[go: up one dir, main page]

JPH072838B2 - Process for producing polyalkylene oxide containing unsaturated group at molecular end - Google Patents

Process for producing polyalkylene oxide containing unsaturated group at molecular end

Info

Publication number
JPH072838B2
JPH072838B2 JP5874585A JP5874585A JPH072838B2 JP H072838 B2 JPH072838 B2 JP H072838B2 JP 5874585 A JP5874585 A JP 5874585A JP 5874585 A JP5874585 A JP 5874585A JP H072838 B2 JPH072838 B2 JP H072838B2
Authority
JP
Japan
Prior art keywords
compound
group
oxide
unsaturated group
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5874585A
Other languages
Japanese (ja)
Other versions
JPS61215622A (en
Inventor
祥平 井上
卓三 相田
道英 本間
克彦 諌山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP5874585A priority Critical patent/JPH072838B2/en
Priority to DE8686103830T priority patent/DE3667991D1/en
Priority to EP86103830A priority patent/EP0196565B1/en
Priority to CA000504656A priority patent/CA1255050A/en
Publication of JPS61215622A publication Critical patent/JPS61215622A/en
Priority to US07/170,571 priority patent/US4904745A/en
Publication of JPH072838B2 publication Critical patent/JPH072838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分子末端に不飽和基を含有し、かつ分子量分布
の狭いポリアルキレンオキサイドを製造する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a polyalkylene oxide containing an unsaturated group at the molecular end and having a narrow molecular weight distribution.

分子末端に不飽和基を有するポリアルキレンオキシドは
単独で硬化させてゴム材料に使用したり、他のポリマー
にブレンドする架橋性の改質剤として用いることができ
る。さらに分子末端の不飽和基を他のより活性な官能基
に変換しテレケリックの液状ゴムとして種々の用途に用
いられうる。
The polyalkylene oxide having an unsaturated group at the molecular terminal can be used alone as a rubber material after curing, or can be used as a crosslinkable modifier blended with other polymer. Further, the unsaturated group at the terminal of the molecule can be converted into another more active functional group and used as a telechelic liquid rubber in various applications.

[従来の技術、発明が解決しようとする問題点] 分子鎖の両末端に不飽和基を導入する方法として、通常
のアニオン重合でえられるポリオキシプロピレングリコ
ールの水酸基を苛性アルカリ(KOH、NaOH)、ナトリウ
ムメトキシドまたは金属ナトリウムなどと反応させてア
ルコキシド末端とし、つづいてアリルクロライドなどの
不飽和基含有活性ハロゲン化合物と反応させて不飽和基
末端のポリプロピレンオキシドをうる方法が提案されて
いる。プロピレンオキシドのKOH触媒による通常のアニ
オン重合では、生長末端がプロピレンオキシドモノマー
に対し連鎖移動反応を起こすため、3,000以上の分子量
をもつポリオキシプロピレングリコール製造は困難であ
り、また分子量分布も広くなるという問題も有してい
る。
[Prior arts and problems to be solved by the invention] As a method of introducing an unsaturated group into both ends of a molecular chain, a hydroxyl group of polyoxypropylene glycol obtained by usual anionic polymerization is converted into caustic alkali (KOH, NaOH). , Sodium methoxide or metallic sodium to form an alkoxide terminal, and then react with an unsaturated group-containing active halogen compound such as allyl chloride to obtain a polypropylene oxide having an unsaturated group terminal. In the usual anionic polymerization of propylene oxide with KOH catalyst, it is difficult to produce polyoxypropylene glycol having a molecular weight of 3,000 or more because the growing end undergoes a chain transfer reaction to the propylene oxide monomer, and the molecular weight distribution is broadened. I also have problems.

そのため、これを原料として製造する不飽和基末端のポ
リプロピレンオキシドも、3,000以上の分子量をもつポ
リマーをうるには、ポリオキシプロピレングリコールの
水酸基同士を反応させて分子鎖延長反応を行なわなけれ
ばならぬという複雑な反応工程が必要になり、また、狭
い分子量分布をもつポリマーをうるのも難かしいという
問題を有している。
Therefore, in order to obtain a polymer having a molecular weight of 3,000 or more, an unsaturated group-terminated polypropylene oxide produced using this as a raw material must also undergo a molecular chain extension reaction by reacting the hydroxyl groups of polyoxypropylene glycol. However, there is a problem that it is difficult to obtain a polymer having a narrow molecular weight distribution.

[問題点を解決するための手段] 本発明者らはすでに、有機アルミニウム化合物とポルフ
ィリンとを反応させてえられる錯体触媒を使用すれば、
プロピレンオキシドのリビング重合を行なわすことがで
きることを見出し、また、分子量分布の狭い任意の分子
量をもつポリマーの合成が可能であることを明らかにし
ている。
[Means for Solving Problems] The present inventors have already used a complex catalyst obtained by reacting an organoaluminum compound with porphyrin,
It has been found that living polymerization of propylene oxide can be carried out, and that it is possible to synthesize a polymer having an arbitrary molecular weight with a narrow molecular weight distribution.

本発明者らは、この新しい錯体触媒をうまく応用すれ
ば、分子末端に不飽和基を含有し、かつ分子量分布の狭
いポリプロピレンオキシドを任意の分子量で容易に合成
可能ではないかと考え種々検討した結果、特殊な錯体触
媒を選定してプロピオンオキシドの重合を行ない、つづ
いて特殊なハロゲン化合物で停止反応を行なえば、目的
とするポリマーがえられることを見出し、本発明に到達
した。
The present inventors thought that if this new complex catalyst was applied successfully, it would be possible to easily synthesize polypropylene oxide containing an unsaturated group at the molecular end and having a narrow molecular weight distribution at any molecular weight. The inventors have found that the desired polymer can be obtained by selecting a special complex catalyst to polymerize propion oxide, and then terminating the reaction with a special halogen compound, and arrived at the present invention.

すなわち本発明は、有機アルミニウム化合物とポルフィ
リン化合物とを反応させてえられるアルミニウムポルフ
ィリン錯体に対し、 (a)水酸基およびカルボン酸基から選ばれた活性水素
原子と不飽和基とを1分子中に含む活性水素含有有機化
合物を反応させてえられる錯体触媒を用いてアルキレン
オキシドの重合を行ない、つづいて(c)不飽和基と活
性ハロゲン原子とを1分子中に含む有機化合物、および
(d)活性ハロゲン原子を1分子中に2個以上含む有機
化合物から選ばれた活性ハロゲン含有化合物を反応させ
る ことを特徴とする分子末端に不飽和基を含有するポリア
ルキレンオキシドの製造方法に関する。
That is, the present invention relates to an aluminum porphyrin complex obtained by reacting an organoaluminum compound and a porphyrin compound with (a) an active hydrogen atom selected from a hydroxyl group and a carboxylic acid group and an unsaturated group in one molecule. The alkylene oxide is polymerized by using a complex catalyst obtained by reacting an active hydrogen-containing organic compound, and then (c) an organic compound containing an unsaturated group and an active halogen atom in one molecule, and (d) an activity. The present invention relates to a method for producing a polyalkylene oxide having an unsaturated group at the molecular end, which comprises reacting an active halogen-containing compound selected from organic compounds containing two or more halogen atoms in one molecule.

