[go: up one dir, main page]

JPH07292403A - Blast furnace taphole brick structure - Google Patents

Blast furnace taphole brick structure

Info

Publication number
JPH07292403A
JPH07292403A JP10629194A JP10629194A JPH07292403A JP H07292403 A JPH07292403 A JP H07292403A JP 10629194 A JP10629194 A JP 10629194A JP 10629194 A JP10629194 A JP 10629194A JP H07292403 A JPH07292403 A JP H07292403A
Authority
JP
Japan
Prior art keywords
brick
taphole
bricks
tapping
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10629194A
Other languages
Japanese (ja)
Other versions
JP3007264B2 (en
Inventor
Kazutsugu Kishigami
和嗣 岸上
Junji Misawa
順治 三澤
Tadashi Okubo
正 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6106291A priority Critical patent/JP3007264B2/en
Publication of JPH07292403A publication Critical patent/JPH07292403A/en
Application granted granted Critical
Publication of JP3007264B2 publication Critical patent/JP3007264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

(57)【要約】 【目的】 高炉の炉体鉄皮に固設された出銑口金物内に
煉瓦材質は、従来から耐酸化対策としてハイアルミナ質
煉瓦を使用するのが一般的であるが、ハイアルミナ質煉
瓦は耐溶銑溶解性には優れているが、耐スラグ性につい
ては比較的劣るため、火入れ直後や出銑末期などのスラ
グ成分が多い場合に浸食の進行が速く、その浸食度合い
で出銑時間が制約され、また出銑口煉瓦の交換時期の律
速要因になっている。 【構成】 高炉の炉体鉄皮に固設された出銑口金物内に
煉瓦を構成して成る高炉の出銑口煉瓦構造に於いて、溶
銑およびスラグの流出口を形成する軸中央部の耐火煉瓦
に、炭素成分が70%以上の炭素質煉瓦を用い、前記の
出銑口金物内で炭素質煉瓦の外周にはハイアルミナ質煉
瓦を配設した。
(57) [Summary] [Purpose] It has been common practice to use high alumina bricks as a material for bricks in the taphole metal fittings fixed to the iron shell of the blast furnace, as a measure against oxidation. Although high-alumina bricks are excellent in hot metal dissolution resistance, but relatively inferior in slag resistance, erosion progresses rapidly when there are many slag components immediately after firing or at the end of tapping, and the degree of erosion is high. Therefore, the tapping time is restricted, and it is a rate-determining factor when exchanging the tapping brick. [Structure] In a taphole brick structure of a blast furnace in which bricks are formed in a taphole metal fixture fixed to a furnace body iron shell of a blast furnace, in the central portion of the shaft forming the outlets of molten pig iron and slag. A carbonaceous brick having a carbon content of 70% or more was used as the refractory brick, and a high alumina brick was arranged on the outer periphery of the carbonaceous brick in the taphole metal fitting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の出銑口金物内に
構成された煉瓦(以後、出銑口煉瓦と呼ぶ)の構造に関
する。本発明の出銑口煉瓦の構成であれば、出銑時の溶
銑及びスラグによる出銑孔煉瓦の浸食が少なく、安定し
た出銑を長時間行うことが可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a brick (hereinafter referred to as a taphole brick) formed in a taphole metal fitting of a blast furnace. With the structure of the taphole brick of the present invention, erosion of the taphole brick by the hot metal and slag during tapping is small, and stable tapping can be performed for a long time.

【0002】[0002]

【従来の技術】高炉における出銑口煉瓦構造の従来技術
を図3に示すが、出銑口金物3に囲まれた出銑口内は開
孔軸中央部にハイアルミナ煉瓦6を使用している。その
理由はハイアルミナ煉瓦が耐溶銑溶解性に優れている事
と、ステーブクーラー2が破損した場合の漏水に対する
耐酸化性の点で安全である為であった。また、出銑口煉
瓦、即ちハイアルミナ煉瓦6の外周面は出銑口金物内面
に沿った形状となっており、煉瓦積時にこの面にモルタ
ルを塗り、炉内ガスのシールを行う。尚、出銑口内の耐
火物として定形煉瓦を使用する理由は不定形耐火物に比
べて定形煉瓦の方が耐火物として均質であり、使用目的
としての材質特性が安定して得られる為である。また、
この出銑口煉瓦の前面にはマットガンとの取り合いをス
ムーズに行う為のスタンプ材8が施工されている。
2. Description of the Related Art FIG. 3 shows a prior art of a taphole brick structure in a blast furnace. In the taphole surrounded by the taphole metal fitting 3, a high alumina brick 6 is used at the center of the hole axis. . The reason is that the high-alumina brick is excellent in hot metal dissolution resistance and is safe from the viewpoint of oxidation resistance against water leakage when the stave cooler 2 is damaged. Further, the outer peripheral surface of the taphole brick, that is, the high alumina brick 6 has a shape along the inner surface of the taphole metal piece, and when the brick is piled up, mortar is applied to this surface to seal the gas in the furnace. The reason for using the fixed brick as the refractory in the taphole is that the fixed brick is more homogeneous as the refractory than the irregular refractory, and the material characteristics for the purpose of use can be stably obtained. . Also,
A stamp material 8 is provided on the front surface of the taphole brick to smoothly engage with the mat gun.

