JPH07294861A - Oxide dielectric thin film and manufacturing method thereof - Google Patents
Oxide dielectric thin film and manufacturing method thereofInfo
- Publication number
- JPH07294861A JPH07294861A JP8295394A JP8295394A JPH07294861A JP H07294861 A JPH07294861 A JP H07294861A JP 8295394 A JP8295394 A JP 8295394A JP 8295394 A JP8295394 A JP 8295394A JP H07294861 A JPH07294861 A JP H07294861A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- oxide dielectric
- dielectric thin
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 239000002243 precursor Substances 0.000 claims abstract description 18
- 239000012298 atmosphere Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 29
- 150000004703 alkoxides Chemical class 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 229910052594 sapphire Inorganic materials 0.000 claims description 14
- 239000010980 sapphire Substances 0.000 claims description 14
- -1 organic acid salt Chemical class 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 26
- 239000000203 mixture Substances 0.000 abstract description 16
- 239000002994 raw material Substances 0.000 abstract description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 10
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000010955 niobium Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 230000005672 electromagnetic field Effects 0.000 description 6
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 6
- 238000003980 solgel method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical group 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Abstract
(57)【要約】
【目的】 組成の制御および結晶の配向性が良好であ
り、原料の損失を防止して、従来よりも低温で処理する
ことができる酸化物誘電体薄膜およびその製造方法の提
供。
【構成】 基板に前駆体溶液を塗布する工程と、成分中
に少なくとも酸素元素を含有するガスのプラズマ雰囲気
中において該基板を加熱する工程とを含むことを特徴と
する酸化物誘電体薄膜およびその製造方法。(57) [Summary] [Object] To provide an oxide dielectric thin film which has good composition control and crystal orientation, can prevent loss of raw materials, and can be processed at a lower temperature than before, and a method for producing the same. Offer. An oxide dielectric thin film comprising: a step of applying a precursor solution to a substrate; and a step of heating the substrate in a plasma atmosphere of a gas containing at least an oxygen element as a component, and the same. Production method.
Description
【0001】[0001]
【産業上の利用分野】本発明は光導波路、光スイッチ、
変調素子、光偏向素子などに用いる酸化物誘電体薄膜の
製造方法に関する。The present invention relates to an optical waveguide, an optical switch,
The present invention relates to a method for manufacturing an oxide dielectric thin film used for a modulator, a light deflector, and the like.
【0002】[0002]
【従来の技術】酸化物誘電体材料は、圧電性、焦電性、
電気光学効果などの諸特性を有しているものが多いた
め、不揮発メモリ、キャパシタ、光導波路、光スイッ
チ、変調素子、光偏向素子などへの応用が期待され、数
多くの研究がなされてきている。特に、短小軽薄化が進
んでいる電子デバイスへ応用するには、酸化物誘電体材
料の薄膜化が必要不可欠である。更に、酸化物誘電体材
料が有する諸特性を効率よく発現させるためには、金属
元素と酸素の組成比が所定の値にコントロールされてお
り、かつ結晶軸の方向が良く揃って配向性のよいことが
望まれる。Oxide dielectric materials are piezoelectric, pyroelectric,
Since many of them have various characteristics such as electro-optic effect, they are expected to be applied to non-volatile memories, capacitors, optical waveguides, optical switches, modulators, optical deflectors, etc., and many studies have been conducted. . In particular, for application to electronic devices, which are becoming shorter, smaller, lighter and thinner, thinning of oxide dielectric materials is essential. Furthermore, in order to efficiently develop the various properties of the oxide dielectric material, the composition ratio of the metal element and oxygen is controlled to a predetermined value, and the crystal axis directions are well aligned and the orientation is good. Is desired.
【0003】従来のスパッタリング法、蒸着法またはC
VD法などの酸化物誘電体薄膜の形成法においては、形
成された膜中の金属元素の組成比が供給した原料中の金
属元素の組成比から変動したり、また酸素の組成比が所
定の値より小さくなりやすいことにより、所望する組成
比の膜を得ることが困難であった。また、これらの方法
によれば、装置にかかるコストが高かった。Conventional sputtering, vapor deposition or C
In the method of forming an oxide dielectric thin film such as the VD method, the composition ratio of the metal element in the formed film varies from the composition ratio of the metal element in the supplied raw material, and the oxygen composition ratio is set to a predetermined value. Since it tends to be smaller than the value, it is difficult to obtain a film having a desired composition ratio. Further, according to these methods, the cost of the device is high.