また、本発明は、有機アルミニウム化合物とポルフィリ
ン化合物とを反応させてえられるアルミニウムポルフィ
リン錯体に対し、 (b)水酸基およびカルボン酸基から選ばれた活性水素
原子を1分子中に2個以上含む活性水素含有有機化合物
を反応させてえられる錯体触媒を用いてアルキレンオキ
シドの重合を行ない、つづいて(c)不飽和基と活性ハ
ロゲン原子とを1分子中に含む活性ハロゲン含有化合物
を反応させる ことを特徴とする分子末端に不飽和基を含有するポリア
ルキレンオキシドの製造方法に関する。
In addition, the present invention relates to an aluminum porphyrin complex obtained by reacting an organoaluminum compound and a porphyrin compound with (b) an activity containing two or more active hydrogen atoms selected from a hydroxyl group and a carboxylic acid group in one molecule. The alkylene oxide is polymerized using a complex catalyst obtained by reacting a hydrogen-containing organic compound, and then (c) an active halogen-containing compound containing an unsaturated group and an active halogen atom in one molecule is reacted. The present invention relates to a method for producing a polyalkylene oxide containing an unsaturated group at a characteristic molecular end.

[作用および実施例] 本発明に適用されるアルキレンオキシドは、エチレンオ
キシド、プロピレンオキシド、1-ブチレンオキシド、エ
ピクロルヒドリドンなどのような末端三員環エポキシ基
を有する脂肪族アルキレンオキシド、スチレンオキシド
のような三員環エポキシ基を有する芳香族アルキレンオ
キシドであるが、脂肪族アルキレンオキシドが好まし
く、とくにプロピレンオキシドが好ましい。
[Operations and Examples] Alkylene oxides applicable to the present invention include aliphatic alkylene oxides having a terminal three-membered ring epoxy group such as ethylene oxide, propylene oxide, 1-butylene oxide, epichlorohydridone, and styrene oxide. Among the aromatic alkylene oxides having a three-membered ring epoxy group, aliphatic alkylene oxides are preferable, and propylene oxide is particularly preferable.

本発明において使用される有機アルミニウム化合物は、
トリメチルアルミニウム、トリエチルアルミニウム、ト
リプロピルアルミニウム、トリイソブチルアルミニウム
などのような炭素数4以下のアルキル基を有するトリア
ルキルアルミニウム類、ジエチルアルミニウムハイドラ
イド、ジイソブチルアルミニウムハイドライドなどのよ
うな炭素数4以下のアルキル基と水素原子とを含有する
アルキルアルミニウムハイドライド類が有効に使用しう
るが、トリアルキルアルミニウム類が好ましく、とくに
トリエチルアルミニウムが好ましい。
The organoaluminum compound used in the present invention is
Trialkylaluminums having an alkyl group having 4 or less carbon atoms such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, etc., and an alkyl group having 4 or less carbon atoms such as diethylaluminum hydride, diisobutylaluminum hydride and the like. Although alkylaluminum hydrides containing a hydrogen atom can be effectively used, trialkylaluminums are preferable, and triethylaluminum is particularly preferable.

本発明で使用されるポルフィリン化合物は、式(1): (式中、R2は水素原子および炭素数10以下の1価の炭化
水素から選ばれた基、R1は水素原子および炭素数4以下
のアルキル基から選ばれる同種もしくは異種の1価の基
である)で示される。テトラメチルテトラエチルポルフ
ィリン、オクタエチルポルフィリン、テトラフェニルポ
ルフィリンなどが具体的に例示されうるが、式(1)に
おいてR1が水素原子でR2がフェニル基であるテトラフェ
ニルポルフィリンがとくに好ましい。
The porphyrin compound used in the present invention has the formula (1): (In the formula, R 2 is a group selected from a hydrogen atom and a monovalent hydrocarbon having 10 or less carbon atoms, and R 1 is the same or different monovalent group selected from a hydrogen atom and an alkyl group having 4 or less carbon atoms. Is indicated). Specific examples thereof include tetramethyltetraethylporphyrin, octaethylporphyrin, and tetraphenylporphyrin, and tetraphenylporphyrin in which R 1 is a hydrogen atom and R 2 is a phenyl group in formula (1) is particularly preferable.

有機アルミニウム化合物とポルフィリン化合物との反応
でえられるアルミニウムポルフィリン錯体(I)は、窒
素のような不活性気体の雰囲気下、溶媒の存在下にポリ
フィリン化合物に約等モルの有機アルミニウム化合物を
加えることにより調製される。溶媒としては、たとえば
ベンゼン、トルエン、キシレンのような炭化水素類、塩
化メチレン、クロロホルム、ジクロルエタンのようなハ
ロゲン化炭化水素を使用しうる。このようにしてえられ
るアルミニウムポルフィリン錯体は、有機アルミニウム
化合物としてトリエチルアルミニウムを使用し、ポルフ
ィリン化合物としてテトラフェニルポリフィリンを使用
したばあい、式(2): のように推定されている。
The aluminum porphyrin complex (I) obtained by the reaction of an organoaluminum compound and a porphyrin compound is obtained by adding about an equimolar amount of an organoaluminum compound to a porphyrin compound in the presence of a solvent in an atmosphere of an inert gas such as nitrogen. Is prepared. As the solvent, for example, hydrocarbons such as benzene, toluene and xylene, and halogenated hydrocarbons such as methylene chloride, chloroform and dichloroethane can be used. The aluminum porphyrin complex thus obtained has the formula (2): when triethylaluminum is used as the organoaluminum compound and tetraphenylporphyrin is used as the porphyrin compound. Is estimated as.