【0003】図4には別の例を示すが、出銑口煉瓦の外
周と出銑口金物3との間にハイアルミナ質の不定形耐火
物7を施工している。この場合は出銑口煉瓦外周面と出
銑口金物内面の形状が精度良くなくてもガスシールが比
較的容易となる。尚、マッドガンとの取り合いを図5に
示すが、マッドガン21と取り合い面に於ける面圧によ
りスタンプ材8は損傷し、定期的に補修される。今回の
発明は出銑口金物内耐火物のうち炉内寄りの煉瓦に関す
るものであり、前記スタンプ材は発明の対象外である。
また、その他の例として、実公昭62−194748号
公報に記載されているものを図6に、実公昭62−17
0747号公報に記載されているものを図7に示す。
Although another example is shown in FIG. 4, a high-alumina amorphous refractory 7 is installed between the outer circumference of the taphole brick and the taphole metal 3. In this case, gas sealing becomes relatively easy even if the shapes of the outer peripheral surface of the taphole brick and the inner surface of the taphole metal fitting are not accurate. Note that the mating with the mud gun is shown in FIG. 5, but the stamp material 8 is damaged by the surface pressure at the mating surface with the mud gun 21 and is regularly repaired. The present invention relates to a brick near the inside of the furnace among the refractories in the metal for taphole production, and the stamp material is outside the scope of the invention.
As another example, the one disclosed in Japanese Utility Model Publication No. 62-194748 is shown in FIG.
What is described in Japanese Patent No. 0747 is shown in FIG.

【0004】図6において出銑口金物3の中に構成され
た耐火物のうち、10はガスシールを目的にした層であ
り、材質としてはアルミナセメントや燐酸などを多くし
て強度を高め、亀裂の発生を少なくしてガスシール性を
高めている。また、11は出銑口の軸中央部を構成する
不定形耐火物層であり、材質としては耐溶銑溶解性を高
める為に、アルミナセメントや燐酸を少なくしたものを
使用している。
In FIG. 6, among the refractory materials formed in the taphole metal fitting 3, 10 is a layer intended for gas sealing, and the material is alumina cement, phosphoric acid or the like to increase the strength, The occurrence of cracks is reduced and the gas sealability is improved. Reference numeral 11 denotes an amorphous refractory layer that constitutes the central portion of the shaft of the taphole. As the material, alumina cement or phosphoric acid-reduced material is used in order to improve the hot metal solubility.

【0005】使用する耐火物の物性の一例として表1が
示されている。表1のなかで前記ガスシール層10の材
質としてはAとBを挙げ、軸中央部の不定形耐火物11
の材質例としてはCとDを挙げている。ここで、ガスシ
ール層に使用する耐火物A及びBの成分はアルミナ質
(AI23 )が82%〜94%で、不定形耐火物層1
1に使用する耐火物C及びDの成分はアルミナ質が62
%〜70%である。
Table 1 is shown as an example of the physical properties of the refractory used. In Table 1, A and B are listed as the material of the gas seal layer 10, and the amorphous refractory material 11 at the center of the shaft 11
Examples of the material of C are D and C. Here, the components of the refractories A and B used for the gas seal layer are 82% to 94% of alumina (AI 2 O 3 ), and the amorphous refractory layer 1
The refractory materials C and D used in No. 1 contain 62 alumina.
% To 70%.

【0006】[0006]

【表1】 [Table 1]

【0007】次に図7ににおいて13はハウジング、1
1は不定形耐火物層、14大型耐火物煉瓦であり、該構
造ではこの不定形耐火物11によりガスシールを強化す
るものである。その材質としては耐溶損性、耐スラグ
性、耐スポーリング性及び強度の面からアルミナ質又は
アルミナ−炭化珪素−炭素質からなる耐火物を用いる
旨、記載されている。
Next, in FIG. 7, 13 is a housing, 1
Reference numeral 1 is an amorphous refractory layer and 14 large refractory bricks. In this structure, the amorphous refractory 11 strengthens the gas seal. As the material, it is described that a refractory material made of alumina or alumina-silicon carbide-carbon is used in terms of melting resistance, slag resistance, spalling resistance and strength.

【0008】[0008]

【発明が解決しようとする課題】従来技術として前記し
た図3〜図7の出銑口煉瓦構造に於いては出銑口内の煉
瓦材質がいづれもハイアルミナを主体とした耐火物であ
るが、ハイアルミナ質は耐溶銑溶解性には優れている
が、耐スラグ性については比較的劣る為、火入れ直後や
出銑末期などのスラグ成分が多い実操業における出銑口
煉瓦の損耗過程を図8、図9に示す。
In the taphole brick structures shown in FIGS. 3 to 7 described above as prior art, the brick material in the taphole is a refractory material mainly composed of high alumina. Although high-alumina is excellent in hot metal dissolution resistance, but relatively inferior in slag resistance, it shows the wear process of tap iron bricks in actual operation with a large amount of slag components such as immediately after firing and the end of tapping, as shown in FIG. , As shown in FIG.