【0004】特開平1−260780号公報には、組成
が良く制御され、結晶軸の揃った酸化物誘電体薄膜を形
成するため、金属アルコキシドや金属有機酸塩の溶液を
基板上に塗布し、加熱して乾燥、酸化および結晶化を行
うゾルゲル法と呼ばれる酸化物誘電体薄膜の製造方法が
開示されている。この方法によれば、塗布後の薄膜を構
成する金属元素の比を供給した原料中の比と同じにする
ことができ、酸素分圧の高い大気圧下で加熱を行えるた
めに酸素の組成がほぼ化学量論的に安定する。このよう
にして高コストの真空プロセスを経由せずに、組成比が
良好に制御された酸化物誘電体薄膜を得ることができ
た。In Japanese Patent Laid-Open No. 1-260780, a solution of a metal alkoxide or a metal organic acid salt is applied onto a substrate in order to form an oxide dielectric thin film whose composition is well controlled and whose crystal axes are aligned. A method for producing an oxide dielectric thin film, which is called a sol-gel method, in which heating, drying, oxidation and crystallization are performed is disclosed. According to this method, the ratio of the metal elements constituting the thin film after coating can be made the same as the ratio in the supplied raw material, and since the heating can be performed under the atmospheric pressure with a high oxygen partial pressure, the composition of oxygen is Almost stoichiometrically stable. In this way, it was possible to obtain an oxide dielectric thin film whose composition ratio was well controlled without passing through a high-cost vacuum process.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
方法によっても、塗布後の乾燥の際に金属の一部が気化
して金属組成比が変化したり、結晶化に必要な温度が高
い場合には基板と酸化物誘電体薄膜との間に拡散や反応
が起ったりするため、組成の変化および不純物の混入を
完全に防止することはできなかった。更に、一度に数十
nmから数μmの厚さに塗布した溶液を乾燥後、結晶化さ
せるため、基板から徐々に薄膜を成長させる場合と異な
って、結晶の配向性をよくすることおよび単結晶薄膜を
作成することが難しいという欠点が依然として残存して
いた。However, even with the above method, when a part of the metal is vaporized during the drying after coating and the metal composition ratio changes, or the temperature required for crystallization is high. However, since the diffusion and the reaction occur between the substrate and the oxide dielectric thin film, it was not possible to completely prevent the composition change and the mixing of impurities. Moreover, dozens at a time
Since the solution applied to a thickness of nm to several μm is dried and then crystallized, it is possible to improve the crystal orientation and create a single crystal thin film, unlike the case where a thin film is gradually grown from the substrate. The drawback of being difficult still remained.
【0006】このような問題を解決するため、金属を含
有する溶液を基板に塗布した後に乾燥・加熱する方法と
して種々の工夫が提案されてきている。即ち、ランプ加
熱による方法(特開平5−229827号)、エキシマ
レーザによる方法(特開平5−200277号)などで
ある。しかし、これらの方法によっても、結晶化が容易
なために最も好ましいとされる金属アルコキシドなどの
原料が加熱中に気化して失われるという問題は解決され
ていなかった。In order to solve such a problem, various methods have been proposed as a method of applying a solution containing a metal to a substrate and then drying and heating. That is, a method using lamp heating (JP-A-5-229827), a method using excimer laser (JP-A-5-200277), and the like. However, even by these methods, the problem that the raw material such as metal alkoxide, which is the most preferable because it is easily crystallized, is vaporized and lost during heating has not been solved.
【0007】そこで、本発明は、組成の制御および結晶
の配向性が良好であり、原料、特に金属アルコシキドの
損失を防止して、従来よりも低温で処理できる酸化物誘
電体薄膜の製造方法を提供することを目的とする。Therefore, the present invention provides a method for producing an oxide dielectric thin film, which has good composition control and crystal orientation, which prevents loss of raw materials, particularly metal alkoxide, and which can be processed at a lower temperature than before. The purpose is to provide.
【0008】[0008]
【課題を解決するための手段】本発明の酸化物誘電体薄
膜の製造方法は、薄膜を構成する金属を含有する前駆体
溶液を基板上に塗布する工程と、少なくとも酸素元素を
含有するガスを含んでなる雰囲気のプラズマ中において
該基板を加熱する工程とを含むことを特徴とする。本発
明の好ましい一態様では、金属アルコキシドを有機溶媒
に溶解した溶液を前駆体溶液として使用する。本発明の
好ましい一態様では、酸素元素を含有するガスが水蒸気
であり、水蒸気分圧が雰囲気の全圧の10%以上である
プラズマを用いる。本発明の好ましい一態様では、Li2
B4O7またはLiNbO3が酸化物誘電体として形成され
る。A method for producing an oxide dielectric thin film according to the present invention comprises a step of applying a precursor solution containing a metal constituting the thin film onto a substrate, and a gas containing at least an oxygen element. Heating the substrate in a plasma of an atmosphere containing the substrate. In a preferred embodiment of the present invention, a solution prepared by dissolving a metal alkoxide in an organic solvent is used as the precursor solution. In a preferred aspect of the present invention, plasma is used in which the gas containing oxygen element is water vapor and the water vapor partial pressure is 10% or more of the total pressure of the atmosphere. In a preferred embodiment of the invention Li 2
B 4 O 7 or LiNbO 3 is formed as the oxide dielectric.
【0009】本発明においては、基板として、ガラス、
溶融石英などの非晶質の物質を用いることもできる。よ
り好ましくは、基板として単結晶基板を用いると酸化物
誘電体薄膜の結晶方位を単結晶基板の方位によって一律
に揃えられるので、単結晶基板を使用する。特に好まし
い単結晶基板としては、例えば、珪素、サファイア、水
晶、酸化マグネシウム、チタン酸ストロンチウム等を挙
げることができる。In the present invention, the substrate is glass,
An amorphous substance such as fused quartz can also be used. More preferably, a single crystal substrate is used because the crystal orientation of the oxide dielectric thin film can be uniformly aligned with the orientation of the single crystal substrate when a single crystal substrate is used as the substrate. Particularly preferred single crystal substrates include, for example, silicon, sapphire, quartz, magnesium oxide, strontium titanate and the like.