本発明においては、アルミニウムポリフィリン錯体に、
(a)水酸基およびカルボン酸基から選ばれた活性水素
原子と不飽和原子とを1分子中に含む有機化合物、およ
び(b)水酸基およびカルボン酸基から選ばれた活性水
素原子を1分子中に2個以上含む有機化合物から選ばれ
た活性水素化合物を反応させてアルキレンオキシド重合
用の錯体触媒(II)を調製する。(a)の化合物として
は、アリルアルコール、エチレングリコールモノアリル
エーテル、3-ブテニルアルコール、2-ヒドロキシエチル
アクリレートなどのような不飽和脂肪族アルコール類、
ビニルフェノール、アリロキシフェノールなどのような
不飽和フェノール類;アクリル酸、メタクリル酸などの
ような不飽和カルボン酸類が具体的に例示されうる。
(b)の化合物としてはトリエチレングリコール、トリ
プロピレングリコール、2,2-ビス(4−ヒドロキシフェ
ニル)プロパン、グリセリンなどの多価アルコール類;
アジピン酸、セバシン酸などの多価カルボン酸類が具体
的に例示されうる。(a)の化合物が好ましく、とくに
アリルアルコールおよびアクリル酸が好ましい。
In the present invention, the aluminum porphyrin complex,
(A) An organic compound containing an active hydrogen atom and an unsaturated atom selected from a hydroxyl group and a carboxylic acid group in one molecule, and (b) an active hydrogen atom selected from a hydroxyl group and a carboxylic acid group in one molecule. An active hydrogen compound selected from two or more organic compounds is reacted to prepare a complex catalyst (II) for alkylene oxide polymerization. Examples of the compound (a) include unsaturated aliphatic alcohols such as allyl alcohol, ethylene glycol monoallyl ether, 3-butenyl alcohol, and 2-hydroxyethyl acrylate,
Specific examples thereof include unsaturated phenols such as vinylphenol and allyloxyphenol; and unsaturated carboxylic acids such as acrylic acid and methacrylic acid.
Examples of the compound (b) include polyethylene alcohols such as triethylene glycol, tripropylene glycol, 2,2-bis (4-hydroxyphenyl) propane and glycerin;
Specific examples include polyvalent carboxylic acids such as adipic acid and sebacic acid. The compound (a) is preferable, and allyl alcohol and acrylic acid are particularly preferable.

アルミニウムポルフィリン錯体と活性水素含有化合物と
を反応させてえられる錯体触媒(II)は、アルミニウム
ポルフィリン錯体と活性水素原子とがほぼ等モル量にな
るように混合して調製される。このようにしてえられる
錯体触媒は、アルミニウムポルフィリン錯体として式
(2)のものを使用し、活性水素含有化合物としてアリ
ルアルコールまたはアクリル酸を使用したばあい、式
(3): (式中、アルコールのばあいR3が‐OCH2CH=CH2、アク
リル酸のばあい R3のように提案されている。
The complex catalyst (II) obtained by reacting the aluminum porphyrin complex with the active hydrogen-containing compound is prepared by mixing the aluminum porphyrin complex and the active hydrogen atom so that the amounts are almost equimolar. As the complex catalyst thus obtained, when the one having the formula (2) is used as the aluminum porphyrin complex and allyl alcohol or acrylic acid is used as the active hydrogen-containing compound, the compound having the formula (3): (Wherein, in the case of the alcohol R 3 is -OCH 2 CH = CH 2, if R 3 Acrylic acid Is proposed as.

本発明においては、錯体触媒(II)を用いて、不活性気
体の雰囲気下、無溶剤もしくは溶剤の存在下でアルキレ
ンオキシドの重合を行なう。不活性気体としては窒素が
好適であり、溶剤としてはベンゼン、トルエン、キシレ
ンのような炭化水素類、塩化メチレン、クロロホルム、
ジクロルエタンのようなハロゲン化炭化水素類が使用さ
れる。溶剤の使用量は任意に選択でき、重合は常温で充
分進行するが、加温重合することもできる。えられるポ
リアルキレンオキシドの分子量は、錯体触媒(II)に対
してアルキレンオキシドの使用量が増すと、ほぼ自動的
に決まる。錯体触媒(II)に対してアルキレンオキシド
の使用量が増すと、生成するポリアルキレンオキシドの
分子量も増大する。アルキレンオキシドの使用量は任意
に選択できるが、通常触媒(II)に対して10倍モルから
1000倍モルの範囲である。とくに50倍モルから500倍モ
ルの範囲がよい。
In the present invention, the alkylene oxide is polymerized using the complex catalyst (II) in the atmosphere of an inert gas, without solvent or in the presence of a solvent. Nitrogen is preferable as the inert gas, and as the solvent, hydrocarbons such as benzene, toluene and xylene, methylene chloride, chloroform,
Halogenated hydrocarbons such as dichloroethane are used. The amount of the solvent used can be arbitrarily selected, and although the polymerization proceeds sufficiently at room temperature, it is also possible to carry out heating polymerization. The molecular weight of the obtained polyalkylene oxide is determined almost automatically as the amount of alkylene oxide used with respect to the complex catalyst (II) increases. When the amount of alkylene oxide used is increased with respect to the complex catalyst (II), the molecular weight of the polyalkylene oxide produced also increases. The amount of alkylene oxide used can be arbitrarily selected, but is usually 10 times mol based on the catalyst (II).
It is in the range of 1000 times the mole. Particularly, the range of 50-fold to 500-fold mole is preferable.

錯体触媒(II)を用いてアルキレンオキシドの重合を行
なったのち、(c)末端不飽和基と活性ハロゲン原子と
を1分子中に含む有機化合物、および(d)活性ハロゲ
ン原子を分子中に2個以上含む有機化合物から選ばれた
活性ハロゲン含有化合物を反応させることにより分子末
端に不飽和基を含有するポリアルキレンオキシドを製造
しうる。ただし、錯体触媒(II)を前記活性水素含有有
機化合物(b)を用いて調製したばあいは、化合物
(c)のみが使用できる。(c)の化合物としてはアリ
ルクロライド、アリルブロマイド、アリルアイオダイド
などのようなアリルハロゲン化合物類;ビニルベンジル
クロライド、アリルベンジルクロライドなどのようなベ
ンジル型ハロゲン化合物類;アクリル酸クロライド、メ
タクリル酸クロライド、ビニル安息香酸クロライド、ク
ロロギ酸アリルなどのような酸ハロゲン化合物類などが
具体的に例示されうる。(d)の化合物としてはビス
(クロロメチル)ベンゼン、ビス(ブロモメチル)ベン
ゼン、トリス(ブロモメチル)ベンゼン、アジピン酸ジ
クロライド、ホスゲンなどのようなベンジル型ハロゲン
もしくは酸ハロゲン型のハロゲンを2個以上含むハロゲ
ン化合物が具体的に例示されうる。好ましくは、(c)
のハロゲン化合物であり、とくにアリルハロゲン化合物
やアクリル酸クロライドが好ましい。(c)の化合物を
使用するばあいは、錯体触媒(II)に対して等モル以上
用いて反応させればよい。(d)の化合物を用いるばあ
いは錯体触媒(II)に対し、(d)中の活性ハロゲン基
がほぼ等モルになる条件下で反応させればよい。
After the alkylene oxide is polymerized using the complex catalyst (II), (c) an organic compound containing a terminal unsaturated group and an active halogen atom in one molecule, and (d) an active halogen atom in the molecule of 2 A polyalkylene oxide having an unsaturated group at the molecular end can be produced by reacting an active halogen-containing compound selected from organic compounds containing at least one of these. However, when the complex catalyst (II) is prepared using the active hydrogen-containing organic compound (b), only the compound (c) can be used. Examples of the compound (c) include allyl halides such as allyl chloride, allyl bromide and allyl iodide; benzyl type halogen compounds such as vinylbenzyl chloride and allylbenzyl chloride; acrylic acid chloride, methacrylic acid chloride, Specific examples thereof include acid halogen compounds such as vinyl benzoyl chloride and allyl chloroformate. Examples of the compound (d) include bis (chloromethyl) benzene, bis (bromomethyl) benzene, tris (bromomethyl) benzene, adipic acid dichloride, halogens containing two or more benzylic halogens or acid halogenic halogens such as phosgene. The compound may be specifically exemplified. Preferably (c)
The halogen compound of (1) is particularly preferable, and an allyl halogen compound and acrylic acid chloride are particularly preferable. When the compound (c) is used, it may be reacted in an equimolar amount or more with respect to the complex catalyst (II). When the compound of (d) is used, it may be reacted with the complex catalyst (II) under the condition that the active halogen groups in (d) are almost equimolar.

本発明において、分子末端に不飽和基を含有するポリア
ルキレンオキシドをたとえばつぎの方法で具体的にうる
ことができる。
In the present invention, a polyalkylene oxide having an unsaturated group at its molecular end can be specifically obtained by, for example, the following method.

(イ)アルミニウムポルフィリン錯体(I)に(a)の
化合物を反応させて錯体触媒(II)を調製し、アルキレ
ンオキシドの重合を行なったのち、(c)の化合物で停
止反応を行なう。
(A) The compound of (a) is reacted with the aluminum porphyrin complex (I) to prepare the complex catalyst (II), the alkylene oxide is polymerized, and then the termination reaction is carried out with the compound of (c).

(ロ)(イ)と同様にしてアルキレンオキシドの重合を
行なったのち、(d)の化合物で停止反応を行なう。
(B) After the alkylene oxide is polymerized in the same manner as in (a), the termination reaction is carried out with the compound (d).

(ハ)アルミニウムポルフィリン錯体(I)に(b)の
化合物を反応させて錯体触媒(II)を調製し、アルキレ
ンオキシドの重合を行なったのち、(c)の化合物で停
止反応を行なう。
(C) The aluminum porphyrin complex (I) is reacted with the compound (b) to prepare the complex catalyst (II), and the alkylene oxide is polymerized, and then the termination reaction is carried out with the compound (c).

少ない触媒量で目的とする分子量のポリマーがえられる
という点から、(イ)の方法が好ましい。
The method (a) is preferable because a polymer having a target molecular weight can be obtained with a small amount of catalyst.

本発明でえられた分子末端に不飽和基を含有する分子量
分布の狭いアルキレンオキシドのポリマーは、電子線や
紫外線で硬化させることにより、接着剤、塗料、ゴム材
料などとして使用可能である。また他のポリマーにブレ
ンドして架橋性の改質剤として用いることもできる。さ
らに、分子末端の不飽和基を他のより活性な官能基に変
換し、テレケリックの液状ゴムとして種々の用途に使用
しうる。
The alkylene oxide polymer having an unsaturated group at the molecular end and having a narrow molecular weight distribution obtained in the present invention can be used as an adhesive, a paint, a rubber material, etc. by curing with an electron beam or ultraviolet ray. It can also be blended with other polymers and used as a crosslinkable modifier. Further, the unsaturated group at the terminal of the molecule can be converted into another more active functional group, and can be used in various applications as a telechelic liquid rubber.

[発明の効果] 本発明の方法によれば、末端に不飽和基を有する高分子
量ポリアルキレンオキシドを簡便な方法でうることがで
き、また分子量の狭い重合体がえられる。
[Effect of the Invention] According to the method of the present invention, a high molecular weight polyalkylene oxide having an unsaturated group at the terminal can be obtained by a simple method, and a polymer having a narrow molecular weight can be obtained.

つぎに参考例および実施例をあげて本発明の方法を説明
するが、本発明はかかる実施例のみに限定されるもので
はない。
The method of the present invention will be described below with reference to Reference Examples and Examples, but the present invention is not limited to such Examples.

参考例1 トリエチルアルミニウム0.28mlとα,β,γ,δ‐テト
ラフェニルポルフィリン1.21gとを窒素雰囲気下、塩化
メチレン溶媒40mlの存在下に室温で反応させて、式
(2)と推定される構造をもつアルミニウムポルフィリ
ン錯体を含有する塩化メチレン溶液をえた。この溶液に
アリルアルコール1.2mlを加えて、室温で反応させたの
ち、溶媒と未反応のアリルアルコールを減圧下で除去
し、錯体触媒(A)をえた。この錯体触媒(A)は式
(3)において、R3が−OCH2CH=CH2であるものと推定
される構造を有していた。
Reference Example 1 0.28 ml of triethylaluminum and 1.21 g of α, β, γ, δ-tetraphenylporphyrin were reacted at room temperature in the presence of a methylene chloride solvent of 40 ml under a nitrogen atmosphere, and the structure of the formula (2) was estimated. A methylene chloride solution containing an aluminum porphyrin complex having After 1.2 ml of allyl alcohol was added to this solution and reacted at room temperature, the solvent and unreacted allyl alcohol were removed under reduced pressure to obtain a complex catalyst (A). The complex catalyst (A) in the formula (3) had a structure wherein R 3 is assumed is -OCH 2 CH = CH 2.