【0009】図8(a)は出銑初期の状態であり、出銑
口内に充填されたマッド材17に出銑用の孔18が貫通
されて炉内より溶銑及びスラグが内圧により放出され
る。(以下、出銑と呼ぶ)出銑初期における出銑では出
銑口金物内のハイアルミナ質煉瓦はマッド材に保護され
ているが、出銑末期(約2〜3時間出銑後)には図8
(b)に示すようにマッド材17の損耗により開孔径も
増加し、スラグ成分の多い銑・滓が直接煉瓦開孔面に接
して、耐スラグ性の劣るハイアルミナ煉瓦の浸食の進行
が速まる結果となる。また、出銑時の開孔位置の芯ズレ
により、浸食時期は速まる。
FIG. 8 (a) shows the initial state of tapping, in which the tap hole 18 is penetrated through the mud material 17 filled in the taphole, and the hot metal and slag are discharged from the furnace by the internal pressure. . (Hereinafter, referred to as tapping) In the tapping at the early stage of tapping, the high-alumina bricks in the taphole fitting are protected by mud material, but at the end of tapping (after tapping for about 2 to 3 hours) Figure 8
As shown in (b), the hole diameter increases due to the wear of the mud material 17, and the pig and slag with a large amount of slag components directly contact the brick hole surface, which accelerates the erosion of the high alumina brick with poor slag resistance. Will result. In addition, the erosion time is accelerated due to the misalignment of the opening position during tapping.

【0010】この様な出銑操業に於いての煉瓦の損傷に
よるトラブルとして、例えば図9(b)に示す様な吹き
荒れ出銑が発生する危険がある。すなわち、スラグ成分
か多いと図9(a)に示す様に軸中央部の煉瓦材質6が
ハイアルミナ質であると、スラグ流出中に15の如きハ
イアルミナ煉瓦の浸食損傷が生じる。この事は図9
(b)に示す様な炉内ガスの流出経路16が出来易くな
る結果となり、最終的には出銑中に出銑用の孔18の中
を流れる溶銑及びスラグの中に経路16より炉内ガスを
巻き込み、溶銑及びスラグが放出部19で吹き荒れて、
近辺設備である出銑大樋の溶損等につながる。さらに、
出銑口内耐火物の浸食が進むとステーブクーラー2や出
銑口金物3を溶損し、流出した溶銑及びスラグが炉底マ
ンテル20やその廻りの炉底冷却用配管を溶損させる危
険性がある。
As a trouble due to the damage of bricks in such tapping operation, there is a risk that blown tapping as shown in FIG. 9 (b) may occur. That is, when the slag component is large, as shown in FIG. 9A, when the brick material 6 in the central portion of the shaft is high-alumina, erosion damage such as 15 occurs in the high-alumina brick during outflow of the slag. This is shown in Figure 9.
As a result, it becomes easy to form the outflow route 16 of the in-furnace gas as shown in (b), and finally, the molten iron and the slag flowing in the tapping hole 18 during tapping are introduced into the furnace from the route 16 through the route 16. Gas is entrained, the hot metal and slag are blown off at the discharge part 19,
It will lead to melting damage of the nearby tap iron gutter. further,
If the erosion of the refractory in the taphole progresses, there is a risk that the stave cooler 2 and the taphole metal 3 will be melted, and the molten pig iron and slag that have flowed out will melt the furnace bottom mantel 20 and the furnace bottom cooling pipe around it. .

【0011】従って、出銑口煉瓦はその浸食の程度によ
り数カ月で交換されている。以上述べてきた様に、出銑
口煉瓦の浸食状況の善し悪しが、高炉操業の安定にとっ
て重大な要因となり、本発明が解決しようとする課題は
出銑口煉瓦に於いて、現状のハイアルミナ質煉瓦に比べ
て出銑時の浸食速度を遅くすることである。
Therefore, the taphole brick is replaced within several months depending on the degree of erosion. As described above, the good or bad of the erosion condition of the taphole brick is a serious factor for the stability of the blast furnace operation, and the problem to be solved by the present invention is that the present high alumina quality This is to slow down the erosion rate during tapping compared to brick.

【0012】[0012]

【課題を解決するための手段】高炉の炉体鉄皮に固設さ
れた出銑口金物内に煉瓦を構成して成る高炉の出銑口煉
瓦構造に於いて、前記の従来技術の問題点を解決するた
めに以下の技術的手段を用いる。すなわち、溶銑および
スラグの流出口を形成する軸中央部の耐火煉瓦について
は、炭素成分が70%以上の炭素質煉瓦とする。また、
前記の炭素質煉瓦の外周にはハイアルミナ煉瓦を配設す
る。
[Means for Solving the Problems] In the structure of a taphole brick of a blast furnace, in which bricks are formed in a taphole metal piece fixed to a furnace body iron shell of the blast furnace, the above-mentioned problems of the prior art In order to solve the above, the following technical means are used. That is, the refractory brick in the central portion of the shaft forming the outlets of the hot metal and slag is a carbonaceous brick having a carbon content of 70% or more. Also,
A high alumina brick is arranged around the carbonaceous brick.

【0013】[0013]

【作用】本発明の出銑口では軸中央部に炭素質煉瓦を使
用した事により、ハイアルミナ質の煉瓦を用いる場合に
比べ、火入れ直後や出銑末期のスラグ成分が多い操業下
に於ける出銑口の浸食が少ない。炭素質煉瓦とハイアル
ミナ質煉瓦との耐溶銑性と耐スラグ性の比較を図10に
示す。図10に於いて比較した煉瓦材質を表2に示す
が、ハイアルミナ質煉瓦の材質例としてはH31、炭素
質煉瓦の材質例としては2RGの材質特性を示す。耐溶
銑性として、同一条件下での溶銑に対する損耗量の比較
を図10(a)に、また、耐スラグ性としても同様にス
ラグに対する損耗量の比較を図10(b)に、耐酸化性
の比較を図10(c)に示す。
In the taphole according to the present invention, since the carbonaceous brick is used in the central portion of the shaft, it is possible to carry out a lot of slag components immediately after the firing and at the end of tapping, as compared with the case of using the high alumina brick. Little erosion at the taphole. FIG. 10 shows a comparison between the hot metal resistance and the slag resistance of the carbonaceous brick and the high alumina brick. Brick materials compared in FIG. 10 are shown in Table 2. As a material example of the high alumina brick, H31 is shown, and as a material example of the carbonaceous brick, 2RG is shown. As for the hot metal resistance, a comparison of the amount of wear with respect to the hot metal under the same conditions is shown in Fig. 10 (a), and as for the slag resistance, a comparison of the amount of wear with respect to the slag is also shown in Fig. 10 (b). The comparison is shown in FIG.

【0014】[0014]

【表2】 [Table 2]

【0015】図10(a)では煉瓦のテストピースに1
550℃の溶銑を10分間接触させる条件下での各煉瓦
の重量損耗量を同一基準値に対しての割合として比較し
ている。結果として、耐溶銑性は2RGがH31に対し
て優れている。図10(b)では煉瓦のテストピースに
1550℃のスラグを45分間接触させる条件下での各
煉瓦の重量損耗量割合を比較しているが、H31の損耗
量を100%とした場合、2RGの損耗量は6%であ
る。次に図10(c)では煉瓦のテストピースに155
0℃の高温酸素雰囲気で酸化テストを行い、各煉瓦の重
量変化率を比較している。出銑口内の煉瓦材質は従来は
ステーブクーラーや冷却盤からの漏水による酸化問題が
懸念され、耐スラグ性が悪くとも炭素質耐火物を使用せ
ずハイアルミナ質耐火物を使用するのが一般的な考えで
あった。
In FIG. 10 (a), a brick test piece is
The weight loss amount of each brick under the condition of contacting hot metal at 550 ° C. for 10 minutes is compared as a ratio to the same reference value. As a result, the hot metal resistance of 2RG is superior to that of H31. In FIG. 10 (b), the weight loss ratio of each brick under the condition that the slag at 1550 ° C. is contacted with the brick test piece for 45 minutes is compared, but when the loss amount of H31 is 100%, 2RG The amount of wear is 6%. Next, in FIG. 10 (c), 155 is attached to the brick test piece.
An oxidation test was performed in a high temperature oxygen atmosphere of 0 ° C. to compare the weight change rate of each brick. The brick material inside the taphole is conventionally concerned with oxidation problems due to water leakage from stave coolers and cooling boards, and it is common to use high alumina refractory instead of carbonaceous refractory even if slag resistance is poor. That was an idea.

【0016】図11に炭素系煉瓦温度と酸化速度の関係
の一例を示す。酸化速度は酸性ガスで酸化される時の単
位面積、単位時間当たりの酸化重量で示され、その値は
雰囲気温度に依存した酸化過程の違いにより左右され
る。また、この酸化過程とは次の3段階に分かれる。 ・段階(1):酸化反応速度が酸素の拡散速度より小さ
い温度域での低温型酸化・・・・・・(〜700℃) ・段階(2):酸化反応速度が酸素の拡散速度に律速さ
れる温度域での酸化・・・(700〜1200℃) ・段階(3):高温領域でC+O2 =CO2 以外の反応
が盛んになる温度域での酸化・・(1200℃〜)
FIG. 11 shows an example of the relationship between carbon brick temperature and oxidation rate. The oxidation rate is represented by a unit area when oxidized with an acidic gas and a weight of the oxide per unit time, and the value depends on the difference in the oxidation process depending on the ambient temperature. The oxidation process is divided into the following three stages. -Stage (1): Low temperature type oxidation in a temperature range where the oxidation reaction rate is smaller than the diffusion rate of oxygen ... (-700 ° C) -Step (2): The oxidation reaction rate is rate-determined by the diffusion rate of oxygen Oxidation in the temperature range ... (700 to 1200 ° C) ・ Step (3): Oxidation in the temperature range where reactions other than C + O 2 = CO 2 are active in the high temperature region (・ 1200 ° C to)

【0017】しかしながら、漏水による炭素系煉瓦の酸
化については、ステーブ技術の発達によって漏水の発生
率は極めて少ない事および煉瓦補修時の外気による炭素
系煉瓦の酸化に対しても炭素質煉瓦の表面温度は200
℃以下であり、酸化速度の低い温度域である事がわかっ
ており酸化の危険性は極めて少ないといえる。さらに、
出銑口煉瓦の耐久性能の向上を考えてみると、図10
(a)、図10(b)によりハイアルミナ質煉瓦の耐ス
ラグ性が極端に損耗量が大きく、出銑口煉瓦の寿命律速
となる事が理解できる。従って、本発明では、ハイアル
ミナ系煉瓦よりも耐スラグ性に優れた煉瓦を出銑口煉瓦
の軸中央部に使用する事により、出銑時の煉瓦浸食速度
を遅くする事が出来る。
However, regarding the oxidation of carbon-based bricks due to water leakage, the occurrence rate of water leakage is extremely low due to the development of stave technology, and the surface temperature of carbon-based bricks is also affected by the oxidation of carbon-based bricks due to the outside air during brick repair. Is 200
It is known to be in the temperature range where the temperature is below ℃ and the oxidation rate is low, and it can be said that the risk of oxidation is extremely low. further,
Considering the improvement of the durability of the taphole brick, Fig. 10
From (a) and (b) of FIG. 10, it can be understood that the slag resistance of the high alumina brick has an extremely large amount of wear, and the life of the taphole brick is rate-determined. Therefore, in the present invention, the brick erosion rate at tapping can be slowed by using a brick having higher slag resistance than high-alumina bricks in the shaft center portion of taphole bricks.