【0010】本発明の方法により形成できる酸化物誘電
体薄膜は、ニオブ酸リチウム(LiNbO3)、硼酸リチウ
ム(Li2B4O7)に加えて、PbZrTiO3、BaTiO3、
SrTiO3、PbLaZrTiO3、LiTaO3、ZnO、Ta2
O5等、ほとんど全ての酸化物誘電体薄膜である。その
膜厚は、特に限定されないが、通常、5nm〜50μm、
好ましくは30nm〜5μmである。The oxide dielectric thin film which can be formed by the method of the present invention includes lithium niobate (LiNbO 3 ), lithium borate (Li 2 B 4 O 7 ), PbZrTiO 3 , BaTiO 3 and
SrTiO 3 , PbLaZrTiO 3 , LiTaO 3 , ZnO, Ta 2
It is almost all oxide dielectric thin films such as O 5 . The film thickness is not particularly limited, but is usually 5 nm to 50 μm,
It is preferably 30 nm to 5 μm.
【0011】本発明において、酸化物誘電体薄膜を構成
する金属を含有する前駆体溶液とは、形成する酸化物誘
電体に応じて、例えばLi、Nb、B、Pb、Zr、Ti、
Ba、Srなどの金属および、例えばOCH3、OC
2H5、OC3H7、OC4H9、OC2H4OCH3などのア
ルコキシル基からなる金属アルコキシド、または例え
ば、前記金属元素の酢酸塩、シュウ酸塩などの金属有機
酸塩またはこれらの組合せを溶質とし、これらを溶解し
うる有機溶媒、例えばメタノール、エタノール、プロパ
ノール、エチレングリコール、メトキシエタノールなど
のアルコールまたは酢酸、酪酸、乳酸、酢酸エチルなど
を溶媒とする溶液である。前駆体溶液は、必要に応じ
て、塗布前に、還流温度までの範囲の温度に加熱するこ
とができる。In the present invention, the precursor solution containing a metal forming the oxide dielectric thin film means, for example, Li, Nb, B, Pb, Zr, Ti, depending on the oxide dielectric to be formed.
Metals such as Ba and Sr and, for example, OCH 3 , OC
2 H 5 , OC 3 H 7 , OC 4 H 9 , OC 2 H 4 OCH 3, and other metal alkoxides consisting of alkoxyl groups, or metal organic acid salts such as acetates and oxalates of the above metal elements, or these Is a solution containing an organic solvent capable of dissolving these as a solute, for example, alcohol such as methanol, ethanol, propanol, ethylene glycol, methoxyethanol, or acetic acid, butyric acid, lactic acid, ethyl acetate or the like. The precursor solution can optionally be heated to a temperature in the range up to the reflux temperature before coating.
【0012】本発明の方法に使用できる金属アルコキシ
ドとしては、例えば、LiOCH3、LiOC2H5、Nb
(OC2H5)5、B(OCH3)3、Pb(OC4H9)4、Zr(O
CH3)4、Zr(OC2H5)4、Zr(OC3H7)4、Zr(OC4
H9)4、Ti(OCH3)4、Ti(OC2H5)4、Ti(iso-OC
3H7)4、Ti(OC4H9)4、Ba(OC2H5)2、Sr(OC2
H5)2、LiOC2H4OCH3またはNb(OC2H4OC
H3)5などの中から任意に選ばれる一種またはそれ以上
の金属アルコシキドを使用することができる。Examples of the metal alkoxide that can be used in the method of the present invention include LiOCH 3 , LiOC 2 H 5 and Nb.
(OC 2 H 5 ) 5 , B (OCH 3 ) 3 , Pb (OC 4 H 9 ) 4 , Zr (O
CH 3) 4, Zr (OC 2 H 5) 4, Zr (OC 3 H 7) 4, Zr (OC 4
H 9 ) 4 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (iso-OC
3 H 7) 4, Ti ( OC 4 H 9) 4, Ba (OC 2 H 5) 2, Sr (OC 2
H 5 ) 2 , LiOC 2 H 4 OCH 3 or Nb (OC 2 H 4 OC
One or more metal alkoxides arbitrarily selected from H 3 ) 5 and the like can be used.
【0013】金属有機酸塩としては、LiOCOCH3、
Nb(OCOCH3)5、B(OCOCH3)3などの中から少
なくとも一種を使用することができる。As the metal organic acid salt, LiOCOCH 3 ,
At least one of Nb (OCOCH 3 ) 5 and B (OCOCH 3 ) 3 can be used.
【0014】プラズマ処理に使用するための、少なくと
も酸素元素を含有するガスとしては、水蒸気、酸素(O
2)、二酸化炭素、一酸化炭素、二酸化窒素、一酸化窒
素、空気およびこれらの組合せ、例えば混合物などがあ
る。但し、ガスの酸化性が強すぎると反応が急激に進行
して配向性が失われる傾向があるため、酸化性と還元性
を併せ持つ水蒸気を含むガスが最も好ましい。プラズマ
を形成する場合の雰囲気は、酸素元素を含有するガスに
加えて、例えばAr、N2、H2などのガスを含んでなっ
てよい。その場合、酸素元素を含有するガスの割合は5
%以上であることが好ましい。Gases containing at least oxygen element for use in plasma treatment include water vapor and oxygen (O 2).
2 ), carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, air and combinations thereof such as mixtures. However, if the oxidizing property of the gas is too strong, the reaction tends to proceed rapidly and the orientation tends to be lost. Therefore, a gas containing water vapor having both oxidizing property and reducing property is most preferable. The atmosphere for forming plasma may include a gas such as Ar, N 2 or H 2 in addition to the gas containing the oxygen element. In that case, the ratio of the gas containing oxygen element is 5
% Or more is preferable.
【0015】加熱処理のためのプラズマの発生条件とし
て、圧力は0.1〜760Torr、更に好ましくは10〜
200Torrの範囲であることが好ましい。これは、プラ
ズマを発生させる雰囲気の全圧が低すぎると酸化作用が
充分でなくなり、高すぎるとプラズマの発生が困難にな
るためである。基板をプラズマまたは別の加熱手段によ
り加熱する際の温度範囲は、使用する前駆体溶液や形成
する酸化物誘電体に応じて適宜選択できるが、一般に、
100〜1200℃、好ましくは300〜800℃であ
る。As a plasma generation condition for the heat treatment, the pressure is 0.1 to 760 Torr, more preferably 10 to
It is preferably in the range of 200 Torr. This is because if the total pressure of the atmosphere for generating plasma is too low, the oxidizing action will be insufficient, and if it is too high, it will be difficult to generate plasma. The temperature range for heating the substrate by plasma or another heating means can be appropriately selected depending on the precursor solution used and the oxide dielectric to be formed, but in general,
The temperature is 100 to 1200 ° C, preferably 300 to 800 ° C.
【0016】また、プラズマを上記の圧力範囲で発生さ
せるためには電磁界を印加する必要があるが、その場合
には直流よりも交流の電磁界が好ましい。それは、交流
の電磁界の方がより広い圧力範囲でプラズマを発生でき
るからである。更に好ましい電磁界は、30kHz〜30
GHzの交流電磁界、即ち高周波である。In order to generate plasma in the above pressure range, it is necessary to apply an electromagnetic field. In that case, an alternating electromagnetic field is preferable to a direct current. This is because the alternating electromagnetic field can generate plasma in a wider pressure range. More preferable electromagnetic field is 30 kHz to 30
AC electromagnetic field of GHz, that is, high frequency.
【0017】水蒸気を含んでなる雰囲気においてプラズ
マを発生させる場合、水蒸気分圧が全圧の10%以上、
好ましくは20%〜50%であることが好ましいが、そ
れは、H2Oは水素と酸素からなり酸化力が弱いので、
分圧が20%以上であることが好ましく、分圧50%を
超えるとプラズマが発生しにくいからである。この場合
に、その他の気体成分には、Ar、N2、H2などを使用
することができる。When plasma is generated in an atmosphere containing water vapor, the water vapor partial pressure is 10% or more of the total pressure,
It is preferably 20% to 50%, but since H 2 O is composed of hydrogen and oxygen and has a weak oxidizing power,
This is because the partial pressure is preferably 20% or more, and plasma is less likely to be generated when the partial pressure exceeds 50%. In this case, Ar, N 2 , H 2 or the like can be used as the other gas component.
【0018】本発明の方法は、金属アルコキシドや金属
有機酸塩を用いるゾルゲル法によるいかなる酸化物誘電
体の製造にも用いて効果があるが、特に、Li、Bなど
原子量の小さい元素を含む酸化物誘電体を形成する場合
に効果が著しい。それは、これらの軽い元素の原料とな
るアルコキシドや有機酸塩もおおむね分子量が小さく蒸
気圧が高いので、乾燥・加熱中に気化して組成が変動し
やすいためである。従って、本発明の方法を適用して形
成するのが有利なる酸化物誘電体材料としては、Li2B
4O7またはLiNbO3などがある。The method of the present invention is effective for use in the production of any oxide dielectric by the sol-gel method using metal alkoxides and metal organic acid salts, but in particular, oxidation containing an element having a small atomic weight such as Li or B is performed. The effect is remarkable when a dielectric substance is formed. This is because alkoxides and organic acid salts, which are the raw materials for these light elements, also have a small molecular weight and a high vapor pressure, and are liable to vaporize during drying and heating to change the composition. Accordingly, Li 2 B is an oxide dielectric material that can be advantageously formed by applying the method of the present invention.
4 O 7 or LiNbO 3 and the like.
【0019】本発明において適用できるゾルゲル法と
は、金属をアルコキシドや塩の形で溶媒中に溶解または
分散し、熱処理などによってゾル、ゲルの形態を経て固
体酸化物を得る方法である。この方法を本発明に適用す
る場合は、例えば、1種以上の金属アルコシキド、例え
ばLiOC2H5およびNb(OC2H5)5などのアルコール
溶液に、所望により水および塩酸、硝酸、アミンなどの
添加剤を添加し、所望により例えば還流温度までの温度
範囲で加熱するなどの熱処理操作を行って前駆体溶液の
ゾルを形成し、該ゾルを基板にディップコート、スピン
コートなどの方法により塗布し、300〜700℃の温
度で0.5〜10時間加熱して乾燥、酸化および結晶化
させて、目的とする酸化物誘電体薄膜を形成する方法で
ある。The sol-gel method applicable in the present invention is a method in which a metal is dissolved or dispersed in the form of an alkoxide or a salt in a solvent, and a solid oxide is obtained through a sol or gel form by heat treatment or the like. When this method is applied to the present invention, for example, one or more metal alkoxides, for example alcoholic solutions such as LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 , optionally water and hydrochloric acid, nitric acid, amines, etc. Is added, and if necessary, a heat treatment operation such as heating in a temperature range up to the reflux temperature is performed to form a sol of the precursor solution, and the sol is applied to the substrate by a method such as dip coating or spin coating. Then, it is heated at a temperature of 300 to 700 ° C. for 0.5 to 10 hours to be dried, oxidized and crystallized to form an intended oxide dielectric thin film.