参考例2 アリルアルコールのかわりにアクリル酸0.14mlを使用し
たほかは参考例1と同様にして錯体触媒(B)をえた。
この錯体触媒(B)は式(3)において、R3であるものと推定される構造を有していた。
Reference Example 2 A complex catalyst (B) was obtained in the same manner as in Reference Example 1 except that 0.14 ml of acrylic acid was used instead of allyl alcohol.
In this complex catalyst (B), in the formula (3), R 3 is Had a structure presumed to be

実施例1 参考例1でえられた錯体触媒(A)1.21gを、窒素置換
されたガラス製ナス型フラスコにとったのち、窒素雰囲
気下で塩化メチレン10ml、プロピレンオキシド2.2gを加
え、マグネチックスターラーで攪拌下、室温にて2日間
重合させた。重合終了後、減圧下で未反応のプロピレン
オキシドおよび塩化メチレンを除去し、重合率を測定し
たところ100%であった。つづいて、アリルブロマイド2
0mlを加え、70℃で32時間反応させたのち、過剰のアリ
ルブロマイドを減圧除去した。さらにつづいてヘキサン
を加え、ポルフィリン錯体を濾別し、濾液より減圧下で
ヘキサンを除去すると2.1gのポリプロピレンオキシドが
えられた。このポリプロピレンオキシドの分子量と分子
量分布をGPCで測定した結果を第1表に示す。
Example 1 1.21 g of the complex catalyst (A) obtained in Reference Example 1 was placed in a nitrogen-purged glass eggplant-shaped flask, and then 10 ml of methylene chloride and 2.2 g of propylene oxide were added under a nitrogen atmosphere, and the mixture was magnetic. Polymerization was carried out at room temperature for 2 days while stirring with a stirrer. After completion of the polymerization, unreacted propylene oxide and methylene chloride were removed under reduced pressure and the polymerization rate was measured to be 100%. Next, allyl bromide 2
After adding 0 ml and reacting at 70 ° C. for 32 hours, excess allyl bromide was removed under reduced pressure. Subsequently, hexane was added, the porphyrin complex was filtered off, and hexane was removed from the filtrate under reduced pressure to obtain 2.1 g of polypropylene oxide. The results of measuring the molecular weight and molecular weight distribution of this polypropylene oxide by GPC are shown in Table 1.

また、このポリプロピレンオキシドの末端基の解析を13
C-NMRおよびIRにて行なった。
Moreover, the analysis of the terminal groups of the polypropylene oxide 13
Performed by C-NMR and IR.

アルミニウムポルフィリン錯体でプロピレンオキシドの
重合を行ない、水分存在下でそのまま精製すると、 の末端水酸基構造をもつポリプロピレンオキシドがえら
れることは知られている。13C-NMRスペクトルでは、こ
の水酸基のついた*印の炭素の共鳴吸収が66.5ppm付近
にでるが、本実施例で得られたポリプロピレンオキシド
には、66.5ppmのこの共鳴吸収は観測されなかった。
When propylene oxide is polymerized with aluminum porphyrin complex and purified as it is in the presence of water, It is known that polypropylene oxide having a terminal hydroxyl group structure can be obtained. In the 13 C-NMR spectrum, the resonance absorption of this carbon with a hydroxyl group is in the vicinity of 66.5 ppm, but in the polypropylene oxide obtained in this example, this resonance absorption of 66.5 ppm was not observed. .

また、IRスペクトルでは水酸基の特性吸収は3500cm-1
近に通常でるが、本実施例のポリプロピレンオキシドで
は、この吸収が観測されなかった。これらの結果より、
えられたポリプロピレンオキシドの末端には水酸基はほ
とんど存在しないと結論できる。一方、本実施例のポリ
プロピレンオキシドでは に相当する13C-NMRの共鳴吸収が、(a)炭素が115〜11
6ppmに、(b)炭素が133〜134ppmに、(c)炭素が70
〜72ppmに観測された。ポリプロピレンオキシド中の主
鎖のメチル基の炭素の共鳴吸収が13C-NMRで17.3ppmにで
るが、このメチル基とアリルオキシ不飽和基との積分比
の比率より、両末端にすべて不飽和基が導入されたと仮
定して計算された推定分子量を求めた。この推定分子量
とGPCから求めた数平均分子量とがかなりよく一致した
ので、本実施例でえられたポリプロピレンオキシドは両
末端にアリルオキシ不飽和基を有していると結論でき
た。
Further, in the IR spectrum, the characteristic absorption of the hydroxyl group is usually around 3500 cm -1 , but this absorption was not observed in the polypropylene oxide of this example. From these results,
It can be concluded that there are almost no hydroxyl groups at the ends of the obtained polypropylene oxide. On the other hand, in the polypropylene oxide of this example, The resonance absorption of 13 C-NMR corresponding to (a) carbon is 115 to 11
6 ppm, (b) carbon 133-134 ppm, (c) carbon 70
Observed at ~ 72ppm. The resonance absorption of carbon of the methyl group of the main chain in polypropylene oxide was 13 C-NMR at 17.3 ppm, but from the ratio of the integral ratio of this methyl group and allyloxy unsaturated group, all unsaturated groups at both ends were The estimated molecular weight calculated assuming that it was introduced was obtained. Since this estimated molecular weight and the number average molecular weight determined by GPC were in good agreement, it was concluded that the polypropylene oxide obtained in this example had allyloxy unsaturated groups at both ends.

実施例2 錯体触媒(A)を使用して、実施例1と同様にして重
合、反応および分析を行なった。重合および反応の条
件、GPCおよびNMRによる分析結果を第1表に示す。NMR
1H-NMRにて行なった。
Example 2 Polymerization, reaction and analysis were carried out in the same manner as in Example 1 using the complex catalyst (A). Table 1 shows the polymerization and reaction conditions, and the results of GPC and NMR analysis. NMR
Was performed by 1 H-NMR.

ポリプロピレンオキシドの 末端基が、1H-NMRでは、(a)炭素につくプロトンがδ
5.0〜5.3ppmに、(b)炭素につくプロトンがδ5.7〜5.
9ppmに、(c)炭素につくプロトンがδ3.9〜4.1ppmに
共鳴吸収として観測された。ポリプロピレンオキシド中
の主鎖メチル基の共鳴吸収がδ1.0〜1.1ppmにでるが、
このメチル基とアリルオキシ基の(a)炭素上のプロト
ンとの積分比の比率より、末端不飽和基の含量を計算し
た。GPCより求められた数平均分子量8190を基準にして
計算すると、両末端の約78%がアリルオキシ不飽和基で
あると推定された。
Of polypropylene oxide In 1 H-NMR, the terminal group is (a) a proton attached to carbon is δ
At 5.0 to 5.3 ppm, (b) protons attached to carbon are δ 5.7 to 5.
At 9 ppm, a proton attached to carbon (c) was observed as resonance absorption at δ3.9 to 4.1 ppm. The resonance absorption of the main chain methyl group in polypropylene oxide is δ1.0-1.1 ppm,
The content of the terminal unsaturated group was calculated from the ratio of the integral ratio of the methyl group and the proton on the carbon (a) of the allyloxy group. When calculated based on the number average molecular weight of 8190 determined by GPC, it was estimated that about 78% of both ends were allyloxy unsaturated groups.

実施例3 錯体触媒(A)のかわりに参考例2でえられた錯体触媒
(B)を使用し、また重合後アリルブロマイドのかわり
にアクリル酸クロライドを使用したほかは、実施例1と
同様にして重合、反応および分析を行なった。重合およ
び反応条件、分析結果を第1表に示す。
Example 3 Similar to Example 1 except that the complex catalyst (B) obtained in Reference Example 2 was used in place of the complex catalyst (A), and acrylic acid chloride was used in place of allyl bromide after polymerization. Polymerization, reaction and analysis were carried out. Table 1 shows the polymerization and reaction conditions and the analysis results.

末端官能基分析は13C-NMRおよびIRにて行なった。IRス
ペクトルでは3500cm-1付近の水酸基の特性吸収が観測さ
れなかったこと、また、13C-NMRスペクトルでは水酸基
のついた炭素の66.5ppm付近の共鳴吸収が観測されなか
ったことより、えられたポリプロピレンオキシドの末端
には水酸基がほとんど存在していなかったと結論でき
る。一方、 に相当する13C-NMRの共鳴吸収が、(a)炭素が約130〜
132ppmに、(b)炭素が約128〜130ppmに、(c)炭素
が約165〜166ppmに観測され、また、IRスペクトルで172
5cm-1にエステルの吸収、1620〜1640cm-1に不飽和基の
吸収が観測されたので、分子末端にアクリロイルオキシ
基と有していたといえる。また、ポリプロピレンオキシ
ド中の主鎖のメチル基とアクリロイルオキシ不飽和基と
の積分比の比率により、両末端にすべて不飽和基が導入
されたとの仮定に計算された推定分子量を求めたが、こ
の推定分子量とGPCから求めた数平均分子量とがかなり
良く一致したので、本実施例でえられたポリプロピレン
オキシドは、両末端にアクリロイルオキシ不飽和基を有
していると結論できた。
The terminal functional group analysis was performed by 13 C-NMR and IR. It was obtained because the characteristic absorption of the hydroxyl group around 3500 cm -1 was not observed in the IR spectrum and the resonance absorption around 66.5 ppm of the carbon with the hydroxyl group was not observed in the 13 C-NMR spectrum. It can be concluded that there were almost no hydroxyl groups at the ends of polypropylene oxide. on the other hand, The resonance absorption of 13 C-NMR corresponding to (a) carbon is about 130-
At 132 ppm, (b) carbon was observed at about 128 to 130 ppm, and (c) carbon was observed at about 165 to 166 ppm.
Absorption of ester 5 cm -1, the absorption of unsaturated groups 1620~1640Cm -1 was observed, it can be said that had the acryloyloxy groups at the molecular terminal. Further, the estimated molecular weight calculated on the assumption that all unsaturated groups were introduced at both ends was obtained by the ratio of the integral ratio of the main chain methyl group and acryloyloxy unsaturated group in polypropylene oxide. Since the estimated molecular weight and the number average molecular weight determined by GPC were in good agreement, it was concluded that the polypropylene oxide obtained in this example had an acryloyloxy unsaturated group at both ends.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】有機アルミニウム化合物とポリフィリン化
合物とを反応させてえられるアルミニウムポルフィリン
錯体に対し、 (a)水酸基およびカルボン酸基から選ばれた活性水素
原子と不飽和基とを1分子中に含む活性水素含有有機化
合物を反応させてえられる錯体触媒を用いてアルキレン
オキシドの重合を行ない、つづいて(c)不飽和基と活
性ハロゲン原子とを1分子中に含む有機化合物、および
(d)活性ハロゲン原子を1分子中に2個以上含む有機
化合物から選ばれた活性ハロゲン含有化合物を反応させ
る ことを特徴とする分子末端に不飽和基を含有するポリア
ルキレンオキシドの製造方法。
1. An aluminum porphyrin complex obtained by reacting an organoaluminum compound and a porphyrin compound, wherein (a) an active hydrogen atom selected from a hydroxyl group and a carboxylic acid group and an unsaturated group are contained in one molecule. The alkylene oxide is polymerized by using a complex catalyst obtained by reacting an active hydrogen-containing organic compound, and then (c) an organic compound containing an unsaturated group and an active halogen atom in one molecule, and (d) an activity. A process for producing a polyalkylene oxide having an unsaturated group at the molecular end, which comprises reacting an active halogen-containing compound selected from organic compounds containing two or more halogen atoms in one molecule.
【請求項2】ポリフィリン化合物がテトラフェニルポル
フィリンである特許請求の範囲第1項記載の製造方法。
2. The method according to claim 1, wherein the porphyrin compound is tetraphenylporphyrin.
【請求項3】アルキレンオキシドがプロピレンオキシド
である特許請求の範囲第1項記載の製造方法。
3. The method according to claim 1, wherein the alkylene oxide is propylene oxide.
【請求項4】活性水素含有有機化合物がアリルアルコー
ルまたはアクリル酸である特許請求の範囲第1項記載の
製造方法。
4. The production method according to claim 1, wherein the active hydrogen-containing organic compound is allyl alcohol or acrylic acid.
【請求項5】活性ハロゲン含有化合物がアリルハロゲン
化合物またはアクリル酸クロライドである特許請求の範
囲第1項記載の製造方法。
5. The production method according to claim 1, wherein the active halogen-containing compound is an allyl halogen compound or acrylic acid chloride.
【請求項6】分子末端に不飽和基を含有するポリアルキ
レンオキシドがアリルオキシ基を末端に含有するポリプ
ロピレンオキシドである特許請求の範囲第1項記載の製
造方法。
6. The production method according to claim 1, wherein the polyalkylene oxide having an unsaturated group at the terminal of the molecule is polypropylene oxide having an allyloxy group at the terminal.
【請求項7】分子末端に不飽和基を含有するポリアルキ
レンオキシドがアクリロイルオキシ基を末端に含有する
ポリプロピレンオキシドである特許請求の範囲第1項記
載の製造方法。
7. The method according to claim 1, wherein the polyalkylene oxide having an unsaturated group at the terminal of the molecule is polypropylene oxide having an acryloyloxy group at the terminal.
【請求項8】有機アルミニウム化合物とポルフィリン化
合物とを反応させてえられるアルミニウムポルフィリン
錯体に対し、 (b)水酸基およびカルボン酸基から選ばれた活性水素
原子を1分子中に2個以上含む活性水素含有有機化合物
を反応させてえられる錯体触媒を用いてアルキレンオキ
シドの重合を行ない、つづいて(c)不飽和基と活性ハ
ロゲン原子とを1分子中に含む活性ハロゲン含有化合物
を反応させる ことを特徴とする分子末端に不飽和基を含有するポリア
ルキレンオキシドの製造方法。
8. An aluminum porphyrin complex obtained by reacting an organoaluminum compound with a porphyrin compound, wherein (b) active hydrogen containing two or more active hydrogen atoms selected from a hydroxyl group and a carboxylic acid group in one molecule. Polymerization of an alkylene oxide is carried out using a complex catalyst obtained by reacting an organic compound containing a compound, and then (c) an active halogen-containing compound containing an unsaturated group and an active halogen atom in one molecule is reacted. And a method for producing a polyalkylene oxide containing an unsaturated group at the molecular end.
【請求項9】ポルフィリン化合物がテトラフェニルポル
フィリンである特許請求の範囲第8項記載の製造方法。
9. The method according to claim 8, wherein the porphyrin compound is tetraphenylporphyrin.
【請求項10】アルキレンオキシドがプロピレンオキシ
ドである特許請求の範囲第8項記載の製造方法。
10. The production method according to claim 8, wherein the alkylene oxide is propylene oxide.
【請求項11】活性水素含有有機化合物がアリルアルコ
ールまたはアクリル酸である特許請求の範囲第8項記載
の製造方法。
11. The production method according to claim 8, wherein the active hydrogen-containing organic compound is allyl alcohol or acrylic acid.
【請求項12】活性ハロゲン含有化合物がアリルハロゲ
ン化合物またはアクリル酸クロライドである特許請求の
範囲第8項記載の製造方法。
12. The method according to claim 8, wherein the active halogen-containing compound is an allyl halogen compound or acrylic acid chloride.
【請求項13】分子末端に不飽和基を含有するポリアル
キレンオキシドがアリルオキシ基を末端に含有するポリ
プロピレンオキシドである特許請求の範囲第8項記載の
製造方法。
13. The method according to claim 8, wherein the polyalkylene oxide having an unsaturated group at the terminal of the molecule is polypropylene oxide having an allyloxy group at the terminal.
【請求項14】分子末端に不飽和基を含有するポリアル
キレンオキシドがアクリロイルオキシ基を末端に含有す
るポリプロピレンオキシドである特許請求の範囲第8項
記載の製造方法。
14. The production method according to claim 8, wherein the polyalkylene oxide having an unsaturated group at the terminal of the molecule is polypropylene oxide having an acryloyloxy group at the terminal.
JP5874585A 1985-03-22 1985-03-22 Process for producing polyalkylene oxide containing unsaturated group at molecular end Expired - Fee Related JPH072838B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5874585A JPH072838B2 (en) 1985-03-22 1985-03-22 Process for producing polyalkylene oxide containing unsaturated group at molecular end
DE8686103830T DE3667991D1 (en) 1985-03-22 1986-03-20 POLYALKYLENE OXIDES WITH UNSATURATED END GROUPS WITH A LIMITED MOLECULE DISTRIBUTION.
EP86103830A EP0196565B1 (en) 1985-03-22 1986-03-20 Polyalkylene oxide having unsaturated end group and narrow molecular weight distribution
CA000504656A CA1255050A (en) 1985-03-22 1986-03-20 Polyalkylene oxide having unsaturated end group and narrow molecular weight distribution
US07/170,571 US4904745A (en) 1985-03-22 1988-03-14 Polyalkylene oxide having unsaturated end group and narrow molecular weight distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5874585A JPH072838B2 (en) 1985-03-22 1985-03-22 Process for producing polyalkylene oxide containing unsaturated group at molecular end

Publications (2)

Publication Number Publication Date
JPS61215622A JPS61215622A (en) 1986-09-25
JPH072838B2 true JPH072838B2 (en) 1995-01-18

Family

ID=13093070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5874585A Expired - Fee Related JPH072838B2 (en) 1985-03-22 1985-03-22 Process for producing polyalkylene oxide containing unsaturated group at molecular end

Country Status (1)

Country Link
JP (1) JPH072838B2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2056360C (en) * 1990-04-03 2000-07-25 Masayuki Fujita Curable blends of hydrolysable polyoxypropylenes and epoxy resins
US6369187B1 (en) 1990-04-09 2002-04-09 Kanegafuchi Chemical Industry Co., Ltd. Reactive silicon group-containing oxypropylene polymer and method of producing same
CA2229048A1 (en) 1995-08-10 1997-02-20 Kanegafuchi Chemical Industry Co., Ltd. Curable polymer composition
US5910555A (en) * 1996-05-16 1999-06-08 Kaneka Corporation Curable resin composition with improved adhesion of coatings
JP4101632B2 (en) 2002-11-01 2008-06-18 株式会社カネカ CURABLE COMPOSITION AND METHOD OF IMPROVING RESTORE AND CREEP
GB0306820D0 (en) * 2003-03-25 2003-04-30 Ici Plc Polymerisation of ethylenically unsaturated monomers
US7368518B2 (en) 2003-10-06 2008-05-06 Kaneka Corporation Pressure-sensitive adhesive composition
US8067498B2 (en) 2004-04-05 2011-11-29 Kaneka Corporation Curable composition
EP1816168A4 (en) 2004-11-10 2011-08-17 Kaneka Corp Curable composition
US20090234072A1 (en) 2005-09-08 2009-09-17 Kaneka Corporation Curable composition
DE602006018346D1 (en) 2005-09-30 2010-12-30 Kaneka Corp HARDENING COMPOSITION WITH IMPROVED CURING AND STORAGE STABILITY
US8013080B2 (en) 2005-09-30 2011-09-06 Kaneka Corporation Curable composition
WO2007037485A1 (en) 2005-09-30 2007-04-05 Kaneka Corporation Curable composition
US20090182099A1 (en) 2006-02-16 2009-07-16 Noriko Noro Curable composition
JP5254782B2 (en) 2006-04-19 2013-08-07 株式会社カネカ Curable resin composition
EP2011834B1 (en) 2006-04-20 2012-07-25 Kaneka Corporation Curable composition
EP2025715B1 (en) 2006-06-02 2017-10-25 Kaneka Corporation Curable composition
JP5500824B2 (en) 2006-09-13 2014-05-21 株式会社カネカ Moisture curable polymer having SiF group and curable composition containing the same
DE602007008273D1 (en) 2006-10-05 2010-09-16 Kaneka Corp HARDENING COMPOSITION
EP2080777B1 (en) 2006-11-01 2017-06-07 Kaneka Corporation Hardening organic polymer, process for producing the same, and hardening composition containing the polymer
WO2008062866A1 (en) 2006-11-22 2008-05-29 Kaneka Corporation Curable composition and catalyst composition
JP5284796B2 (en) 2006-12-25 2013-09-11 株式会社カネカ Curable composition
US8415444B2 (en) 2007-01-12 2013-04-09 Kaneka Corporation Curable composition
EP2177571A4 (en) 2007-07-19 2014-01-08 Kaneka Corp Curable composition
US8853309B2 (en) 2008-09-29 2014-10-07 Kaneka Corporation Curable composition and cured product thereof
JP5592273B2 (en) 2009-01-16 2014-09-17 株式会社カネカ Curable composition and cured product thereof
JP5388121B2 (en) * 2009-10-27 2014-01-15 セメダイン株式会社 Speaker assembly method
WO2011089878A1 (en) 2010-01-19 2011-07-28 株式会社カネカ Curable composition
EP2634222B1 (en) 2010-10-27 2020-02-12 Kaneka Corporation Curable composition
WO2012117902A1 (en) 2011-03-02 2012-09-07 株式会社カネカ Curable composition
EP2684690B1 (en) 2011-03-09 2018-02-21 Kaneka Corporation Adhesive-bonded structure comprising both adhesive composition and wood material
EP2698481B1 (en) 2011-04-15 2017-04-05 Kaneka Corporation Cladding material for construction
US9593271B2 (en) 2011-09-22 2017-03-14 Kaneka Corporation Curable composition and cured product thereof
US20150266271A1 (en) 2012-09-28 2015-09-24 Kaneka Corporation Structural body
CA2900048A1 (en) 2013-02-01 2014-08-07 3M Innovative Properties Company Coating compositions and articles made therefrom
JP6489441B2 (en) 2013-07-11 2019-03-27 セメダイン株式会社 Method for producing conductive cured product and method for curing pulsed light curable composition
US20160152783A1 (en) 2013-07-18 2016-06-02 Cemedine Co., Ltd. Photocurable composition
JP6409784B2 (en) 2013-12-13 2018-10-24 セメダイン株式会社 Photocurable composition having adhesiveness
EP3088474A4 (en) 2013-12-26 2017-08-09 Kaneka Corporation Curable composition and cured product thereof
US20170173916A1 (en) 2014-02-18 2017-06-22 3M Innovative Properties Company Self sealing articles
WO2015126931A1 (en) 2014-02-18 2015-08-27 3M Innovative Properties Company Easy to apply air and water barrier articles
KR20170040273A (en) 2014-08-01 2017-04-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Self sealing permeable air barrier compositions
US9777189B2 (en) 2014-11-03 2017-10-03 Kaneka North America Llc Curable composition
WO2016106273A1 (en) 2014-12-22 2016-06-30 3M Innovative Properties Company Air and water barrier articles
US9976028B2 (en) 2015-02-23 2018-05-22 King Industries Curable coating compositions of silane functional polymers
KR20180042298A (en) 2015-08-18 2018-04-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Air and water barrier articles having a porous layer and a liner
WO2017111121A1 (en) 2015-12-24 2017-06-29 株式会社カネカ Method for producing laminate, and laminate
EP3753984B1 (en) 2018-02-13 2022-08-24 Kaneka Corporation Single-component curable composition for working joint
EP3816216A4 (en) 2018-06-07 2022-02-09 Kaneka Corporation RESIN COMPOSITION FOR FOAM, FOAM AND METHOD OF MAKING FOAM
CN114127156B (en) 2019-02-28 2025-01-21 钟化美洲控股公司 Moisture-curable adhesive composition
WO2021024206A1 (en) 2019-08-07 2021-02-11 3M Innovative Properties Company Tape, article including tape and composite layer, and related methods
WO2023282048A1 (en) 2021-07-05 2023-01-12 株式会社カネカ Curable composition, cured product, coating agent, and concrete structure
WO2023048186A1 (en) 2021-09-24 2023-03-30 株式会社カネカ Curable composition
JPWO2024029615A1 (en) 2022-08-04 2024-02-08
WO2024157860A1 (en) 2023-01-23 2024-08-02 株式会社カネカ Method for producing curable composition

Also Published As

Publication number Publication date
JPS61215622A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
JPH072838B2 (en) Process for producing polyalkylene oxide containing unsaturated group at molecular end
EP0196569B1 (en) Process for preparing polyalkylene oxide having unsaturated end groups
CA1239246A (en) Process for preparing polyalkylene oxide having narrow distribution of molecular weight
JPH0613605B2 (en) Polyalkylene oxides containing unsaturated groups at the ends of the molecule and having a narrow molecular weight distribution
EP0196565B1 (en) Polyalkylene oxide having unsaturated end group and narrow molecular weight distribution
US4722978A (en) Allyl terminated macromolecular monomers of polyethers
JPWO2007105653A1 (en) Method for producing fluorine-containing polymer by ring-opening polymerization of fluorine-containing epoxy compound
JPS59168029A (en) Manufacture of bifunctional polyphenylene oxide
EP0510602B1 (en) Living polymerization method
US7148317B2 (en) Method of preparing catalyst for polymerization of aliphatic polycarbonate and method of polymerizing aliphatic polycarbonate using same
Kuran et al. Polymerization of 1, 2‐epoxypropane and 1, 2‐epoxycyclohexane by diethylzinc‐polyhydric phenol and/or phenol or 1‐phenoxy‐2‐propanol as catalysts
JP2575199B2 (en) Method for producing carbonate copolymer
US3385800A (en) Polymerization of alkylene oxides by a catalyst system comprising organometallic compounds in combination with an oxygen-containing cocatalyst
JP3105474B2 (en) Method for polymerizing alkylene oxide
JP2001011170A (en) Polycarbonate manufacturing method
JPH02132123A (en) Copolymer of epichlorohydrin and carbon dioxide
US3183210A (en) Polymerization of aldehyde by organometallic compound
JPH01108202A (en) Manufacture of polyalkenyl ether
US7456127B2 (en) Organoaluminum catalyst
JP3937830B2 (en) Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst
EP1406726B1 (en) Organoaluminium catalyst, its preparation and its use in a process for the polymerization of alkylene oxides
JP3394591B2 (en) Method for producing polyester-type macromonomer by ring-opening polymerization of lactone compound
JP2691002B2 (en) Method for producing polymer
Wright The Hydrolysis of Diphenylzinc Related to the Polymerisation of Propylene Oxide
WO2003000750A1 (en) Polymerization processes using a highly active catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees