[go: up one dir, main page]

JPH07287163A - Telecentric ftheta lens - Google Patents

Telecentric ftheta lens

Info

Publication number
JPH07287163A
JPH07287163A JP6080501A JP8050194A JPH07287163A JP H07287163 A JPH07287163 A JP H07287163A JP 6080501 A JP6080501 A JP 6080501A JP 8050194 A JP8050194 A JP 8050194A JP H07287163 A JPH07287163 A JP H07287163A
Authority
JP
Japan
Prior art keywords
lens
field side
concave surface
telecentric
positive meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080501A
Other languages
Japanese (ja)
Inventor
Yumi Nakagawa
由美 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6080501A priority Critical patent/JPH07287163A/en
Publication of JPH07287163A publication Critical patent/JPH07287163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To decrease an F value and reduce the diameter of a spot and to adapt the telecentric ftheta lens to a scanning optical system with a rotary polygon mirror of equal-angular-speed rotation and a surface tilt correcting mechanism for a cylindrical lens by employing five-lens constitution and satisfying specific requirements. CONSTITUTION:This lens consists of a positive meniscus lens as a 1st lens L1 which has its concave surface on the object field side, a negative lens as a 2nd lens L2, a positive meniscus lens as a 3rd lens L3 which has its concave surface on the object field side, a positive meniscus lens as a 4th lens L4 which has its concave surface on the object field side, and a positive lens as a 5th lens L5 in order from the object field side. Further, conditions 1.7<n1, 1<r5/r6<1.1, and 1<d8<f<1.1 are satisfied, where n1 is the refractive index of the 1st lens L1, r5 and r6 the radii of curvatures of the 5th and 6th lens surfaces counted from the object-field side, d8 the air gap on the optical axis between the 4th lens L4 and 5th lens L5, and (f) the focal length of the whole system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザープリンター等
の光走査装置に用いられるテレセントリックなfθレン
ズ系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a telecentric f.theta. Lens system used in an optical scanning device such as a laser printer.

【0002】[0002]

【従来の技術】レーザープリンター等の走査光学系に
は、等角速度回転の回転多面鏡とシリンドリカルレンズ
等の面倒れ補正機能を有するものを用いた走査光学系が
よく使用されている。その結像レンズとしては、感光体
面上を主走査方向に一定の速度でビームを走査すること
ができるfθレンズが用いられている。
2. Description of the Related Art A scanning optical system such as a laser printer, which uses a rotating polygon mirror rotating at a constant angular velocity and a cylindrical lens having a surface tilt correction function, is often used. As the imaging lens, an fθ lens that can scan a beam on the surface of the photoconductor in the main scanning direction at a constant speed is used.

【0003】一般に知られたfθレンズは、テレセント
リックではないため、被走査面の位置ずれによる像高の
誤差が生じやすく、これを防ぐためには回転多面鏡に厳
密な加工精度が要求されるという問題がある。これま
で、テレセントリックfθレンズとしては、特開昭59
−195211、特開昭62−299927、特開平2
−83511で示されている様なものが知られている
が、これらのレンズはF値が大きい。
Since a generally known fθ lens is not telecentric, an error in image height easily occurs due to a displacement of a surface to be scanned, and in order to prevent this, a strict machining precision is required for a rotary polygon mirror. There is. Heretofore, as a telecentric fθ lens, Japanese Patent Laid-Open No. Sho 59 has been proposed.
-195211, JP-A-62-299927, JP-A-2
Although a lens as shown by −83511 is known, these lenses have a large F value.

【0004】F値とスポット径とは、比例関係にあるの
で、F値が大きいとスポット径も大きくなり解像力が低
下する。また、これらのレンズは、入射瞳位置がレンズ
の第1面(最も物界側、即ち入射光側の面)に近く、レ
ンズ最終面と走査面との間隔も狭いため、等角速度回転
の回転多面鏡と、シリンドリカルレンズなどの面倒れ補
正機能を有するものとを光路中に配置することが難し
く、安定した走査を行うことが困難であった。
Since the F value and the spot diameter are in a proportional relationship, when the F value is large, the spot diameter is also large and the resolution is lowered. Further, since the entrance pupil position of these lenses is close to the first surface of the lens (the most object side, that is, the surface on the incident light side), and the distance between the final lens surface and the scanning surface is small, rotation at a constant angular velocity It is difficult to arrange the polygon mirror and a lens having a surface tilt correction function such as a cylindrical lens in the optical path, and it is difficult to perform stable scanning.

【0005】[0005]

【発明が解決しようとする課題】本発明は、この様な事
情に鑑みてなされたものであり、F値を小さくして、ス
ポットの小径化を図ると共に、等角速度回転の回転多面
鏡とシリンドリカルレンズなどの面倒れ補正機構を有す
るものとを用いた走査光学系に適合させることができ、
なおかつ収差が良好に補正されたテレセントリックなf
θレンズの提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has a small F value to reduce the diameter of a spot, and a rotary polygon mirror and a cylindrical mirror that rotate at a constant angular velocity. It can be adapted to a scanning optical system using a lens having a surface tilt correction mechanism.
In addition, the telecentric f with well-corrected aberrations
It is intended to provide a θ lens.

【0006】[0006]

【課題が解決するための手段】上記目的を達成するため
に、本発明では、物界側から順に、物界側に凹面を向け
た正メニスカスレンズの第1レンズL1 、負レンズの第
2レンズL2 、物界側に凹面を向けた正メニスカスレン
ズの第3レンズL3 、物界側に凹面を向けた正メニスカ
スレンズの第4レンズL4 、正レンズの第5レンズL5
から成り、第1レンズL1 の屈折率をn1 、物界側から
数えて第5、6番目のレンズ面の曲率半径をr5
6 、第4レンズL4 と第5レンズL5 との光軸上の空
気間隔をd8、全系の焦点距離をfとするとき、次の条
件(1)〜(3)を満たす。
In order to achieve the above object, in the present invention, in order from the object side, the first lens L 1 of the positive meniscus lens with the concave surface facing the object side, the second lens of the negative lens L 1 A lens L 2 , a third lens L 3 which is a positive meniscus lens having a concave surface facing the object side, a fourth lens L 4 which is a positive meniscus lens having a concave surface facing the object side, and a fifth lens L 5 which is a positive lens.
The refractive index of the first lens L 1 is n 1 , the curvature radii of the fifth and sixth lens surfaces counted from the object side are r 5 ,
When r 6 , the air distance between the fourth lens L 4 and the fifth lens L 5 on the optical axis is d 8 , and the focal length of the entire system is f, the following conditions (1) to (3) are satisfied.

【0007】(1)1.7<n1 (2)1<r5 /r6 <1.1 (3)1<d8 /f<1.1(1) 1.7 <n 1 (2) 1 <r 5 / r 6 <1.1 (3) 1 <d 8 /f<1.1

【0008】[0008]

【作用】fθレンズは理想像高がY=fθで与えられる
が、これを実現するためには意図的に負の歪曲収差を発
生させなければならない。さらに、テレセントリックに
するには入射瞳位置と前側焦点位置を一致させなければ
ならず、この入射瞳位置が、レンズの第1面とあまりに
も近すぎると、入射瞳面に相当する回転多面鏡とレンズ
の第1面が接触してしまう。入射瞳位置とレンズ第1面
が近い場合、レンズに接触しないように回転多面鏡を配
置すると、テレセントリックfθレンズの光軸に対する
回転多面鏡への入射角が必然的に大きくなる。すると、
回転多面鏡面の反射する部分の面積が広く必要になるた
め、回転多面鏡自体が大型化してしまう。
In the fθ lens, the ideal image height is given by Y = fθ, but in order to realize this, it is necessary to intentionally generate a negative distortion aberration. Further, in order to be telecentric, the entrance pupil position and the front focal position must be matched, and if this entrance pupil position is too close to the first surface of the lens, a rotary polygon mirror corresponding to the entrance pupil surface is formed. The first surface of the lens comes into contact. When the entrance pupil position is close to the first lens surface, arranging the rotary polygon mirror so as not to contact the lens inevitably increases the angle of incidence on the rotary polygon mirror with respect to the optical axis of the telecentric fθ lens. Then,
Since the area of the reflecting portion of the rotary polygon mirror needs to be large, the rotary polygon mirror itself becomes large.

【0009】また、レンズの最終面と走査面との間隔が
あまりにも近すぎると、シリンドリカルレンズ等の面倒
れ補正機能を有するものを配置する空間がなくなってし
まう。条件式(1)〜(3)は収差補正の他に、このよ
うなことも考慮した条件式であり、以下にその説明をす
る。
Further, if the distance between the final surface of the lens and the scanning surface is too close, there will be no space for disposing an element having a surface tilt correction function such as a cylindrical lens. Conditional expressions (1) to (3) are conditional expressions that take account of such a fact in addition to the aberration correction, and will be described below.

【0010】条件式(1)は、第1レンズL1 の屈折率
に関するもので、球面収差を良好に補正するための条件
である。この範囲を下回ると、球面収差が補正不足とな
るばかりか、コマ収差にも悪影響を及ぼし、他のレンズ
では補正しきれなくなる。また、意図的に発生させるべ
き負の歪曲収差の発生量が少なく、fθレンズとしての
性能を満たさない。
Conditional expression (1) relates to the refractive index of the first lens L 1 and is a condition for favorably correcting spherical aberration. Below this range, not only spherical aberration will be undercorrected, but also coma will be adversely affected and other lenses will not be able to correct it. In addition, the amount of negative distortion that should be intentionally generated is small, and the performance as an fθ lens is not satisfied.

【0011】条件式(2)は、第3レンズL3 の曲率半
径に関するもので、像面湾曲のバランスをとるための条
件である。さらに好ましくは、1.05<r5 /r6
1.1である。まず、条件式(2)の範囲を下回ると、
入射瞳位置とレンズの第1面の間隔が狭くなると共に、
第3レンズL3 の正の屈折力が非常に弱くなり球面収差
が補正過剰となる。逆に、この範囲を越えると、レンズ
の最終面と走査面との間隔が狭くなり、実質的な作動距
離が短くなってしまう。さらに補正しきれないほど大き
な像面湾曲が発生する。
Conditional expression (2) relates to the radius of curvature of the third lens L 3 , and is a condition for balancing the curvature of field. More preferably, 1.05 <r 5 / r 6 <
1.1. First, below the range of conditional expression (2),
As the distance between the entrance pupil position and the first surface of the lens becomes narrower,
The positive refractive power of the third lens L 3 becomes very weak, and the spherical aberration is overcorrected. On the other hand, if it exceeds this range, the distance between the final surface of the lens and the scanning surface becomes narrow, and the working distance becomes short. Further, a large field curvature is generated that cannot be corrected.

【0012】条件式(3)は、第4レンズL4 と第5レ
ンズL5 との光軸上の空気間隔及び全系の焦点距離に関
するもので、コマ収差を少なくし、なおかつそのバラン
スをとるための条件である。さらに好ましくは、1<d
8 /f<1.05である。条件式(3)の下限を下回る
と、最大画角付近の光束に対して大きなアンダーのコマ
収差が発生し補正が困難となる。逆に、上限を上回る
と、負の歪曲収差が発生しすぎて、fθレンズとして必
要な理想像高Y=fθを得ることが難しくなる。また、
球面収差のふくらみが大きくなり、コマ収差に悪い影響
を及ぼす。
Conditional expression (3) relates to the air distance between the fourth lens L 4 and the fifth lens L 5 on the optical axis and the focal length of the entire system, and reduces coma and balances them. It is a condition for. More preferably, 1 <d
8 / f <1.05. When the value goes below the lower limit of the conditional expression (3), a large under-coma aberration is generated with respect to a light beam near the maximum angle of view, which makes correction difficult. On the other hand, when the value exceeds the upper limit, negative distortion occurs too much, and it becomes difficult to obtain the ideal image height Y = fθ required for the fθ lens. Also,
The bulge of spherical aberration becomes large, which adversely affects coma.

【0013】[0013]

【実施例】次に本発明のテレセントリックfθレンズの
実施例について説明する。実施例1、2、3のレンズ構
成は図1に示すごとく物界側から順に、物界側に凹面を
向けた正メニスカスレンズの第1レンズL1 、負レンズ
の第2レンズL2、物界側に凹面を向けた正メニスカス
レンズの第3レンズL3 、物界側に凹面を向けた正メニ
スカスレンズの第4レンズL4 、正レンズの第5レンズ
5 から成る。
EXAMPLES Next, examples of the telecentric fθ lens of the present invention will be described. As shown in FIG. 1, the lens configurations of Examples 1, 2, and 3 are, in order from the object side, a positive meniscus first lens L 1 having a concave surface facing the object side, a negative second lens L 2 , and an object. The third lens L 3 is a positive meniscus lens having a concave surface facing the field side, the fourth lens L 4 is a positive meniscus lens having a concave surface facing the object side, and the fifth lens L 5 is a positive lens.

【0014】図2、3、4はそれぞれ実施例1、2、3
の球面収差、非点収差、歪曲収差、横収差を表してい
る。以下に各実施例のデータを示す。fは全系の焦点距
離、F NO. はFナンバー、λは波長、2θは偏向角、r
は曲率半径、dはレンズ面間の間隔で単位は共にミリメ
ートル、(但し、d0 は入射瞳と第1面との光軸上の空
気間隔)、nd 及びνd はd線に対する屈折率及びアッ
ベ数である。 〔実施例1〕 f=100 FNO.=14 λ=488nm 2θ=3
3.6° d0 =15.475 NO. r d n d νd 1 -98.756 2.652 1.90265 35.724 L1 2 -55.809 10.000 3 -23.886 3.217 1.74077 27.631 L2 4 ∞ 3.000 5 -38.355 5.261 1.90265 35.724 L3 6 -35.809 0.087 7 -631.766 7.044 1.78797 47.465 L4 8 -37.634 101.130 9 ∞ 7.522 1.90265 35.724 L5 10 -181.021 r5 /r6 =1.071 d8 /f=1.011 〔実施例2〕 f=100 FNO.=14 λ=488nm 2θ=3
3.6° d0 =15.339 NO. r d n d νd 1 -111.700 2.662 1.74950 35.191 L1 2 -53.153 9.789 3 -23.426 2.531 1.74077 27.631 L2 4 ∞ 3.022 5 -37.563 5.858 1.86994 39.816 L3 6 -35.229 0.506 7 -505.762 6.858 1.78797 47.465 L4 8 -37.359 101.834 9 ∞ 7.918 1.90265 35.724 L5 10 -184.154 r5 /r6 =1.066 d8 /f=1.018 〔実施例3〕 f=100 FNO.=14 λ=488nm 2θ=3
3.6° d0 =15.833 NO. r d n d νd 1 -142.581 2.709 1.84042 43.347 L1 2 -58.631 9.505 3 -24.440 1.790 1.80458 25.499 L2 4 ∞ 3.218 5 -38.741 6.290 1.90265 35.724 L3 6 -36.198 1.289 7 -434.460 7.017 1.79631 40.897 L4 8 -37.939 101.909 9 ∞ 7.946 1.90265 35.724 L5 10 -189.165 r5 /r6 =1.070 d8 /f=1.019 各収差図より各実施例ともF値が14で、スポット径を
小さくしたテレセントリックfθレンズとして、球面収
差、歪曲収差、コマ収差が良好に補正されていることが
判る。
2, 3 and 4 are the first, second and third embodiments, respectively.
Represents spherical aberration, astigmatism, distortion, and lateral aberration of
It The data of each Example are shown below. f is the focal length of the entire system
Away, F NO.Is the F number, λ is the wavelength, 2θ is the deflection angle, and r
Is the radius of curvature, d is the distance between the lens surfaces, both in millimeters.
Heart, (however, d0Is the sky on the optical axis between the entrance pupil and the first surface
Interval), ndAnd νdIs the refractive index and
It is a base number. [Example 1] f = 100 FNO. = 14 λ = 488 nm 2θ = 3
3.6 ° d0= 15.475 NO. R d nd νd 1 -98.756 2.652 1.90265 35.724 L1 2 -55.809 10.000 3 -23.886 3.217 1.74077 27.631 L2 4 ∞ 3.000 5 -38.355 5.261 1.90265 35.724 L3 6 -35.809 0.087 7 -631.766 7.044 1.78797 47.465 LFour 8 -37.634 101.130 9 ∞ 7.522 1.90265 35.724 LFive 10 -181.021 rFive/ R6= 1.071 d8/F=1.011 [Example 2] f = 100 FNO. = 14 λ = 488 nm 2θ = 3
3.6 ° d0= 15.339 NO. R d nd νd 1 -111.700 2.662 1.74950 35.191 L1 2 -53.153 9.789 3 -23.426 2.531 1.74077 27.631 L2 4 ∞ 3.022 5 -37.563 5.858 1.86994 39.816 L3 6 -35.229 0.506 7 -505.762 6.858 1.78797 47.465 LFour 8 -37.359 101.834 9 ∞ 7.918 1.90265 35.724 LFive 10 -184.154 rFive/ R6= 1.066 d8/F=1.018 [Example 3] f = 100 FNO. = 14 λ = 488 nm 2θ = 3
3.6 ° d0= 15.833 NO. R d nd νd 1 -142.581 2.709 1.84042 43.347 L1 2 -58.631 9.505 3 -24.440 1.790 1.80458 25.499 L2 4 ∞ 3.218 5 -38.741 6.290 1.90265 35.724 L3 6 -36.198 1.289 7 -434.460 7.017 1.79631 40.897 LFour 8 -37.939 101.909 9 ∞ 7.946 1.90265 35.724 LFive 10 -189.165 rFive/ R6= 1.070 d8/F=1.019 From each aberration diagram, the F value is 14 and the spot diameter is
As a reduced telecentric fθ lens, spherical surface
The difference, distortion, and coma are well corrected.
I understand.

【0015】[0015]

【発明の効果】以上の様に、本発明によれば、F値が小
さく、レンズ最終面と走査面との間隔が広く、かつ収差
が良好に補正されたテレセントリックなfθレンズを提
供することができるので、走査スポットが小径化でき、
また等速度回転の回転多面鏡とシリンドリカルレンズな
どの面倒れ補正機能を有するものとを用いた走査光学系
に適合させることができ、なおかつ良好な像を得ること
ができる。
As described above, according to the present invention, it is possible to provide a telecentric fθ lens having a small F value, a wide distance between the final lens surface and the scanning surface, and good aberration correction. As a result, the scanning spot can be made smaller,
Further, it can be adapted to a scanning optical system using a rotary polygon mirror rotating at a constant speed and a lens having a surface tilt correction function such as a cylindrical lens, and a good image can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のテレセントリックfθレンズの配置構
成図である。
FIG. 1 is an arrangement configuration diagram of a telecentric fθ lens of the present invention.

【図2】実施例1の諸収差図である。FIG. 2 is a diagram of various types of aberration in the first example.

【図3】実施例2の諸収差図である。FIG. 3 is a diagram of various types of aberration of the second embodiment.

【図4】実施例3の諸収差図である。FIG. 4 is a diagram of various types of aberration of the third example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物界側から順に、物界側に凹面を向けた正
メニスカスレンズの第1レンズ、負レンズの第2レン
ズ、物界側に凹面を向けた正メニスカスレンズの第3レ
ンズ、物界側に凹面を向けた正メニスカスレンズの第4
レンズ、正レンズの第5レンズから成り、第1レンズの
屈折率をn1 、物界側から数えて第5、6番目のレンズ
面の曲率半径をr5 、r6 、第4レンズと第5レンズと
の光軸上の空気間隔をd 8 、全系の焦点距離をfとする
とき、次の条件(1)〜(3)を満たすことを特徴とす
るテレセントリックfθレンズ。 (1)1.7<n1 (2)1<r5 /r6 <1.1 (3)1<d8 /f<1.1
1. A positive surface with a concave surface facing the object side in order from the object side.
First lens of meniscus lens, second lens of negative lens
3rd lens of positive meniscus lens with concave surface facing the object side
No. 4 of positive meniscus lens with concave surface facing the object side
The lens consists of the fifth lens, which is a positive lens, and the first lens
Refractive index n1, The 5th and 6th lenses from the object side
The radius of curvature of the surface is rFive, R6, 4th lens and 5th lens
The air space on the optical axis of d 8, F is the focal length of the entire system
In this case, the following conditions (1) to (3) are satisfied.
Telecentric fθ lens. (1) 1.7 <n1 (2) 1 <rFive/ R6<1.1 (3) 1 <d8/F<1.1
JP6080501A 1994-04-19 1994-04-19 Telecentric ftheta lens Pending JPH07287163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080501A JPH07287163A (en) 1994-04-19 1994-04-19 Telecentric ftheta lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080501A JPH07287163A (en) 1994-04-19 1994-04-19 Telecentric ftheta lens

Publications (1)

Publication Number Publication Date
JPH07287163A true JPH07287163A (en) 1995-10-31

Family

ID=13720061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080501A Pending JPH07287163A (en) 1994-04-19 1994-04-19 Telecentric ftheta lens

Country Status (1)

Country Link
JP (1) JPH07287163A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122647A (en) * 2014-07-16 2014-10-29 深圳市大族激光科技股份有限公司 Optical lens
WO2015024231A1 (en) * 2013-08-22 2015-02-26 深圳市大族激光科技股份有限公司 Large-field-of-view achromatic lens
CN109507789A (en) * 2018-12-28 2019-03-22 大族激光科技产业集团股份有限公司 A kind of telecentric lens, laser processing device and processing method for laser processing
WO2020010538A1 (en) * 2018-07-11 2020-01-16 大族激光科技产业集团股份有限公司 Telecentric lens and laser processing equipment
WO2021127825A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024231A1 (en) * 2013-08-22 2015-02-26 深圳市大族激光科技股份有限公司 Large-field-of-view achromatic lens
US9791664B2 (en) 2013-08-22 2017-10-17 Han's Laser Technology Industry Group Co., Ltd. Large-field-of-view achromatic lens
CN104122647A (en) * 2014-07-16 2014-10-29 深圳市大族激光科技股份有限公司 Optical lens
CN104122647B (en) * 2014-07-16 2017-01-11 大族激光科技产业集团股份有限公司 Optical lens
WO2020010538A1 (en) * 2018-07-11 2020-01-16 大族激光科技产业集团股份有限公司 Telecentric lens and laser processing equipment
CN109507789A (en) * 2018-12-28 2019-03-22 大族激光科技产业集团股份有限公司 A kind of telecentric lens, laser processing device and processing method for laser processing
CN109507789B (en) * 2018-12-28 2021-04-02 大族激光科技产业集团股份有限公司 Telecentric lens for laser processing, laser processing device and processing method
WO2021127825A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens

Similar Documents

Publication Publication Date Title
JP2566405B2 (en) f / θ lens
US6512623B1 (en) Scanning optical device
JP2003215486A (en) Scanning optical system
US6831764B2 (en) Light scanning device and image forming apparatus using the same
US6236512B1 (en) Collimator lens and light-scanning apparatus using the same
JPH0679103B2 (en) Telecentric fθ lens
US8451522B2 (en) Optical scanning apparatus and image forming apparatus using the same
JPH07287163A (en) Telecentric ftheta lens
JP3713085B2 (en) Reflective scanning optical system
US5148304A (en) Optical beam scanning system
JPH0563777B2 (en)
US7023596B2 (en) Scanning optical system
JP2709944B2 (en) Telecentric fθ lens
JP3034565B2 (en) Telecentric fθ lens
JP3767167B2 (en) Optical system
JP3122452B2 (en) Optical scanning device
JPH1039205A (en) Scanning lens
JP3118030B2 (en) Ultra wide-angle lens with compact rear focus
JPH10186258A (en) (ftheta) lens system
JP3367246B2 (en) fθ lens system
JPH07104483B2 (en) Constant velocity scanning lens
JP4445059B2 (en) Scanning imaging lens and optical scanning device
JP2602716B2 (en) Optical system for light beam scanning
JP3293662B2 (en) Telecentric fθ lens and optical scanning device
JP3367247B2 (en) fθ lens system