【0020】[0020]
【作用】金属アルコキシドまたは金属有機酸塩が分解し
て金属酸化物結晶が生成する経路として、温度を上昇す
るに従い、次の段階を経ると考えられている。即ち: (1)アルコールなどの溶媒が蒸発する段階、(2)アルコ
キシル基や有機酸基が原料分子から離脱する段階、(3)
金属−酸素−金属結合が生成する(ゲル化)段階、(4)
金属−酸素−金属の連鎖が再配列し結晶化が起こる段
階。It is considered that the following steps are taken as the temperature rises as a route for the decomposition of metal alkoxide or metal organic acid salt to produce metal oxide crystals. That is, (1) a step in which a solvent such as alcohol is evaporated, (2) a step in which an alkoxyl group or an organic acid group is separated from a raw material molecule, (3)
The step of forming a metal-oxygen-metal bond (gelation), (4)
The stage where crystallization occurs due to rearrangement of metal-oxygen-metal chains.
【0021】上記の過程において、(2)から(3)へ移行
する温度条件が系中の水分量や雰囲気の酸素元素を含有
するガスの分圧に依存しており、例えば水分が多い程、
また酸素元素を含有するガスの分圧が高い程、(3)の反
応が低い温度で起こるということが知られていた。(4)
の段階は(3)の過程が終了しなければ始まらないので、
低温で結晶化を行おうとすれば、(3)の段階を低温で行
うことが重要となる。In the above process, the temperature condition for transition from (2) to (3) depends on the amount of water in the system and the partial pressure of the gas containing oxygen element in the atmosphere.
It was also known that the higher the partial pressure of the gas containing the oxygen element, the lower the temperature of the reaction (3). (4)
Since the stage of does not start until the process of (3) is completed,
If crystallization is to be carried out at a low temperature, it is important to carry out step (3) at a low temperature.
【0022】そこで、本発明によれば、酸素元素を含有
するガスまたは水蒸気を含む雰囲気のプラズマを適用す
ることにより、(2)〜(4)の反応を従来よりも低温で行
うことができ、(2)、(3)の反応は水や酸素が介在して
金属アルコキシドや金属有機酸塩が酸化されて進行する
が、プラズマ中では酸素の活性度が非常に高まって、低
温でも酸化反応が急速に進行するようになるので、金属
アルコキシドや金属有機酸塩の分解反応を促進すること
ができる。従って、結晶性・配向性が良好であって所望
の組成を有する酸化物誘電体薄膜を容易に作成すること
ができる。Therefore, according to the present invention, by applying plasma in an atmosphere containing a gas containing oxygen element or containing water vapor, the reactions (2) to (4) can be carried out at a lower temperature than before, The reactions of (2) and (3) proceed with oxidation of metal alkoxides and metal organic acid salts through the presence of water and oxygen, but the activity of oxygen is greatly increased in plasma, and the oxidation reaction occurs even at low temperatures. Since it proceeds rapidly, it is possible to accelerate the decomposition reaction of the metal alkoxide and the metal organic acid salt. Therefore, an oxide dielectric thin film having good crystallinity and orientation and having a desired composition can be easily prepared.
【0023】[0023]
実施例1 金属アルコキシドを原料とするゾルゲル法により、ニオ
ブ酸リチウム薄膜をサファイア単結晶(001)基板上
に成膜し、評価を行った。まず、以下の手順に従って、
前駆体溶液を調製した。ペンタエトキシニオブ(Nb(C
2H5O)5)およびエトキシリチウム(LiOC2H5)の
各々0.05mol/lの濃度のエタノール溶液を混合して、
78.5℃で24時間還流させた。その後、減圧下でニ
オブおよびリチウムの各濃度を0.5mol/lまで濃縮し、
得られた溶液を前駆体溶液として使用した。基板には鏡
面研磨を施したサファイアの(001)面単結晶基板を
用いた。この基板をアセトンにより超音波洗浄した後、
塩酸(20容量%)処理、純水洗浄および乾燥を順に行
って前処理を施した。Example 1 A lithium niobate thin film was formed on a sapphire single crystal (001) substrate by a sol-gel method using a metal alkoxide as a raw material and evaluated. First, follow the steps below
A precursor solution was prepared. Pentaethoxyniobium (Nb (C
2 H 5 O) 5 ) and ethoxylithium (LiOC 2 H 5 ) each having a concentration of 0.05 mol / l are mixed,
Refluxed at 78.5 ° C for 24 hours. Then, concentrate each concentration of niobium and lithium to 0.5 mol / l under reduced pressure,
The obtained solution was used as a precursor solution. As the substrate, a (001) plane single crystal substrate of sapphire which was mirror-polished was used. After ultrasonically cleaning this substrate with acetone,
Pretreatment was performed by sequentially performing treatment with hydrochloric acid (20% by volume), washing with pure water, and drying.
【0024】上記の前駆体溶液を基板上に1回スピンコ
ートした後、真空容器内において、常圧窒素雰囲気下、
80℃で30分間乾燥させ、容器内をいったん100mT
orr以下まで排気した後、水蒸気(分圧20%)および
アルゴン(残余分圧)の混合ガスを供給して圧力を5To
rrに安定させて、水蒸気20%およびアルゴン80%の
組成の雰囲気を形成した。平行平板型電極間に13.5
6MHz、150Wの高周波電磁界を印加してプラズマを
発生させながら10℃/minで、雰囲気温度を400℃ま
で昇温し、400℃に2時間保持した。その結果、サフ
ァイア単結晶基板上に、厚さ0.15μmのニオブ酸リチ
ウム薄膜を形成することができた。酸化物誘電体薄膜の
結晶性の評価は、Cu−Kα線で得られる各配向面によ
るX線回折ピークの半価幅で評価した。上記の方法で作
製したサファイア(001)の単結晶基板上のニオブ酸
リチウム薄膜は(001)軸配向をしており、(00
6)面のX線回折ピークの半価幅は0.75度であっ
た。After spin coating the above precursor solution once on the substrate, it was placed in a vacuum vessel under a nitrogen atmosphere at atmospheric pressure.
Dry at 80 ℃ for 30 minutes, and once in the container 100mT
After exhausting to orr or lower, supply a mixed gas of steam (partial pressure 20%) and argon (residual pressure) to adjust the pressure to 5To.
After stabilizing to rr, an atmosphere having a composition of 20% steam and 80% argon was formed. 13.5 between parallel plate electrodes
The atmosphere temperature was raised to 400 ° C. at 10 ° C./min while applying a high-frequency electromagnetic field of 6 MHz and 150 W to generate plasma, and the temperature was kept at 400 ° C. for 2 hours. As a result, a 0.15 μm thick lithium niobate thin film could be formed on the sapphire single crystal substrate. The crystallinity of the oxide dielectric thin film was evaluated by the half-value width of the X-ray diffraction peak by each orientation plane obtained by Cu-Kα ray. The lithium niobate thin film on the sapphire (001) single crystal substrate produced by the above method has a (001) axis orientation, and (00)
The half width of the X-ray diffraction peak of the 6) plane was 0.75 degree.
【0025】比較例1 実施例1と同様にして、前駆体溶液の調製、基板の前処
理、前駆体溶液の基板への1回スピンコートおよび乾燥
を行った。その後、試料を大気圧下で、酸素(分圧20
%)+水蒸気(分圧2%)+アルゴン(残余分圧)の混
合ガスを供給しながら、雰囲気温度を10℃/minで40
0℃まで昇温し、400℃に2時間保持したところ、サ
ファイア単結晶基板上に厚さ約0.2μmの薄膜を形成す
ることができた。この薄膜のX線回折を行った結果は、
回折ピークが極めて弱く、ニオブ酸リチウムの結晶化が
進行していないことが判明した。(006)面のX線回
折ピークの半価幅は8.0度と極めて大きかった。Comparative Example 1 In the same manner as in Example 1, preparation of the precursor solution, pretreatment of the substrate, spin coating of the precursor solution on the substrate once, and drying were performed. Then, the sample is treated under atmospheric pressure with oxygen (partial pressure 20
%) + Steam (partial pressure 2%) + argon (residual pressure) mixed gas while the ambient temperature is 10 ° C./min.
When the temperature was raised to 0 ° C. and kept at 400 ° C. for 2 hours, a thin film having a thickness of about 0.2 μm could be formed on the sapphire single crystal substrate. The result of X-ray diffraction of this thin film is
It was found that the diffraction peak was extremely weak and the crystallization of lithium niobate did not proceed. The full width at half maximum of the X-ray diffraction peak of the (006) plane was extremely large at 8.0 degrees.
【0026】比較例2 加熱工程を、10℃/minで600℃まで昇温して、60
0℃に2時間保持すること以外は比較例1と同様の操作
を行った。その結果、サファイア単結晶基板上に厚さ約
0.15μmの薄膜を形成することができた。この薄膜の
X線回折を行った結果は、(001)配向したニオブ酸
リチウム結晶膜が得られていたが、(006)面のX線
回折ピークの半価幅は1.4度と大きく、結晶性がプラ
ズマを併用した場合に比べて劣っていた。Comparative Example 2 In the heating step, the temperature was raised to 600 ° C. at 10 ° C./min to 60
The same operation as in Comparative Example 1 was performed except that the temperature was kept at 0 ° C. for 2 hours. As a result, a thin film having a thickness of about 0.15 μm could be formed on the sapphire single crystal substrate. As a result of X-ray diffraction of this thin film, a (001) oriented lithium niobate crystal film was obtained, but the half width of the X-ray diffraction peak of the (006) plane was as large as 1.4 degrees, The crystallinity was inferior to the case of using plasma together.
【0027】実施例2 金属アルコキシドを原料とするゾルゲル法により、硼酸
リチウム薄膜をサファイア単結晶(012)基板上に成
膜し、評価を行った。ゾルゲル法に用いる前駆体溶液
を、以下の手順で調製した。トリブトキシボロン(B
(C4H9O)3)およびリチウムエトキシド(LiOC
2H5)の各々0.05mol/lの濃度のエタノール溶液を
2:1の比で混合して、0℃で24時間撹拌した。その
後、減圧下においてBが0.5mol/l、Liが0.25mol
/lになるように濃縮し、得られた溶液を前駆体溶液と
して使用した。Example 2 A lithium borate thin film was formed on a sapphire single crystal (012) substrate by a sol-gel method using a metal alkoxide as a raw material and evaluated. A precursor solution used in the sol-gel method was prepared by the following procedure. Trib Toxibolone (B
(C 4 H 9 O) 3 ) and lithium ethoxide (LiOC
2 H 5 ) ethanol solutions each having a concentration of 0.05 mol / l were mixed in a ratio of 2: 1 and stirred at 0 ° C. for 24 hours. Then, under reduced pressure, B was 0.5 mol / l and Li was 0.25 mol.
It concentrated so that it might become / l, and the obtained solution was used as a precursor solution.
【0028】基板には、鏡面研磨を施したサファイアの
(012)面単結晶基板を用いた。この基板をアセトン
により超音波洗浄した後、塩酸(20vol%)処理、純
水洗浄および乾燥を順に行って前処理を施した。上記前
駆体溶液を基板上に1回スピンコートした後、真空容器
内において、減圧窒素雰囲気下、40℃で30分間乾燥
させた後、容器内をいったん10mTorr以下まで排気
し、酸素(分圧10%)+水蒸気(分圧10%)+アル
ゴン(残余分圧)の混合ガスを供給し、圧力を60Torr
に安定させて、酸素10%、水蒸気10%およびアルゴ
ン80%の雰囲気を形成した。As the substrate, a (012) plane single crystal substrate of sapphire which was mirror-polished was used. This substrate was ultrasonically cleaned with acetone, and then subjected to hydrochloric acid (20 vol%) treatment, pure water cleaning and drying in order to perform pretreatment. After spin-coating the above-mentioned precursor solution once on the substrate, it was dried in a vacuum vessel under a reduced pressure nitrogen atmosphere at 40 ° C. for 30 minutes, and then the vessel was evacuated to 10 mTorr or less and oxygen (partial pressure 10 %) + Steam (partial pressure 10%) + argon (residual pressure) mixed gas, and pressure is 60 Torr
Stabilized to form an atmosphere of 10% oxygen, 10% water vapor and 80% argon.
【0029】マイクロ波導波管中に石英管を導くマイク
ロ波プラズマ発生装置により2.45GHz、200Wのマ
イクロ波によりプラズマを発生させながら、雰囲気温度
を10℃/minで550℃まで昇温させ、550℃に2時
間保持した。試料は導波管中心から25cmの距離に配置
した。その結果、サファイア単結晶基板上に厚さ約0.
1μmの硼酸リチウム薄膜を形成することができた。While the plasma is generated by the microwave of 2.45 GHz and 200 W by the microwave plasma generator that guides the quartz tube into the microwave waveguide, the ambient temperature is raised to 550 ° C. at 10 ° C./min and 550 ° C. Hold at 2 ° C for 2 hours. The sample was placed at a distance of 25 cm from the center of the waveguide. As a result, the thickness on the sapphire single crystal substrate is about 0.
A 1 μm lithium borate thin film could be formed.
【0030】酸化物誘電体薄膜の結晶性の評価は、Cu
−Kα線により得られる各配向面によるX線回折ピーク
の半価幅で評価した。上記の方法で作製したサファイア
(012)面単結晶基板上の硼酸リチウム薄膜は(12
2)軸配向をしており、(244)面のX線回折ピーク
の半価幅は1.1度であった。また、この硼酸リチウム
薄膜中のLiとBの存在比は二次イオン質量分析法で評
価したところほぼ1:2であった。The crystallinity of the oxide dielectric thin film was evaluated by Cu.
The half-value width of the X-ray diffraction peak by each orientation plane obtained by -Kα ray was evaluated. The lithium borate thin film on the sapphire (012) plane single crystal substrate manufactured by the above method is (12
2) It was axially oriented, and the half-value width of the X-ray diffraction peak of the (244) plane was 1.1 degrees. Further, the abundance ratio of Li and B in this lithium borate thin film was approximately 1: 2 when evaluated by secondary ion mass spectrometry.
【0031】比較例3 加熱工程を、10℃/minで550℃まで昇温して、55
0℃に2時間保持すること以外は比較例1と同様の操作
を行った。その結果、サファイア単結晶基板上に厚さ約
0.1μmの薄膜を形成することができた。この薄膜のX
線回折を行った結果は、回折ピークが極めて弱く、硼酸
リチウムの結晶化が進行していないことが判明した。
(006)面のX線回折ピークの半価幅は8.0度と極
めて大きかった。Comparative Example 3 In the heating step, the temperature was raised to 550 ° C. at 10 ° C./min, and 55
The same operation as in Comparative Example 1 was performed except that the temperature was kept at 0 ° C. for 2 hours. As a result, a thin film having a thickness of about 0.1 μm could be formed on the sapphire single crystal substrate. X of this thin film
The result of line diffraction revealed that the diffraction peak was extremely weak and that the crystallization of lithium borate did not proceed.
The full width at half maximum of the X-ray diffraction peak of the (006) plane was extremely large at 8.0 degrees.
【0032】比較例4 加熱工程を、10℃/minで800℃まで昇温して、80
0℃に2時間保持すること以外は比較例1と同様の操作
を行った。その結果、サファイア単結晶基板上に厚さ約
0.1μmの薄膜を形成することができた。この薄膜のX
線回折を行った結果より、結晶性硼酸リチウム(Li2B
4O7)薄膜が生成していることが確認されたが、得られ
た薄膜は配向性がほとんどなく、方位の揃っていない多
結晶であった。(244)面のX線回折ピークの半価幅
は2.0度であった。この硼酸リチウム薄膜中のLiとB
の存在比を二次イオン質量分析法で評価したところ、
1:1.7であった。Comparative Example 4 In the heating step, the temperature was raised to 800 ° C. at 10 ° C./min to 80
The same operation as in Comparative Example 1 was performed except that the temperature was kept at 0 ° C. for 2 hours. As a result, a thin film having a thickness of about 0.1 μm could be formed on the sapphire single crystal substrate. X of this thin film
From the results of line diffraction, crystalline lithium borate (Li 2 B
It was confirmed that a 4 O 7 ) thin film had been formed, but the obtained thin film had almost no orientation and was a polycrystal with no uniform orientation. The half width of the X-ray diffraction peak of the (244) plane was 2.0 degrees. Li and B in this lithium borate thin film
When the abundance ratio of was evaluated by secondary ion mass spectrometry,
It was 1: 1.7.
【0033】[0033]
【発明の効果】以上のように、本発明によれば、基板、
好ましくは単結晶基板上に、金属アルコキシドを原料と
する酸化物誘電体薄膜を形成する際、該基板に前駆体溶
液を塗布し、成分中に少なくとも酸素元素を含有するガ
スを含んでなる雰囲気のプラズマ中において該基板を加
熱することにより、従来よりも配向性に優れ、結晶性の
良好な酸化物誘電体薄膜を低温で製造することができ
る。As described above, according to the present invention, the substrate,
Preferably, when forming an oxide dielectric thin film using a metal alkoxide as a raw material on a single crystal substrate, a precursor solution is applied to the substrate and an atmosphere containing a gas containing at least an oxygen element is contained in the components. By heating the substrate in plasma, it is possible to produce an oxide dielectric thin film having a better crystallinity and a better orientation than ever before at a low temperature.
Claims (6)
分中に少なくとも酸素元素を含有するガスのプラズマ雰
囲気中において該基板を加熱する工程とを含むことを特
徴とする酸化物誘電体薄膜の製造方法。1. An oxide dielectric thin film comprising: a step of applying a precursor solution to a substrate; and a step of heating the substrate in a plasma atmosphere of a gas containing at least oxygen element as a component. Manufacturing method.
属有機酸塩を有機溶媒に溶解したものである請求項1記
載の方法。2. The method according to claim 1, wherein the precursor solution is a solution of a metal alkoxide or a metal organic acid salt in an organic solvent.
り、水蒸気分圧が全圧の10%以上である雰囲気のプラ
ズマを用いる請求項1または2記載の方法。3. The method according to claim 1, wherein the gas containing oxygen element is water vapor, and plasma in an atmosphere having a water vapor partial pressure of 10% or more of the total pressure is used.
NbO3である請求項1〜3のいずれかに記載の方法。4. The oxide dielectric is Li 2 B 4 O 7 or Li.
The method according to claim 1, which is NbO 3 .
マグネシウム、チタン酸ストロンチウムである請求項1
〜4のいずれかに記載の方法。5. The substrate is silicon, sapphire, quartz, magnesium oxide, strontium titanate.
The method according to any one of to 4.
法により製造された酸化物誘電体薄膜。6. An oxide dielectric thin film produced by the method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8295394A JPH07294861A (en) | 1994-04-21 | 1994-04-21 | Oxide dielectric thin film and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8295394A JPH07294861A (en) | 1994-04-21 | 1994-04-21 | Oxide dielectric thin film and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07294861A true JPH07294861A (en) | 1995-11-10 |
Family
ID=13788594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8295394A Pending JPH07294861A (en) | 1994-04-21 | 1994-04-21 | Oxide dielectric thin film and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07294861A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7132373B2 (en) | 2001-10-02 | 2006-11-07 | Toto Ltd. | Thin metal oxide film and process for producing the same |
JP2020011403A (en) * | 2018-07-13 | 2020-01-23 | サムコ株式会社 | Bonding method of cycloolefin polymer |
-
1994
- 1994-04-21 JP JP8295394A patent/JPH07294861A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7132373B2 (en) | 2001-10-02 | 2006-11-07 | Toto Ltd. | Thin metal oxide film and process for producing the same |
JP2020011403A (en) * | 2018-07-13 | 2020-01-23 | サムコ株式会社 | Bonding method of cycloolefin polymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5614252A (en) | Method of fabricating barium strontium titanate | |
US5626670A (en) | Method for producing low thermal budget ferroelectric thin films for integrated device structures using laser-crystallization of spin-on sol-gel films | |
JPH0217685A (en) | Method for manufacturing metal oxide superconducting material layer by laser evaporation | |
JP2001503567A (en) | Mist-like precursor deposition apparatus and method with improved mist and mist flow | |
EP0807965B1 (en) | Method of manufacturing layered ferroelectric Bi containing film | |
JP3047316B2 (en) | Epitaxial ferroelectric thin film device and method for producing the same | |
CN1092169C (en) | Simple and effective preparation method of lead zirconate titanate film | |
JP2002211924A (en) | Multiphase lead germanate film and method of depositing the same | |
CN1276481C (en) | Producing method for ceramic membrane pressurized heat treater therefor | |
JP4007573B2 (en) | Deposition of MOCVD ferroelectrics and dielectric thin films using mixed solvents | |
JPH07294861A (en) | Oxide dielectric thin film and manufacturing method thereof | |
US6342177B1 (en) | Method for production of metal oxide thin film | |
JP3689934B2 (en) | Oxide thin film having quartz crystal structure and method for producing the same | |
JP3586870B2 (en) | Oriented thin film forming substrate and method for producing the same | |
JP3427362B2 (en) | Dielectric thin film deposition method | |
JPH06283433A (en) | Thin film forming equipment | |
US4214018A (en) | Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates | |
JPH02258700A (en) | Ferroelectric thin film and production thereof | |
JP2001026421A (en) | Formation of crystalline thin film by sol/gel method | |
JP4462850B2 (en) | Method for producing Sn-based oxide having perovskite structure | |
KR100345014B1 (en) | Thin film capacitors on gallium arsenide substrate and process for making the same | |
JP3098134B2 (en) | Method for manufacturing oxide crystal film | |
JP2003313094A (en) | LiNbO3 thin film forming method | |
JPH11314999A (en) | Manufacturing method of oxide thin film | |
JPH1154710A (en) | Dielectric thin film and manufacture thereof, and capacitor using the same |