【0018】耐火物の熱伝導性については表2に記載し
ている様に、炭素質煉瓦はアルミナ質煉瓦に比べて熱伝
導率が非常に高く、結果として出銑時に於ける出銑口金
物の温度が高まる事になるが、出銑口の軸中央部に設置
した炭素質煉瓦の周囲に熱伝導率の小さいハイアルミナ
煉瓦を配設して2重構造とする事で出銑口煉瓦構造全体
としての熱伝導性が低くなり、出銑口金物の温度上昇を
抑制できる。
As to the thermal conductivity of refractory materials, as shown in Table 2, carbonaceous bricks have much higher thermal conductivity than alumina-based bricks, and as a result, the metal for tapping at the time of tapping. However, the high-alumina brick with a low thermal conductivity is placed around the carbonaceous brick installed at the center of the shaft of the taphole to form a double structure. The thermal conductivity as a whole becomes low, and the temperature rise of the tap metal can be suppressed.

【0019】[0019]

【実施例】以下、図面に示す実施例に基づいて本発明を
説明する。図1(a)は本発明の出銑口煉瓦構造を示す
出銑口付近の縦断面図である。また、図1(b)は図1
(a)に於いて出銑口内煉瓦をA−A方向に切断した断
面図を示す。ここで、1は炉体鉄皮であり、炉内面に冷
却設備であるステーブクーラー2をボルトにて固定して
いる。出銑口金物3は炉体鉄皮1に溶接により固設され
ている。出銑口煉瓦は水平方向に2層の煉瓦として後列
煉瓦22と前列煉瓦23とで構成され、さらに図示しな
いマッドガンとの取り合い上、スタンプ材8が施工され
ている。前後列の煉瓦22と23はともに軸中央部の煉
瓦5が炭素質、その周囲の煉瓦6がハイアルミナ質で構
成されている。また、出銑口外周煉瓦6の外面と出銑口
金物3の内面は直接接触してガスシールを行っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in the drawings. FIG. 1 (a) is a vertical cross-sectional view near the taphole showing the taphole brick structure of the present invention. In addition, FIG.
The sectional view which cut | disconnected the brick in a tap hole in AA direction in (a) is shown. Here, 1 is a furnace shell, and a stave cooler 2 which is a cooling facility is fixed to the inner surface of the furnace by bolts. The tap metal 3 is fixed to the furnace body iron shell 1 by welding. The taphole brick is composed of a rear row brick 22 and a front row brick 23 as a two-layered brick in the horizontal direction, and a stamping material 8 is applied in connection with a mud gun (not shown). In the bricks 22 and 23 in the front and rear rows, the brick 5 at the center of the shaft is made of carbon and the surrounding bricks 6 are made of high alumina. Further, the outer surface of the taphole outer peripheral brick 6 and the inner surface of the taphole metal fitting 3 are in direct contact with each other to perform gas sealing.

【0020】ここで、軸中央部に用いる炭素質耐火物の
材質は炭素成分が85%以上で、耐スラグ性に優れた性
質のものとする。また、使用した炭素質煉瓦の熱伝導率
は18Kcal/m・h・℃であり、その周囲に施工す
るハイアルミナ煉瓦の材質はアルミナ質が50%以上の
ものを採用した。この場合、熱伝導率は1.5Kcal
/m・h・℃程度と低く、出銑時における出銑口金物温
度の上昇を抑制する。図12、図13に出銑口煉瓦に炭
素質煉瓦を使用した場合とハイアルミナ煉瓦を使用した
場合との出銑口金物の比較を示す。
Here, the material of the carbonaceous refractory used for the central portion of the shaft has a carbon content of 85% or more and is excellent in slag resistance. The thermal conductivity of the carbonaceous brick used was 18 Kcal / m · h · ° C, and the material of the high-alumina brick to be installed around it was one having an alumina quality of 50% or more. In this case, the thermal conductivity is 1.5 Kcal
/ M ・ h ・ ℃, which is low, suppresses the rise in the temperature of the tap metal at tapping. FIG. 12 and FIG. 13 show a comparison of the taphole metal products when the carbonaceous brick is used as the taphole brick and when the high alumina brick is used.

【0021】図12は出銑口金物内の煉瓦材質構成の違
いを示し、TYPE−Aは出銑口金物内の煉瓦材質を全
てハイアルミナ煉瓦とした従来構成、TYPE−Bは出
銑金物内の煉瓦材質を全て炭素質煉瓦とした構成、TY
PE−Cは出銑口軸中央部煉瓦材質を炭素質煉瓦とし、
その周辺をハイアルミナ煉瓦とした本発明の構成であ
る。また、図中の寸法Lは出銑口煉瓦が出銑中に損耗し
た際の煉瓦の残存厚さであり、出銑口金物の温度は煉瓦
残存厚さLの影響を受ける。図13に各TYPEに於け
る煉瓦残厚Lと出銑口金物と炉体鉄皮とつなぎ部の温度
tの計算結果との関係を示す。但し、計算前提は出銑口
金物の外面は自然空冷とする。この結果より、出銑金物
内の煉瓦材質を全て炭素質煉瓦としたTYPE−Bでの
出銑口金物温度は従来のTYPE−Aに比べて約2倍と
なるのに対して、本発明のTYPE−Cの金物温度はT
YPE−Aに比べて約1〜2割の温度上昇に抑えられ
る。
FIG. 12 shows the difference in the material composition of bricks in the tap metal, TYPE-A is a conventional construction in which all brick materials in the tap metal are high alumina bricks, and TYPE-B is in the tap metal. Made of carbonaceous bricks for all brick materials, TY
PE-C is made of carbon brick as the brick material at the center of the taphole,
It is the structure of the present invention in which the periphery thereof is made of high alumina brick. Further, the dimension L in the figure is the residual thickness of the brick when the taphole brick is worn during tapping, and the temperature of the taphole fitting is affected by the brick residual thickness L. FIG. 13 shows the relationship between the brick residual thickness L and the calculation results of the temperature t of the taphole metal fittings, the furnace shell and the joint in each TYPE. However, the calculation is based on the assumption that the outer surface of the tap metal is naturally cooled. From this result, the temperature of the tap metal in TYPE-B in which all brick materials in the tap metal are carbonaceous bricks is about twice as high as that in the conventional TYPE-A. The temperature of the metal of TYPE-C is T
Compared to YPE-A, the temperature rise can be suppressed by about 10 to 20%.

【0022】次に、図1(b)の断面図に於いては、出
銑用の孔18の周囲の煉瓦材質は炭素質煉瓦5があり、
その周囲にはハイアルミナ煉瓦6が施工されている。
尚、別の実施例を図2(a)、及び図2(a)で出銑口
廻りの縦断面図に於いて出銑口煉瓦B−B方向に切断し
た断面図を図2(b)に示すが、出銑口内ハイアルミナ
煉瓦6の周囲に於いて出銑口金物3との間に不定形耐火
物7を施工してガスシールする構造である。
Next, in the sectional view of FIG. 1 (b), the brick material around the tap hole 18 is a carbonaceous brick 5,
A high alumina brick 6 is installed around it.
2 (a), and FIG. 2 (b) is a cross-sectional view taken along the line BB in FIG. 2 (a) and the vertical cross-sectional view around the tap hole in FIG. 2 (a). As shown in Fig. 5, the amorphous alumina refractory 7 is installed around the high-alumina brick 6 in the taphole with the taphole metal 3, and gas sealing is performed.

【0023】[0023]

【表3】 [Table 3]

【0024】また、表3に本発明の煉瓦構成を使用した
A高炉の実施例と、従来煉瓦構成であるB高炉との操業
比較を示す。表3に於いて、本発明の構造であるA高炉
では従来例のB高炉に比べて1回当たりの出銑時間が長
い為、出銑回数も少なく、煉瓦の損傷が少ない為、1回
当たりに使用するマッド充填量も少ない。また、出銑口
の孔形状とその周囲の煉瓦の異常損傷か少なくなる為、
孔切れや酸素開孔等のトラブルの発生率も減少する。
Further, Table 3 shows an operation comparison between an example of the B blast furnace using the brick construction of the present invention and the B blast furnace having the conventional brick construction. In Table 3, since the blast furnace A having the structure of the present invention has a longer tapping time than the B blast furnace of the conventional example, the number of tapping is small and the brick is less damaged. The mud filling amount used for is also small. Also, because the hole shape of the tap hole and the bricks around it are less likely to be damaged,
The incidence of troubles such as hole breakage and oxygen opening also decreases.

【0025】[0025]

【発明の効果】 (1)本発明の出銑口では軸中央部の煉瓦材質に炭素系
煉瓦を使用した事により、火入れ直後や出銑末期のスラ
グ成分か多い操業下に於いても出銑口開孔部の浸食速度
が遅くなり、長時間の出銑が可能となる。 (2)出銑中に出銑口内耐火物の異常浸食が減少するた
め、ガスリークによる吹き荒れがなくなり、常に安定し
た操業が行える。 (3)出銑口の軸中央煉瓦の周囲に熱伝導率の小さいハ
イアルミナ煉瓦を使用する事により、出銑口金物温度の
上昇を抑制でき、長時間出銑を安定して実行できる。
尚、出銑口金物の外周を強制空冷すれば、温度上昇の抑
制効果はさらに上がる。 (4)出銑口金物内の煉瓦は、損耗程度に応じて従来は
1〜2年に1回の取り替え補修を必要としたが、本発明
の煉瓦構成であれば、煉瓦の損耗速度の減少により、煉
瓦の取り替え補修頻度が少なくなる。 (5)出銑口金物内の出銑孔径の拡大量が少ない為、出
銑口閉塞時に必要なマッド量が少なくて良い。 (6)出銑口煉瓦の浸食が遅くなる事による長時間出銑
によって1日の出銑回数が減少し、出銑口の開孔及び閉
塞用資材(金棒、錐、マッド)の使用量を削減できる。
EFFECTS OF THE INVENTION (1) In the taphole of the present invention, since carbon brick is used as the brick material in the central part of the shaft, the taphole can be tapped even immediately after the start of firing or during the operation with a large amount of slag component at the end of tapping. The erosion rate at the mouth opening becomes slower, and long-time tapping is possible. (2) Abnormal erosion of the refractory in the taphole during tapping is reduced, so that blowout due to gas leak is eliminated, and stable operation is always possible. (3) By using a high-alumina brick having a small thermal conductivity around the shaft center brick of the taphole, it is possible to suppress an increase in the temperature of the taphole metal and to stably perform tapping for a long time.
In addition, if the outer circumference of the tap metal is forcibly air-cooled, the effect of suppressing the temperature rise is further enhanced. (4) Conventionally, the bricks in the tap iron fittings had to be replaced and repaired once every 1 to 2 years depending on the degree of wear, but with the brick construction of the present invention, the wear rate of the bricks is reduced. This reduces the frequency of brick replacement and repair. (5) Since the expansion amount of the tap hole diameter in the tap hole metal fitting is small, the amount of mud required when the tap hole is closed may be small. (6) The number of taps per day is reduced due to the long-time tapping due to the slow erosion of taphole bricks, and the amount of materials for opening and closing tapholes (gold bars, cones, mud) can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明における出銑口耐火物構造
の縦断面図、図(b)は図(a)をA−A断面で切った
出銑口内煉瓦の部分断面図。
FIG. 1 (a) is a vertical cross-sectional view of a taphole refractory structure according to the present invention, and FIG. 1 (b) is a partial cross-sectional view of a brick in a taphole taken along the line AA in FIG.

【図2】図2(a)は本発明における別実施例の出銑口
耐火物構造の縦断面図、図2(b)は図2(a)をB−
Bで切った出銑口内煉瓦の部分断面図。
2 (a) is a longitudinal sectional view of a taphole refractory structure according to another embodiment of the present invention, and FIG. 2 (b) is a cross-sectional view of FIG.
Sectional drawing of the brick in the taphole cut by B.

【図3】従来の出銑口廻りの耐火物の縦断面図。FIG. 3 is a vertical cross-sectional view of a conventional refractory material around a taphole.

【図4】従来の出銑口廻りの耐火物の縦断面図。FIG. 4 is a vertical cross-sectional view of a conventional refractory material around a taphole.

【図5】従来の出銑口廻りの耐火物の縦断面図。FIG. 5 is a vertical sectional view of a conventional refractory material around a taphole.

【図6】従来の出銑口廻りの耐火物の縦断面図。FIG. 6 is a vertical sectional view of a conventional refractory material around a taphole.

【図7】従来の出銑口廻りの耐火物の縦断面図。FIG. 7 is a vertical sectional view of a conventional refractory material around a taphole.

【図8】従来出銑口での煉瓦損耗状態図。FIG. 8 is a diagram of a brick wear state at a conventional tap hole.

【図9】従来出銑口での煉瓦損耗状態図。FIG. 9 is a diagram of a brick wear state at a conventional tap hole.

【図10】炭素系煉瓦における煉瓦温度と酸化速度の関
係図。
FIG. 10 is a diagram showing the relationship between the brick temperature and the oxidation rate of carbon-based bricks.

【図11】ハイアルミナ質煉瓦と炭素質煉瓦の性能比較
を示す図。
FIG. 11 is a view showing a performance comparison between a high alumina brick and a carbon brick.

【図12】出銑口金物内の煉瓦構成の違いによる各TY
PEを示す図。
[Fig. 12] Each TY due to the difference in brick composition in the taphole fitting
The figure which shows PE.

【図13】各TYPEに於ける出銑口金物の温度を示す
図。
FIG. 13 is a diagram showing the temperature of the taphole metal fitting in each TYPE.

【符号の説明】[Explanation of symbols]

1 炉体鉄皮 2 ステーブクーラー 3 出銑口金物枠 4 大型炭素質煉瓦 5 炭素質煉瓦(出銑口金物枠内) 6 ハイアルミナ質煉瓦 7 不定形耐火物(キャスタブル) 8 スタンプ材 9 炉内スタンプ材 10 ガスシール層 11 不定形耐火物層 12 出銑孔 13 ハウジング 14 大型耐火煉瓦 15 ハイアルミナ煉瓦の浸食 16 炉内ガスの流出経路 17 マッド材 18 出銑用の孔 19 溶銑及びスラグの放出部 20 炉底マンテル 21 マッドガン 22 出銑口内後列煉瓦 23 出銑口内前列煉瓦 1 Furnace iron shell 2 Stave cooler 3 Iron tap metal frame 4 Large carbonaceous brick 5 Carbonaceous brick (in tap iron metal frame) 6 High alumina brick 7 Castable 8 Stamping material 9 In furnace Stamp material 10 Gas seal layer 11 Irregular refractory layer 12 Iron tap hole 13 Housing 14 Large refractory brick 15 Corrosion of high alumina bricks 16 Outflow route of gas in furnace 17 Mud material 18 Hole for tapping metal 19 Release of hot metal and slag Part 20 Furnace bottom mantel 21 Mad gun 22 Rear row brick in taphole 23 23 Front brick in taphole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炉の炉体鉄皮に固設された出銑口金物
内に煉瓦を構成して成る高炉の出銑口煉瓦構造に於い
て、溶銑およびスラグの流出口を形成する軸中央部の耐
火煉瓦に、炭素成分が70%以上の炭素質煉瓦を用い、
前記の出銑口金物内で炭素質煉瓦の外周にはハイアルミ
ナ質煉瓦を配設してなることを特徴とする高炉の出銑口
煉瓦構造。
1. In a taphole brick structure of a blast furnace in which bricks are formed in a taphole metal fixture fixed to a furnace body of a blast furnace, a shaft center forming an outlet of molten pig iron and slag. For the refractory brick of the part, carbonaceous brick with a carbon content of 70% or more is used,
A taphole brick structure for a blast furnace, wherein a high-alumina brick is arranged on the outer periphery of a carbonaceous brick in the taphole hardware.
JP6106291A 1994-04-22 1994-04-22 Blast furnace taphole brick structure Expired - Fee Related JP3007264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106291A JP3007264B2 (en) 1994-04-22 1994-04-22 Blast furnace taphole brick structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106291A JP3007264B2 (en) 1994-04-22 1994-04-22 Blast furnace taphole brick structure

Publications (2)

Publication Number Publication Date
JPH07292403A true JPH07292403A (en) 1995-11-07
JP3007264B2 JP3007264B2 (en) 2000-02-07

Family

ID=14429957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106291A Expired - Fee Related JP3007264B2 (en) 1994-04-22 1994-04-22 Blast furnace taphole brick structure

Country Status (1)

Country Link
JP (1) JP3007264B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944118A (en) * 2012-11-14 2013-02-27 云南建水锰矿有限责任公司 Method for forming furnace eye for submerged arc furnace
JP2013511690A (en) * 2009-11-18 2013-04-04 エクストラータ テクノロジー プロプライアタリー リミテッド How to remove slag from a furnace
WO2014162643A1 (en) * 2013-04-02 2014-10-09 新日鉄住金エンジニアリング株式会社 Tap hole apparatus
CN104342531A (en) * 2014-04-30 2015-02-11 山西太钢不锈钢股份有限公司 Iron outlet of oxygen-enriched shaft furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036790B4 (en) * 2008-08-07 2014-05-15 Tmt Tapping-Measuring-Technology Gmbh Tapping channel for the discharge of iron and metal melts and liquid slag from metallurgical containers, such as blast furnaces and furnaces

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511690A (en) * 2009-11-18 2013-04-04 エクストラータ テクノロジー プロプライアタリー リミテッド How to remove slag from a furnace
CN102944118A (en) * 2012-11-14 2013-02-27 云南建水锰矿有限责任公司 Method for forming furnace eye for submerged arc furnace
CN102944118B (en) * 2012-11-14 2014-12-10 云南建水锰矿有限责任公司 Method for forming furnace eye for submerged arc furnace
WO2014162643A1 (en) * 2013-04-02 2014-10-09 新日鉄住金エンジニアリング株式会社 Tap hole apparatus
CN105051218A (en) * 2013-04-02 2015-11-11 新日铁住金工程技术株式会社 Tap hole apparatus
CN105051218B (en) * 2013-04-02 2017-08-08 新日铁住金工程技术株式会社 Tapping hole device
CN104342531A (en) * 2014-04-30 2015-02-11 山西太钢不锈钢股份有限公司 Iron outlet of oxygen-enriched shaft furnace
CN104342531B (en) * 2014-04-30 2016-04-27 山西太钢不锈钢股份有限公司 A kind of oxygen enrichment shaft furnace iron notch

Also Published As

Publication number Publication date
JP3007264B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US20180073090A1 (en) Long campaign life stave coolers for circular furnaces with containment shells
CN101250598A (en) Maintaining method for blast furnace
US9109838B2 (en) Gas blowing nozzle
CA2150881C (en) Coolable lining for a high-temperature gasification reactor
JPH07292403A (en) Blast furnace taphole brick structure
CN216274217U (en) Combined type furnace wall of lower section of furnace belly of iron-making blast furnace
US8480951B2 (en) Tuyere structure of melting furnace
JP2000204405A (en) Operation of blast furnace
CN112458223A (en) Blast furnace tuyere belt structure
JPH0216982Y2 (en)
JPH07270081A (en) Lined refractory structure for molten metal container
Van Larr et al. Blast furnace refractories and cooling systems-the Hoogovens solution
JP3635779B2 (en) Blast furnace wall cooling plate
CN212174981U (en) Lower tank lining structure of RH vacuum degassing device
CN101255481B (en) Stave cooler
JP3633519B2 (en) Stave cooler for metallurgical furnace and its mounting method
CN107655332A (en) A kind of metallurgical furnace
CN214290814U (en) Novel torpedo jar of resistant erosion
JP2014173164A (en) Stave cooler and blast furnace including the same
CN212451486U (en) Water-cooled wall structure of smelting reduction furnace
JPS629316Y2 (en)
MacRae New technology for the manufacture of cast copper cooling blocks
JP4238141B2 (en) Method of inserting cooling member into blast furnace
JP2024160578A (en) Blast furnace cooling structure
JPS58110981A (en) Water cooling type refractory furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991026

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees