように、ドープGaAlN 層5(p層)上にSiO2層7を堆
積した後、縦1mm、横50μmの短冊状に窓7Aを開け、
真空チャンバに移して、ドープGaAlN 層5(p層)に電
子線照射処理を行う。電子線照射処理条件は、電子線加
速電圧が15KV、エミッション電流が120μA以
上、電子線スポット径が60μmφ、試料温度が297
Kである。
Next, the SiO 2 used as the mask is removed with a hydrofluoric acid type etchant. Next, as shown in FIGS. 5 and 7, after depositing a SiO 2 layer 7 on the doped GaAlN layer 5 (p layer), a window 7A is opened in a strip shape having a length of 1 mm and a width of 50 μm.
It is moved to a vacuum chamber and the doped GaAlN layer 5 (p layer) is subjected to electron beam irradiation treatment. The electron beam irradiation treatment conditions were an electron beam acceleration voltage of 15 KV, an emission current of 120 μA or more, an electron beam spot diameter of 60 μmφ, and a sample temperature of 297.
K.

【0015】次に、図7に示すように、ドープGaAlN 層
5(p層)の窓7Aの部分と、Siドープn型GaAlN 層3
(n層)に、それぞれ、金属電極6A,6Bを形成す
る。
Next, as shown in FIG. 7, the window 7A portion of the doped GaAlN layer 5 (p layer) and the Si-doped n-type GaAlN layer 3 are formed.
Metal electrodes 6A and 6B are formed on the (n layer), respectively.

【0016】以上のように、3族窒化物半導体レーザ層
の形成されたサファイア基板1を塩酸系エッチャントに
浸し、エッチャントの温度を60℃にした。そして、約
10分間超音波洗浄器にかけて、ZnOの中間層2のみ
のエッチングを行った。これにより、図4に示すZnO
の中間層2が除去され、図6に示すように、サファイア
基板1と半導体レーザ素子の最下層であるSiドープn型
GaAlN 層3(n層)との間に格子状の間隙20が形成さ
れた。
As described above, the sapphire substrate 1 on which the group III nitride semiconductor laser layer was formed was immersed in a hydrochloric acid-based etchant, and the etchant temperature was set to 60 ° C. Then, only the intermediate layer 2 of ZnO was etched in an ultrasonic cleaner for about 10 minutes. As a result, ZnO shown in FIG.
The intermediate layer 2 is removed, and as shown in FIG. 6, the sapphire substrate 1 and the Si-doped n-type which is the lowermost layer of the semiconductor laser device are removed.
Lattice-shaped gaps 20 were formed between the GaAlN layer 3 (n layer).

【0017】次に、図4のC−C線で示すように、格子
状の間隙20の真上から鋭利な刀物をSiO2層7の上面か
ら押し付けて、ドープGaAlN 層5(p層)、GaN 層4、
Siドープn型GaAlN 層3(n層)から成る半導体レーザ
素子層をへき開した。これにより、へき開端面がレーザ
共振器の鏡面となる。
Next, as shown by the line C--C in FIG. 4, a sharp blade is pressed from directly above the lattice-shaped gaps 20 from the upper surface of the SiO 2 layer 7 to form the doped GaAlN layer 5 (p layer). , GaN layer 4,
The semiconductor laser device layer composed of the Si-doped n-type GaAlN layer 3 (n layer) was cleaved. As a result, the cleaved end surface becomes the mirror surface of the laser resonator.

【0018】次に、図4に示すように、格子状の間隙2
0に沿って、ダイシングが行われ、各半導体レーザチッ
プが得られる。上記実施例では、ZnOの中間層2の厚
さは100nmにしたが、10nm〜10μmの範囲で
使用することができる。上記実施例では、活性層のGaN
層4をドープGaAlN 層5(p層)とSiドープn型GaAlN
層3(n層)で鋏こんでいるので、2つのヘテロ接合に
よりpn構造の半導体レーザを実現している。しかし、
この半導体レーザ素子層の層構造はpnの接合を形成す
れば、任意のもので良い。
Next, as shown in FIG. 4, the lattice-shaped gaps 2 are formed.
Dicing is performed along 0 to obtain each semiconductor laser chip. In the above embodiment, the thickness of the ZnO intermediate layer 2 is 100 nm, but it can be used in the range of 10 nm to 10 μm. In the above example, the GaN of the active layer is
Layer 4 is doped GaAlN layer 5 (p layer) and Si-doped n-type GaAlN
Since the layer 3 (n layer) is scissors, a semiconductor laser having a pn structure is realized by two heterojunctions. But,
The layer structure of this semiconductor laser device layer may be arbitrary as long as a pn junction is formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る半導体レーザ
の製造方法を示した断面図。
FIG. 1 is a sectional view showing a method for manufacturing a semiconductor laser according to a specific embodiment of the present invention.

【図2】同実施例に係る半導体レーザの製造方法を示し
た断面図。
FIG. 2 is a cross-sectional view showing the method of manufacturing the semiconductor laser according to the embodiment.

【図3】同実施例に係る半導体レーザの製造方法を示し
た断面図。
FIG. 3 is a cross-sectional view showing the method of manufacturing the semiconductor laser according to the embodiment.

【図4】同実施例に係る発光ダイオードの製造方法を示
した平面図。
FIG. 4 is a plan view showing the method of manufacturing the light emitting diode according to the embodiment.

【図5】同実施例に係る発光ダイオードの製造方法を示
した図4におけるA−A方向の断面図。
5 is a sectional view taken along the line AA in FIG. 4 showing the method for manufacturing the light emitting diode according to the embodiment.

【図6】同実施例に係る発光ダイオードの製造方法を示
した図5におけるB−B方向の断面図。
FIG. 6 is a cross-sectional view taken along the line BB in FIG. 5, showing the method for manufacturing the light emitting diode according to the embodiment.

【図7】同実施例に係る発光ダイオードの製造方法を示
した断面図。
FIG. 7 is a sectional view showing the method for manufacturing the light emitting diode according to the embodiment.

【符号の説明】[Explanation of symbols]

1…サファイア基板 2…ZnOの中間層 3…Siドープn型GaAlN 層(n層) 4…GaN 層 5…ドープGaAlN 層(p層) 6A,6B…電極 7…SiO2層 20…間隙1 ... Sapphire substrate 2 ... Intermediate layer of ZnO 3 ... Si-doped n-type GaAlN layer (n layer) 4 ... GaN layer 5 ... Doped GaAlN layer (p layer) 6A, 6B ... Electrode 7 ... SiO 2 layer 20 ... Gap

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591014950 天野 浩 愛知県名古屋市名東区山の手2丁目104 宝マンション山の手508号 (72)発明者 小池 正好 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 小出 典克 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 赤崎 勇 愛知県名古屋市西区浄心1丁目1番38− 805 (72)発明者 天野 浩 愛知県名古屋市名東区神丘町二丁目21 虹 ケ丘東団地19号棟103号室 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 591014950 Hiroshi Amano 2-chome Yamanote, Meito-ku, Nagoya, Aichi 104 Takara Condominium Yamanote 508 (72) Inventor Masayoshi Koike, Kasuga Town, Nishiichi Kasugai-gun, Aichi Prefecture Nagahata 1, Nagata Synthetic Co., Ltd. (72) Inventor Norikatsu Koide 1 Ochiai, Nagahata, Kasuga-cho, Nishikasugai-gun, Aichi Prefecture Toyota Synthetic Co., Ltd. (72) Inventor Hiroshi Amano Room No. 103, Bldg. 19, Nijigaoka Higashi Danchi, 21-21 Kamioka-cho, Meito-ku, Nagoya, Aichi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】サファイア基板上の一部の領域に酸化亜鉛
(ZnO)を、他の部分に窒化アルミニウム(AlN)
から成る中間層を形成し、 その中間層の上に3族窒化物半導体(AlxGaYIn1-X-YN;X=
0,Y=0,X=Y=0 を含む)の複数の層からなる半導体レーザ
素子層を形成し、 酸化亜鉛のみをエッチングする溶液を用いた湿式エッチ
ングにより前記酸化亜鉛(ZnO)の中間層のみを除去
して、前記サファイア基板と前記半導体レーザ素子層の
最下層との間に間隙を形成し、 前記半導体レーザ素子層を前記間隙を利用してへき開
し、そのへき開面をレーザの共振器の鏡面とすることに
より、 3族窒化物半導体レーザを製造する方法。
1. Zinc oxide (ZnO) is formed on a part of a sapphire substrate and aluminum nitride (AlN) is formed on another part.
Is formed on the intermediate layer, and a Group III nitride semiconductor (Al x Ga Y In 1-XY N; X =
The intermediate layer of zinc oxide (ZnO) is formed by wet etching using a solution that etches only zinc oxide by forming a semiconductor laser device layer composed of a plurality of layers (including 0, Y = 0, X = Y = 0). And removing only this to form a gap between the sapphire substrate and the lowermost layer of the semiconductor laser device layer, cleaving the semiconductor laser device layer using the gap, and cleaving the cleaved surface of the laser resonator. A method for manufacturing a group III nitride semiconductor laser by using a mirror surface of
【請求項2】請求項1において、前記中間層の厚さは1
0nm〜10μmである。
2. The thickness of the intermediate layer according to claim 1,
It is 0 nm to 10 μm.
JP10605894A 1994-04-20 1994-04-20 Method for manufacturing group III nitride semiconductor laser Pending JPH07297496A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10605894A JPH07297496A (en) 1994-04-20 1994-04-20 Method for manufacturing group III nitride semiconductor laser
US08/423,940 US5604763A (en) 1994-04-20 1995-04-19 Group III nitride compound semiconductor laser diode and method for producing same
EP95105899A EP0688070B1 (en) 1994-04-20 1995-04-20 Group III nitride based compound semiconductor laser diode
DE69503193T DE69503193T2 (en) 1994-04-20 1995-04-20 Diode semiconductor lasers based on Group III nitride compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10605894A JPH07297496A (en) 1994-04-20 1994-04-20 Method for manufacturing group III nitride semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07297496A true JPH07297496A (en) 1995-11-10

Family

ID=14424025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10605894A Pending JPH07297496A (en) 1994-04-20 1994-04-20 Method for manufacturing group III nitride semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07297496A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972730A (en) * 1996-09-26 1999-10-26 Kabushiki Kaisha Toshiba Nitride based compound semiconductor light emitting device and method for producing the same
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2007095845A (en) * 2005-09-27 2007-04-12 Oki Data Corp Semiconductor composite substrate and semiconductor device manufacturing method using the same
JP2007184624A (en) * 1998-07-31 2007-07-19 Sharp Corp Nitride semiconductor structure, producing method thereof, and light emitting element
CN114908353A (en) * 2022-06-17 2022-08-16 河南豫光锌业有限公司 Cleaning agent for zinc smelting casting mold

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US7616672B2 (en) 1994-09-14 2009-11-10 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US5972730A (en) * 1996-09-26 1999-10-26 Kabushiki Kaisha Toshiba Nitride based compound semiconductor light emitting device and method for producing the same
JP2007184624A (en) * 1998-07-31 2007-07-19 Sharp Corp Nitride semiconductor structure, producing method thereof, and light emitting element
JP2007095845A (en) * 2005-09-27 2007-04-12 Oki Data Corp Semiconductor composite substrate and semiconductor device manufacturing method using the same
CN114908353A (en) * 2022-06-17 2022-08-16 河南豫光锌业有限公司 Cleaning agent for zinc smelting casting mold

Similar Documents

Publication Publication Date Title
EP0688070B1 (en) Group III nitride based compound semiconductor laser diode
US20040157358A1 (en) Group III nitride semiconductor film and its production method
US7728348B2 (en) Substrate having thin film of GaN joined thereon and method of fabricating the same, and a GaN-based semiconductor device and method of fabricating the same
US6635901B2 (en) Semiconductor device including an InGaAIN layer
US8664687B2 (en) Nitride semiconductor light-emitting device and process for producing the same
JP2698796B2 (en) Group III nitride semiconductor light emitting device
JP2002217115A (en) Crystal film, crystal substrate, and semiconductor device
JPH07202265A (en) Method for manufacturing group III nitride semiconductor
JPH10321911A (en) Method for producing compound semiconductor epitaxy layer on single crystal silicon and light emitting diode produced thereby
JP3712770B2 (en) Method for manufacturing group 3 nitride semiconductor and semiconductor device
JP2830814B2 (en) Crystal growth method of gallium nitride based compound semiconductor and method of manufacturing semiconductor laser
KR100878512B1 (en) BANN semiconductor substrate manufacturing method
JPH11145057A (en) Manufacture of gallium nitride compound semiconductor substrate
JP3207918B2 (en) Light-emitting device using polycrystalline semiconductor material of group III-V compound and method for manufacturing the same
JP3727106B2 (en) Method of manufacturing group III nitride semiconductor laser diode
JP2003347660A (en) Method of manufacturing nitride semiconductor device
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
JPH07297496A (en) Method for manufacturing group III nitride semiconductor laser
JPH10275955A (en) Semiconductor laser diode and method of manufacturing the same
JPH05190900A (en) Manufacture of semiconductor light-emitting device
JP2002374002A (en) Gallium nitride-based compound semiconductor light- emitting device and manufacturing method therefor
JP2804714B2 (en) Method for manufacturing visible light semiconductor laser device
JP2003077846A (en) Manufacturing method of nitride semiconductor device
JP3685838B2 (en) Compound semiconductor device and manufacturing method thereof
JP3905629B2 (en) Method of manufacturing group III nitride semiconductor laser diode