JPH07281021A - Near infrared ray absorbing glass, solid image pickup element protective filter using this glass and sold image pickup element using this filter - Google Patents
Near infrared ray absorbing glass, solid image pickup element protective filter using this glass and sold image pickup element using this filterInfo
- Publication number
- JPH07281021A JPH07281021A JP6073498A JP7349894A JPH07281021A JP H07281021 A JPH07281021 A JP H07281021A JP 6073498 A JP6073498 A JP 6073498A JP 7349894 A JP7349894 A JP 7349894A JP H07281021 A JPH07281021 A JP H07281021A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- image pickup
- filter
- solid
- pickup element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 81
- 230000001681 protective effect Effects 0.000 title claims abstract description 36
- 239000007787 solid Substances 0.000 title abstract 8
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 14
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 239000006059 cover glass Substances 0.000 abstract description 17
- 230000035945 sensitivity Effects 0.000 abstract description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 19
- 239000002994 raw material Substances 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- 238000012937 correction Methods 0.000 description 8
- 230000005260 alpha ray Effects 0.000 description 7
- 238000004031 devitrification Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 230000006872 improvement Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000006063 cullet Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000005303 fluorophosphate glass Substances 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Optical Filters (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ビデオカメラ等に使用
される固体撮像素子の保護用光透過性材料として有用な
近赤外吸収ガラスに関し、特に、固体撮像素子のソフト
エラーを低減せしめるのに有効な近赤外吸収ガラスに関
する。さらに本発明は、この近赤外吸収ガラスを用いた
固体撮像素子の保護用フィルター及び保護用ローパスフ
ィルター、並びにこれらのフィルターを用いた固体撮像
素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-infrared absorbing glass useful as a light-transmitting material for protecting a solid-state image pickup device used in a video camera or the like, and more particularly to reducing soft error of the solid-state image pickup device. The present invention relates to a near-infrared absorbing glass effective for. Furthermore, the present invention relates to a protection filter and a protection low-pass filter for a solid-state image sensor using this near-infrared absorbing glass, and a solid-state image sensor using these filters.
【0002】[0002]
【従来の技術】カラーVTRカメラの光学系は、図1に
示すように、映像を結像させるレンズ系1、ローパスフ
ィルターとして作用する水晶板2、3と感度補正作用を
有する近赤外吸収フィルター4を貼り合わせた素子5及
び固体撮像素子6で構成される。固体撮像素子6はその
受光面に三色モザイクフィルターを形成したCCDチッ
プ7をアルミナセラミックパッケージ8の中にセット
し、その上に保護用光透過部材であるカバーガラス9を
エポキシ樹脂等で接着した構造になっている。CCDの
感度領域は可視光域から近赤外域にわたっている。その
ため、近赤外吸収フィルターを用いて入射光の近赤外部
分をカットし、総合して得られる感度を視感度に近似さ
せ、色再現性を改善することが必要である。そこで、近
赤外吸収フィルターには、可視光の透過性及び近赤外光
のカット性が良いことが要求される。2. Description of the Related Art As shown in FIG. 1, an optical system of a color VTR camera includes a lens system 1 for forming an image, crystal plates 2 and 3 acting as a low pass filter, and a near infrared absorption filter having a sensitivity correcting action. It is composed of a device 5 and a solid-state image sensor 6 in which 4 are bonded together. In the solid-state image pickup device 6, a CCD chip 7 having a three-color mosaic filter formed on its light-receiving surface is set in an alumina ceramic package 8, and a cover glass 9 as a protective light transmitting member is adhered thereon with an epoxy resin or the like. It is structured. The sensitivity region of CCD extends from the visible light region to the near infrared region. Therefore, it is necessary to cut the near-infrared part of the incident light using a near-infrared absorption filter and approximate the sensitivity obtained as a whole to the visual sensitivity to improve the color reproducibility. Therefore, the near-infrared absorption filter is required to have good visible light transmittance and near-infrared light cutting property.
【0003】さらに、製品の小型軽量化とコスト低減と
いう観点から、画素密度アップによる固体撮像素子の小
型化、それに伴う光学系の小型化、更には非球面レンズ
採用によるレンズ枚数の低減などの努力が絶えず行われ
ている。その1つに、上記カバーガラスに近赤外吸収ガ
ラスを用いて感度補正機能を付与することで、近赤外吸
収フィルターは不要となること、更に感度補正機能を付
与したカバーガラスの表面に回析格子を形成してローパ
スフィルター機能を付与することで、水晶板も不要にな
ることが提案されている〔特開平4−110903
号〕。Further, from the viewpoint of reducing the size and weight of the product and reducing the cost, efforts are made to reduce the size of the solid-state image pickup device by increasing the pixel density, the size of the optical system accordingly, and the reduction of the number of lenses by using the aspherical lens. Is constantly being done. One of them is that by adding a sensitivity correction function to the cover glass by using a near infrared absorption glass, the near infrared absorption filter becomes unnecessary. It has been proposed that a quartz plate can be eliminated by forming a diffraction grating to provide a low-pass filter function [JP-A-4-110903].
issue〕.
【0004】[0004]
【発明が解決しようとする課題】ところが、上記のよう
に固体撮像素子保護用のカバーガラスとして近赤外吸収
ガラスを使用すると、固体撮像素子のソフトエラーの発
生が増加するという問題が生じた。また、近年、固体撮
像素子の高度化に伴って、α線によるノイズやソフトエ
ラーが画質向上の大きな障害になっており、その低減が
強く望まれているところでもある。そこで、本発明者
が、市販の近赤外吸収フィルターのα線放出量を測定し
た結果、0.01〜0.05c/sec・cm2 にも達
し、そうした目的に使用できないことが判明した。1/
2インチで50万画素を超えるような高密度固体撮像素
子のソフトエラーを抑制するには、カバーガラスのα線
放出量は通常0.001c/sec・cm2 以下である
ことが必要である。そこで本発明の第一の目的は、固体
撮像素子保護用のカバーガラスとして用いても、固体撮
像素子のソフトエラーの発生を抑制でき、画質の向上に
寄与でき、かつ感度補正機能を付与することもできる近
赤外吸収ガラスを提供することにある。However, when the near-infrared absorbing glass is used as the cover glass for protecting the solid-state image pickup device as described above, there is a problem that the soft error of the solid-state image pickup device increases. Further, in recent years, noises and soft errors due to α rays have become major obstacles to image quality improvement with the advancement of solid-state image pickup devices, and their reduction is strongly desired. Then, the present inventor measured the α-ray emission amount of a commercially available near-infrared absorption filter, and as a result, it reached 0.01 to 0.05 c / sec · cm 2, and it was found that it cannot be used for such purpose. 1 /
In order to suppress the soft error of the high-density solid-state imaging device that exceeds 500,000 pixels in 2 inches, the α-ray emission amount of the cover glass is usually required to be 0.001 c / sec · cm 2 or less. Therefore, a first object of the present invention is to suppress the occurrence of soft errors in the solid-state image sensor even when used as a cover glass for protecting the solid-state image sensor, contribute to the improvement of image quality, and provide a sensitivity correction function. Another object is to provide a near-infrared absorbing glass.
【0005】また、固体撮像素子保護用のカバーガラス
は、アルミナセラミックパッケージに封着される。その
ため、アルミナセラミックパッケージを構成するアルミ
ナセラミックの熱膨張係数(60〜75×10-7K-1)
と大きく異なると、封着に支障が生じるという問題もあ
る。そこで本発明の第二の目的は、アルミナセラミック
パッケージと良好な封着ができ、かつ固体撮像素子保護
用のカバーガラスとして用いても、固体撮像素子のソフ
トエラーの発生を抑制でき、画質の向上に寄与でき、さ
らに感度補正機能を付与することもできる近赤外吸収ガ
ラスを提供することにある。A cover glass for protecting the solid-state image pickup device is sealed in an alumina ceramic package. Therefore, the coefficient of thermal expansion of the alumina ceramic that constitutes the alumina ceramic package (60 to 75 × 10 −7 K −1 )
There is also a problem in that the sealing will be hindered if it is significantly different from. Therefore, a second object of the present invention is to achieve good sealing with the alumina ceramic package, and even when used as a cover glass for protecting the solid-state image sensor, it is possible to suppress the occurrence of soft errors in the solid-state image sensor and improve the image quality. Another object of the present invention is to provide a near-infrared absorbing glass that can contribute to the above, and can also have a sensitivity correction function.
【0006】さらに本発明の第三の目的は、上記のよう
な近赤外吸収ガラスを用いて、固体撮像素子のソフトエ
ラーの発生を抑制し、画質の向上に寄与でき、かつ感度
補正機能も有する固体撮像素子保護用フィルターを提供
することにある。A third object of the present invention is to use the above-mentioned near infrared absorbing glass to suppress the occurrence of soft errors in the solid-state image pickup device, contribute to the improvement of image quality, and have a sensitivity correction function. It is to provide a filter for protecting the solid-state image sensor having the same.
【0007】さらに本発明の第四の目的は、上記のよう
な近赤外吸収ガラスを用いて、固体撮像素子のソフトエ
ラーの発生を抑制し、画質の向上に寄与でき、かつ感度
補正機能及びローパスフィルタリング機能を有する固体
撮像素子保護用ローパスフィルターを提供することにあ
る。A fourth object of the present invention is to suppress the occurrence of soft error in the solid-state image pickup device by using the near infrared absorbing glass as described above, thereby contributing to the improvement of image quality, and the sensitivity correction function and It is to provide a low-pass filter for protecting a solid-state image sensor having a low-pass filtering function.
【0008】また、本発明の第五の目的は、小型軽量化
及びコストダウンが可能であり、かつソフトエラーの発
生を抑制できて、画質の向上が可能な保護用光透過部材
を備えた固体撮像素子を提供することにある。A fifth object of the present invention is to reduce the size and weight, reduce the cost, suppress the occurrence of soft errors, and improve the image quality. An object is to provide an image sensor.
【0009】[0009]
【課題を解決するための手段】本発明は、P2 O5 を主
成分とし、かつCuOを含有する近赤外線吸収ガラスで
あって、U及びThの含有量がそれぞれ5ppb以下及
び20ppb以下であることを特徴とする近赤外線吸収
ガラスに関する。The present invention is a near-infrared absorbing glass containing P 2 O 5 as a main component and containing CuO, in which the contents of U and Th are 5 ppb or less and 20 ppb or less, respectively. The present invention relates to a near infrared absorbing glass.
【0010】さらに本発明の近赤外線吸収ガラスの好ま
しい態様は、上記近赤外線吸収ガラスであって、重量%
で表示してP2 O5 を50〜85%及びAl2 O3 を4
〜20%含有し、両者の合量が63%以上であり、Cu
Oを0.1〜10%含有し、かつ熱膨張係数が45〜7
5×10-7K-1である近赤外線吸収ガラスに関する。Further, a preferred embodiment of the near infrared absorbing glass of the present invention is the above near infrared absorbing glass, wherein the weight% is
Indicated by 50 to 85% of P 2 O 5 and 4 of Al 2 O 3
~ 20%, the total content of both is 63% or more, Cu
O is contained in 0.1 to 10%, and the thermal expansion coefficient is 45 to 7
It relates to a near-infrared absorbing glass which is 5 × 10 −7 K −1 .
【0011】また本発明は、上記本発明の近赤外線吸収
ガラスからなることを特徴とする固体撮像素子保護用フ
ィルターに関する。さらに本発明は、基板の少なくとも
一方の表面に回析格子を形成してなり、前記基板が上記
本発明の近赤外線吸収ガラスからなることを特徴とする
固体撮像素子保護用ローパスフィルターに関する。The present invention also relates to a filter for protecting a solid-state image pickup device, which is made of the near-infrared absorbing glass of the present invention. Furthermore, the present invention relates to a low-pass filter for protecting a solid-state image pickup device, characterized in that a diffraction grating is formed on at least one surface of a substrate, and the substrate is made of the near-infrared absorbing glass of the present invention.
【0012】加えて、本発明は、保護用光透過部材を備
えた固体撮像素子であって、前記保護用光透過部材が、
上記本発明の保護用フィルター又は上記本発明の保護用
ローパスフィルターであることを特徴とする固体撮像素
子に関する。以下本発明についてさらに説明する。In addition, the present invention is a solid-state image pickup device comprising a protective light transmitting member, wherein the protective light transmitting member comprises:
The present invention relates to a solid-state image pickup device, which is the protective filter of the present invention or the protective low-pass filter of the present invention. The present invention will be further described below.
【0013】本発明の近赤外線吸収ガラスは、P2 O5
を主成分とし、かつCuOを含有するガラスである。近
赤外線吸収成分としてCuOを添加した場合、P2 O5
を主成分とするガラスは、可視光の透過率が高く、近赤
外光のカット性が良い感度補正用として好適なガラスで
ある。さらに本発明のガラスは、U及びThの含有量が
それぞれ5ppb以下及び20ppb以下である。好ま
しくは、Uの含有量は3ppb以下であり、Thの含有
量は10ppb以下である。α線源となるU及びThの
含有量をそれぞれ5ppb及び20ppb以下にするこ
とで、固体撮像素子のソフトエラーの発生を有効に抑制
でき、画質の向上が可能となる。U及びThの含有量が
少ない高純度の原料を用い、かつガラス製造工程でのこ
れらの元素の混入を防止することで、ガラス中のU及び
Thの含有量を低減することができる。特に、ZrO2
やTiO2 などの放射性元素の分離精製が困難な成分を
大量には含有させないことが望ましい。The near infrared absorbing glass of the present invention is made of P 2 O 5
Is a glass containing CuO as a main component. When CuO is added as a near infrared absorbing component, P 2 O 5
The glass containing as a main component is a glass that has a high transmittance of visible light and a good cuttability of near infrared light and is suitable for sensitivity correction. Further, the glass of the present invention has U and Th contents of 5 ppb or less and 20 ppb or less, respectively. Preferably, the U content is 3 ppb or less and the Th content is 10 ppb or less. By setting the contents of U and Th, which are α-ray sources, to 5 ppb and 20 ppb or less, respectively, it is possible to effectively suppress the occurrence of soft errors in the solid-state imaging device and improve the image quality. The content of U and Th in the glass can be reduced by using a high-purity raw material having a low content of U and Th and preventing the incorporation of these elements in the glass manufacturing process. In particular, ZrO 2
It is desirable not to include a large amount of components such as TiO 2 and TiO 2 which are difficult to separate and purify radioactive elements.
【0014】さらに、本発明の近赤外線吸収ガラスは、
重量%で表示してP2 O5 を50〜85%及びAl2 O
3 を4〜20%含有し、両者の合量が63%以上である
ことが好ましい。P2 O5 は、前記のように可視光の透
過率が高く、近赤外光のカット性が良い感度補正用とし
て好適なガラスが得られることから、必須成分である。
しかし、85%を超えるとガラスの粘性が高くなりすぎ
る傾向があるとともに、揮発も激しくなるり、熔融が困
難になるので、上限は85%、好ましくは80%であ
る。一方、P2 O5 が50%未満では熱膨張係数が大き
くなり過ぎる傾向があるので、下限は50%、好ましく
は55%である。Al2 O3 は、化学的耐久性を改善す
るのに特に効果的な成分である。しかし、4%未満では
その効果が充分でなく、20%を超えると耐失透性が悪
化する傾向がある。そこで、下限は4%、好ましくは7
%であり、上限は20%、好ましくは15%である。Further, the near infrared absorbing glass of the present invention is
50% to 85% of P 2 O 5 and Al 2 O expressed by weight%
It is preferable that the content of 3 is 4 to 20%, and the total amount of both is 63% or more. P 2 O 5 is an essential component because it has a high visible light transmittance as described above and can obtain a glass suitable for sensitivity correction, which has a good cut-off property for near infrared light.
However, if it exceeds 85%, the viscosity of the glass tends to be too high, volatilization becomes intense, and melting becomes difficult, so the upper limit is 85%, preferably 80%. On the other hand, when P 2 O 5 is less than 50%, the coefficient of thermal expansion tends to be too large, so the lower limit is 50%, preferably 55%. Al 2 O 3 is a particularly effective component for improving chemical durability. However, if it is less than 4%, the effect is not sufficient, and if it exceeds 20%, the devitrification resistance tends to deteriorate. Therefore, the lower limit is 4%, preferably 7
%, And the upper limit is 20%, preferably 15%.
【0015】CuOの含有量は0.1〜10%、好まし
くは0.1〜6%である。CuOは、近赤外光カットに
有効であるが、0.1%未満ではその効果が少なく、1
0%を超えると耐失透性と共に可視光の透過率が悪化す
る傾向がある。さらに本発明のガラスは、熱膨張係数が
45〜75×10-7K-1、好ましくは45〜70×10
-7K-1の範囲であることが適当である。アルミナセラミ
ックの熱膨張係数が60〜75×10-7K-1であること
から、この熱膨張係数と同等か、若干小さい上記範囲の
熱膨張係数を持つことが、アルミナセラミックパッケー
ジと良好に封着できるという観点から好ましい。The content of CuO is 0.1 to 10%, preferably 0.1 to 6%. CuO is effective in cutting near-infrared light, but less than 0.1% is less effective.
If it exceeds 0%, the devitrification resistance and the visible light transmittance tend to deteriorate. Further, the glass of the present invention has a coefficient of thermal expansion of 45 to 75 × 10 −7 K −1 , preferably 45 to 70 × 10.
A range of -7 K -1 is suitable. Since the coefficient of thermal expansion of alumina ceramic is 60 to 75 × 10 -7 K -1, it is preferable to have a coefficient of thermal expansion in the above range which is equal to or slightly smaller than that of the alumina ceramic package. It is preferable from the viewpoint that it can be worn.
【0016】さらに本発明の近赤外線吸収ガラスの好ま
しい態様は、重量%で表示して、B2 O3 の含有量が0
〜15%であり、SiO2 の含有量が0〜25%であ
り、MgO、CaO、SrO、BaO及びZnOからな
る群の1種又は2種以上の含有量が0〜25%であり、
B2 O3 、SiO2 、MgO、CaO、SrO、BaO
及びZnOからなる群の1種又は2種以上の含有量が5
〜37%であり、かつP2 O5 、Al2 O3 、B
2 O3 、SiO2 、MgO、CaO、SrO、BaO及
びZnOからなる群の含有量の合計が85%以上である
ガラスである。Further, a preferred embodiment of the near infrared ray absorbing glass of the present invention is such that the content of B 2 O 3 is 0, expressed in% by weight.
Is 15%, the content of SiO 2 is 0 to 25%, the content of one or more of the group consisting of MgO, CaO, SrO, BaO and ZnO is 0 to 25%,
B 2 O 3 , SiO 2 , MgO, CaO, SrO, BaO
And the content of one or more of the group consisting of ZnO and 5 is 5
˜37% and P 2 O 5 , Al 2 O 3 , B
It is a glass in which the total content of the group consisting of 2 O 3 , SiO 2 , MgO, CaO, SrO, BaO and ZnO is 85% or more.
【0017】SiO2 及びB2 O3 は耐失透性の改善や
熱膨張係数を低下させるのに有効である。しかし、Si
O2 は25%を超える難溶性となり、B2 O3 は15%
を超えると耐失透性を悪化させる傾向がある。MgO、
CaO、SrO、BaO及びZnOは熔融性の改善や耐
失透性の改善に有効である。しかし、合量で25%を超
えると熱膨張係数が大きくなり過ぎ、所望の熱膨張係数
を得るのが困難になる。さらに、B2 O3 、SiO2 、
MgO、CaO、SrO、BaO及びZnOからなる群
の成分の合量は、溶融性、耐失透性、熱膨張係数、透過
特性という観点から、5〜37%、好ましくは6〜30
%の範囲とすることが適当である。また、P2 O5 、A
l2 O3 、B2 O3 、SiO2 、MgO、CaO、Sr
O、BaO及びZnOからなる群の含有量の合計は、同
様の理由から85%以上、好ましくは90%以上である
ことが適当である。SiO 2 and B 2 O 3 are effective for improving the devitrification resistance and lowering the coefficient of thermal expansion. But Si
O 2 becomes less soluble than 25%, B 2 O 3 is 15%
If it exceeds, the devitrification resistance tends to be deteriorated. MgO,
CaO, SrO, BaO and ZnO are effective in improving the meltability and the devitrification resistance. However, if the total amount exceeds 25%, the thermal expansion coefficient becomes too large, and it becomes difficult to obtain a desired thermal expansion coefficient. Furthermore, B 2 O 3 , SiO 2 ,
The total content of the components of the group consisting of MgO, CaO, SrO, BaO and ZnO is 5 to 37%, preferably 6 to 30 from the viewpoint of meltability, devitrification resistance, thermal expansion coefficient and permeability.
It is appropriate to set it in the range of%. Also, P 2 O 5 , A
l 2 O 3 , B 2 O 3 , SiO 2 , MgO, CaO, Sr
For the same reason, the total content of the group consisting of O, BaO and ZnO is 85% or more, preferably 90% or more.
【0018】上記の成分以外に耐候性、溶融性、耐失透
性等の改善や熱膨張係数の調整等を目的として、本発明
のガラスは、15%以内、好ましくは10%以内の範囲
で、Sb2 O3 、Nb2 O5 、PbO、La2 O3 、ア
ルカリ金属酸化物等を含有することも可能である。In addition to the above components, the glass of the present invention has a content of 15% or less, preferably 10% or less for the purpose of improving weather resistance, melting property, devitrification resistance and adjusting the coefficient of thermal expansion. , Sb 2 O 3 , Nb 2 O 5 , PbO, La 2 O 3 , alkali metal oxides and the like may be contained.
【0019】以上の組成を有するガラスを形成する為の
原料は、水溶液、炭酸塩、硝酸塩、水酸化物、酸化物等
いずれの形態でも良い。但し、不純物として混入するU
及びThの含有量の極力少ない原料を選択する。最終的
にUの含有量が5ppb以下であり、Thの含有量が2
0ppb以下の近赤外吸収ガラスを得るには、Uの含有
量が3ppb以下、Thの含有量が15ppb以下の原
料を用いることが好ましい。The raw material for forming the glass having the above composition may be in any form such as an aqueous solution, a carbonate, a nitrate, a hydroxide or an oxide. However, U mixed as an impurity
A raw material containing as little Th and Th as possible is selected. Finally, the content of U is 5 ppb or less and the content of Th is 2
In order to obtain a near infrared absorbing glass of 0 ppb or less, it is preferable to use a raw material having a U content of 3 ppb or less and a Th content of 15 ppb or less.
【0020】次に本発明の固体撮像素子保護用フィルタ
ー、固体撮像素子保護用ローパスフィルター、さらにこ
れらのフィルターを用いた本発明の固体撮像素子につい
て説明する。本発明の固体撮像素子保護用フィルター
は、上記本発明の近赤外吸収ガラスからなるものであ
り、形状や大きさには特に限定はない。保護する対象で
ある固体撮像素子に応じて、形状や大きさは適宜決定で
きる。さらに、フィルターの厚みも、ガラスの吸収特性
を考慮して所望の光学特性に応じて、適宜決定できる。
本発明の保護用フィルターは、常法により、本発明の近
赤外線吸収ガラスを所定の形状に研磨加工することで得
ることができる。さらに本発明の固体撮像素子10は、
図2に示すように、CCDチップ7を内蔵したアルミナ
パッケージ8に保護用光透過部材を封着したものであ
り、前記保護用光透過部材が上記の本発明の保護用フィ
ルター11である。図1の従来の光学系と比較して、本
発明の保護用フィルターを用いた光学系では、保護用フ
ィルターがカバーガラスと近赤外線吸収フィルターの機
能を有するため、システムを小型軽量化することが可能
である。Next, the solid-state image sensor protection filter of the present invention, the solid-state image sensor protection low-pass filter, and the solid-state image sensor of the present invention using these filters will be described. The solid-state image sensor protection filter of the present invention is composed of the near-infrared absorbing glass of the present invention, and the shape and size thereof are not particularly limited. The shape and size can be appropriately determined according to the solid-state image sensor to be protected. Further, the thickness of the filter can be appropriately determined according to desired optical characteristics in consideration of the absorption characteristics of glass.
The protective filter of the present invention can be obtained by polishing the near-infrared absorbing glass of the present invention into a predetermined shape by a conventional method. Furthermore, the solid-state image sensor 10 of the present invention is
As shown in FIG. 2, a protective light transmitting member is sealed in an alumina package 8 containing a CCD chip 7, and the protective light transmitting member is the protective filter 11 of the present invention. Compared with the conventional optical system of FIG. 1, in the optical system using the protective filter of the present invention, the protective filter has the functions of a cover glass and a near-infrared absorption filter, so that the system can be made smaller and lighter. It is possible.
【0021】本発明の固体撮像素子保護用ローパスフィ
ルターは、基板の少なくとも一方の表面に回析格子を形
成してなり、前記基板が前記本発明の近赤外線吸収ガラ
スからなるものである。回析格子の形状等は、所望の特
性により適宜決定できる。尚、回析格子は、基板の一方
の表面に設ければローパスフィルタリング機能を得るこ
とはできるが、縦横の凹凸を両面に振り分けることによ
り、モールド成形が容易になるという利点もある。本発
明のローパスフィルターは、常法により、本発明の近赤
外線吸収ガラスの塊を軟化させ、回折格子の表面形状を
有する鋳型によりプレスすることにより作成することが
できる。即ち、所定の形状に研磨加工したガラス板の片
面又は両面にモールド成形技術によって回析格子をプレ
ス成形する。又、ホトリソグラフィー技術を用いて回析
格子を形成することによっても、本発明の保護用ローパ
スフィルターを得ることができる。さらに本発明の固体
撮像素子12は、図3に示すように、CCDチップ7を
内蔵したアルミナパッケージ8に保護用光透過部材を封
着したものであり、前記保護用光透過部材が上記の本発
明の保護用ローパスフィルター13である。保護用ロー
パスフィルター13の表面には、回折格子14が形成さ
れている。図1の従来の光学系と比較して、本発明の保
護用フィルターを用いた光学系では、保護用フィルター
が、カバーガラスと近赤外線吸収フィルターとローパス
フィルターの機能を有するため、システムを小型軽量化
することが可能である。図4に、ローパスフィルターの
回折格子の一例を示す。但し、この形状に限定されるも
のではなく、ローパスフィルターの所望の特性により適
宜決定できる。The low-pass filter for protecting a solid-state image pickup device of the present invention comprises a substrate having a diffraction grating formed on at least one surface thereof, and the substrate comprises the near-infrared absorbing glass of the present invention. The shape and the like of the diffraction grating can be appropriately determined according to desired characteristics. It should be noted that the diffraction grating can obtain a low-pass filtering function if it is provided on one surface of the substrate, but it also has an advantage that molding can be facilitated by distributing vertical and horizontal irregularities on both sides. The low-pass filter of the present invention can be prepared by softening the lump of the near-infrared absorbing glass of the present invention by a conventional method and pressing it with a mold having a surface shape of a diffraction grating. That is, a diffraction grating is press-molded on one or both surfaces of a glass plate polished into a predetermined shape by a molding technique. The protective low-pass filter of the present invention can also be obtained by forming a diffraction grating using a photolithography technique. Further, as shown in FIG. 3, the solid-state imaging device 12 of the present invention comprises an alumina package 8 containing a CCD chip 7 and a protective light-transmitting member sealed to the alumina package 8. It is the low pass filter 13 for protection of the invention. A diffraction grating 14 is formed on the surface of the protective low-pass filter 13. Compared with the conventional optical system of FIG. 1, in the optical system using the protective filter of the present invention, the protective filter has the functions of a cover glass, a near-infrared absorption filter, and a low-pass filter, so the system is small and lightweight. Is possible. FIG. 4 shows an example of the diffraction grating of the low-pass filter. However, the shape is not limited to this, and can be appropriately determined depending on the desired characteristics of the low-pass filter.
【0022】本発明の固体撮像素子は、上記本発明のフ
ィルターをエポキシ樹脂等の接着剤によりCCDチップ
を内蔵したアルミナセラミックパッケージに封着するこ
とにより作製することができる。本発明の固体撮像素子
においては、CCDチップ、接着剤、及びアルミナセラ
ミックパッケージ等については特に制限はない。The solid-state image pickup device of the present invention can be manufactured by sealing the filter of the present invention to an alumina ceramic package containing a CCD chip with an adhesive such as an epoxy resin. In the solid-state imaging device of the present invention, there are no particular restrictions on the CCD chip, the adhesive, the alumina ceramic package, and the like.
【0023】なお、本発明の近赤外吸収ガラスは、上記
のような固体撮像素子の保護用フィルターとしての用途
以外に、例えば通常のカバーガラスに積層し、封着して
近赤外吸収能を通常のカバーガラスに付与することがで
きる。例えば、図5に示すように、カバーガラス9の内
側に本発明の近赤外吸収ガラスからなるローパスフィル
ター16(17は回折格子である)を設けて固体撮像素
子15を提供することができる。尚、図5では、ローパ
スフィルターの例を示したが、回折格子を有さない近赤
外吸収フィルターであっても良い。また、図6に示すよ
うにCCDチップ7の前面に、本発明の近赤外吸収ガラ
スからなるローパスフィルター16(17は回折格子で
ある)を設けて固体撮像素子18を提供することもでき
る。尚、図6では、ローパスフィルターの例を示した
が、回折格子を有さない近赤外吸収フィルターであって
も良い。The near-infrared absorbing glass of the present invention is used in addition to the above-mentioned use as a filter for protecting a solid-state image pickup device, for example, by laminating it on a normal cover glass and sealing the near-infrared absorbing glass. Can be applied to an ordinary cover glass. For example, as shown in FIG. 5, a low-pass filter 16 (17 is a diffraction grating) made of the near-infrared absorbing glass of the present invention can be provided inside the cover glass 9 to provide the solid-state imaging device 15. Although an example of the low-pass filter is shown in FIG. 5, a near-infrared absorption filter having no diffraction grating may be used. Further, as shown in FIG. 6, a low-pass filter 16 (17 is a diffraction grating) made of the near-infrared absorbing glass of the present invention may be provided on the front surface of the CCD chip 7 to provide the solid-state imaging device 18. Although FIG. 6 shows an example of the low-pass filter, a near-infrared absorption filter having no diffraction grating may be used.
【0024】[0024]
【実施例】以下本発明を実施例によりさらに詳細に説明
する。 実施例1 表1中のNo.1の組成になるように各種高純度原料を
使用して原料バッチを作製した。尚、表1のガラス組成
は重量パーセント表示である。この原料バッチ12kg
を5リットル容量の白金製坩堝を用い、1330℃の電
気炉中で溶融精製した。次いで、鉄製金枠に鋳込み、所
定のアニールをしてガラスブロックを得た。このガラス
の2mm厚における透過率を図7に示す。また、表1に
得られたガラスのTMA分析装置による測定値である熱
膨張係数を示す。このガラスの熱膨張係数は67×10
-7K-1であり、アルミナセラミックとの封着に適合した
熱膨張係数を有していることが分かる。又、住化分析セ
ンター社製α線測定装置LACSで測定したα線放出量
及び横河電機製ICP−MASSで測定したU及びTh
含有量を表2に示す。EXAMPLES The present invention will now be described in more detail with reference to examples. Example 1 No. in Table 1 Raw material batches were prepared using various high-purity raw materials so that the composition became 1. The glass composition in Table 1 is expressed in weight percent. This raw material batch 12kg
Was melt-purified in an electric furnace at 1330 ° C. using a platinum crucible having a capacity of 5 liters. Then, it was cast into an iron metal frame and subjected to predetermined annealing to obtain a glass block. The transmittance of this glass at a thickness of 2 mm is shown in FIG. Table 1 shows the coefficient of thermal expansion of the obtained glass, which is a value measured by a TMA analyzer. The coefficient of thermal expansion of this glass is 67 × 10
It is -7 K -1 , and it can be seen that it has a thermal expansion coefficient suitable for sealing with the alumina ceramic. Also, the amount of α-ray emission measured by Sumika Analytical Center's α-ray measurement device LACS and U and Th measured by Yokogawa Electric's ICP-MASS.
The content is shown in Table 2.
【0025】次に、得られたガラスを用いて、所定形状
(15.5×17.7×2.0 mm)のカバーガラス兼用のフィル
ターを作製した。このフィルターを、エポキシ樹脂を用
いて有効画素数58万画素のCCDチップを内蔵したア
ルミナセラミックパッケージに封着して図2に示す本発
明の固体撮像素子を作製し、得られた固体撮像素子のソ
フトエラーの有無を調査した。比較の為、市販の近赤外
吸収フィルター、ガラス(A)及び(B)を用い、同様
の実験を行った。。ガラス(A)は弗燐酸塩ガラスであ
り、ガラス(B)は燐酸塩ガラスであった。これらのガ
ラスの熱膨張係数はそれぞれ表1に示した。ガラス
(A)は熱膨張係数が158×10-7K-1と大きく、ア
ルミナセラミックパッケージとの封着の際、割れが発生
し固体撮像素子を得ることができなかった。一方、ガラ
ス(B)は割れを発生することなくアルミナセラミック
パッケージと封着することができた。そこで、得られた
固体撮像素子について、上記と同様にソフトエラーの有
無を調査した。結果は表2に示す。表2の結果から、実
施例1のガラスを使用した固体撮像素子はソフトエラー
が少なく、それに対して、比較ガラス(B)を使用した
固体撮像素子は著しくソフトエラーが多いものであっ
た。なお、比較の為、比較ガラス(B)のα線放出量及
びU、Th含有量も表2に示す。Next, using the obtained glass, a filter having a predetermined shape (15.5 × 17.7 × 2.0 mm) also serving as a cover glass was prepared. This filter was sealed in an alumina ceramic package containing a CCD chip with an effective pixel count of 580,000 pixels using epoxy resin to fabricate the solid-state image sensor of the present invention shown in FIG. The presence or absence of soft error was investigated. For comparison, the same experiment was performed using a commercially available near infrared absorption filter and glasses (A) and (B). . Glass (A) was fluorophosphate glass and glass (B) was phosphate glass. The thermal expansion coefficients of these glasses are shown in Table 1, respectively. Glass (A) has a large coefficient of thermal expansion of 158 × 10 −7 K −1, and cracks occurred during sealing with the alumina ceramic package, and a solid-state image sensor could not be obtained. On the other hand, the glass (B) could be sealed with the alumina ceramic package without cracking. Therefore, with respect to the obtained solid-state imaging device, the presence or absence of a soft error was investigated as in the above. The results are shown in Table 2. From the results of Table 2, the solid-state imaging device using the glass of Example 1 had few soft errors, whereas the solid-state imaging device using comparative glass (B) had remarkably many soft errors. For comparison, Table 2 also shows the α-ray emission amount and U and Th contents of the comparative glass (B).
【0026】実施例2 表1中のNo.2の組成になるように各種高純度原料を
使用して原料バッチを作製した。この原料バッチ16k
gを7リットル容量のSiO2 坩堝で粗熔解し、カレッ
トを作製した後、そのカレット12kgを用いて5リッ
トル容量の白金製坩堝で、1230℃の電気炉中で溶融
精製した。次いで、鉄製金枠に鋳込み、所定のアニール
をしてガラスブロックを得た。2mm厚のこのガラスの
透過率を図7に示す。また、TMA分析装置による測定
値である熱膨張係数を表1に示す。このガラスは、アル
ミナセラミックとの封着に適合した熱膨張係数を有して
いることが分かる。又、α線放出量及びU、Th分析値
を表2に示す。Example 2 No. 1 in Table 1 Raw material batches were prepared using various high-purity raw materials so as to have the composition of 2. This raw material batch 16k
g was roughly melted with a 7 liter capacity SiO 2 crucible to prepare a cullet, and 12 kg of the cullet was used to melt-refin in a 5 liter capacity crucible made of platinum in an electric furnace at 1230 ° C. Then, it was cast into an iron metal frame and subjected to predetermined annealing to obtain a glass block. The transmittance of this 2 mm thick glass is shown in FIG. Table 1 shows the thermal expansion coefficient, which is the value measured by the TMA analyzer. It can be seen that this glass has a coefficient of thermal expansion suitable for sealing with the alumina ceramic. Table 2 shows the α-ray emission amount and the U and Th analysis values.
【0027】このガラスブロックから良品部分を選塊
し、所望の形状(15.5×17.7×2.0 mm)に研磨加工さ
れたプリフォームを作製した。次いで、所定の格子形状
とスパッタされたカーボン膜を有する石英ガラス製の型
を使用して常法のモールド成形技術により、上記プリフ
ォームの片面に井形形状の回析格子を形成した。回析格
子を有する13.5×14.5mm幅、厚み2.0mm
の近赤外吸収フィルターを得た。この回析格子は、図4
に示すような台形の断面形状を有し、台形の高さ0.5
μm、ピッチ間隔5.2μmであった。次に、この回析
格子面が内側になるようにして、上記近赤外吸収フィル
ターを、有効画素数58万画素のCCDチップを内蔵し
たアルミナセラミックパッケージに封着して図3に示す
本発明の固体撮像素子を作製した。得られた固体撮像素
子について、ソフトエラーの有無を調査した。結果を表
2に示す。この固体撮像素子は、実施例1の固体撮像素
子と同様にソフトエラーの少ないものであった。A non-defective portion was selected from this glass block, and a preform polished into a desired shape (15.5 × 17.7 × 2.0 mm) was produced. Then, a well-shaped diffraction grating was formed on one surface of the preform by a conventional molding technique using a mold made of quartz glass having a predetermined grating shape and a sputtered carbon film. 13.5 x 14.5 mm width with diffraction grating, thickness 2.0 mm
To obtain a near infrared absorption filter. This diffraction grating is shown in FIG.
It has a trapezoidal cross-sectional shape as shown in Fig.
The pitch was 5.2 μm. Next, the near-infrared absorption filter is sealed in an alumina ceramic package containing a CCD chip having 580,000 effective pixels so that the diffraction grating surface faces inside, and the present invention shown in FIG. The solid-state image sensor of was produced. The presence or absence of soft error was investigated for the obtained solid-state imaging device. The results are shown in Table 2. This solid-state image sensor had few soft errors like the solid-state image sensor of Example 1.
【0028】一方、上記回析格子がローパスフィルター
の機能を有するかどうかを評価する為に、従来の水晶板
と近赤外吸収フィルターの貼り合わせ素子と固体撮像素
子を組み合わせた場合と、上記の回析格子を有する近赤
外吸収フィルターをカバーガラスとして封着した固体撮
像素子を用いた場合のビデオ映像の画質比較を行った。
その結果、両者共にほぼ同等の画質であり、本実施例の
フィルターがローパスフィルターとしての機能と感度補
正機能を有していることが確認された。On the other hand, in order to evaluate whether or not the diffraction grating has a function of a low-pass filter, a case where a pasting element of a conventional quartz plate and a near-infrared absorption filter and a solid-state image pickup element are combined, and The image quality of video images was compared when a solid-state image sensor in which a near-infrared absorption filter having a diffraction grating was sealed as a cover glass was used.
As a result, it was confirmed that both have almost the same image quality, and that the filter of this embodiment has a function as a low-pass filter and a sensitivity correction function.
【0029】実施例3 表1中のNo.3〜7の組成のガラスについても、実施
例1と同様にして、高純度原料を使用して、U及びTh
の含有量がそれぞれ5ppb以下及び20ppb以下の
近赤外吸収ガラスを調製した。得られたガラスの熱膨張
係数を表1に示す。さらに、得られたガラスを用いて、
実施例1及び2と同様にして近赤外吸収フィルター及び
回折格子を有するローパスフィルターを作製し、さらに
これらの近赤外吸収フィルター及びローパスフィルター
を用いて固体撮像素子を作製した。得られた固体撮像素
子についてソフトエラーの有無を調査した結果、いずれ
の固体撮像素子についてもソフトエラーは少なかった。
また、回折格子を有するローパスフィルターは、ローパ
スフィルターとしての機能を有することも確認できた。Example 3 No. 1 in Table 1 For the glasses having compositions of 3 to 7, U and Th were used in the same manner as in Example 1 except that high-purity raw materials were used.
The near-infrared absorbing glass having a content of 5 ppb or less and a content of 20 ppb or less was prepared. Table 1 shows the thermal expansion coefficient of the obtained glass. Furthermore, using the obtained glass,
A low-pass filter having a near-infrared absorption filter and a diffraction grating was prepared in the same manner as in Examples 1 and 2, and a solid-state imaging device was prepared using these near-infrared absorption filter and low-pass filter. As a result of investigating the presence or absence of soft errors in the obtained solid-state image pickup devices, there were few soft errors in any of the solid-state image pickup devices.
It was also confirmed that the low-pass filter having the diffraction grating has a function as a low-pass filter.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【発明の効果】以上のように、本発明の近赤外吸収ガラ
スはU及びThの含有量が著しく低いので、CCDチッ
プの近傍に配置してもソフトエラーの原因となることが
少なく、カバーガラスと近赤外吸収フィルター、さらに
はローパスフィルターの機能を複合化した、保護用フィ
ルター及び保護用ローパスフィルターを提供することが
できる。さらに、これらのフィルターを用いた固体撮像
素子は、ソフトエラーが少なく、かつ小型軽量化が可能
であり、コスト削減も期待できる。As described above, since the near-infrared absorbing glass of the present invention has a remarkably low content of U and Th, it is less likely to cause a soft error even if it is placed in the vicinity of the CCD chip, and the cover is covered. It is possible to provide a protective filter and a protective low-pass filter that combine the functions of glass, a near-infrared absorption filter, and a low-pass filter. Furthermore, the solid-state imaging device using these filters has few soft errors, can be made small and lightweight, and can be expected to reduce costs.
【図1】従来のVTRカメラの光学系の構成を示す説明
図である。FIG. 1 is an explanatory diagram showing a configuration of an optical system of a conventional VTR camera.
【図2】本発明の保護用フィルターを用いたVTRカメ
ラの光学系の構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of an optical system of a VTR camera using the protective filter of the present invention.
【図3】本発明の保護用ローパスフィルターを用いたV
TRカメラの光学系の構成を示す説明図である。FIG. 3 is a graph showing V using the low pass filter for protection of the present invention.
It is explanatory drawing which shows the structure of the optical system of TR camera.
【図4】本発明の保護用ローパスフィルターの面上に形
成される回析格子の一例の局部的な鳥瞰図である。FIG. 4 is a local bird's-eye view of an example of a diffraction grating formed on the surface of the protective low-pass filter of the present invention.
【図5】カバーガラスに積層した本発明のローパスフィ
ルターを用いた固体撮像素子を示す説明図である。FIG. 5 is an explanatory view showing a solid-state imaging device using the low-pass filter of the present invention laminated on a cover glass.
【図6】本発明のローパスフィルターをCCDチップの
前面に設けた固体撮像素子を示す説明図である。FIG. 6 is an explanatory diagram showing a solid-state image sensor in which the low-pass filter of the present invention is provided on the front surface of a CCD chip.
【図7】本発明の近赤外吸収ガラスの分光透過率曲線を
示す。FIG. 7 shows a spectral transmittance curve of the near-infrared absorbing glass of the present invention.
1 レンズ系 2、3 水晶板 4 近赤外吸収フィルター 6、10、12、15、18 固体撮像素子 7 CCDチップ 8 アルミナセラミックパッケージ 9 カバーガラス 11 保護用フィルター 13 保護用ローパスフィルター 14、17 回折格子 16 ローパスフィルター 1 Lens system 2, 3 Quartz plate 4 Near infrared absorption filter 6, 10, 12, 15, 18 Solid-state image sensor 7 CCD chip 8 Alumina ceramic package 9 Cover glass 11 Protective filter 13 Protective low-pass filter 14, 17 Diffraction grating 16 low pass filter
Claims (7)
有する近赤外線吸収ガラスであって、U及びThの含有
量がそれぞれ5ppb以下及び20ppb以下であるこ
とを特徴とする近赤外線吸収ガラス。1. A near infrared absorption glass containing P 2 O 5 as a main component and containing CuO, wherein the contents of U and Th are 5 ppb or less and 20 ppb or less, respectively. Glass.
%及びAl2 O3 を4〜20%含有し、両者の合量が6
3%以上であり、CuOを0.1〜10%含有し、かつ
熱膨張係数が45〜75×10-7K-1である請求項1記
載の近赤外線吸収ガラス。2. The P 2 O 5 content in terms of weight% is 50 to 85.
% And Al 2 O 3 of 4 to 20%, and the total amount of both is 6
The near-infrared absorbing glass according to claim 1, which is 3% or more, contains 0.1 to 10% of CuO, and has a thermal expansion coefficient of 45 to 75 × 10 -7 K -1 .
0〜15%であり、SiO2 の含有量が0〜25%であ
り、MgO、CaO、SrO、BaO及びZnOからな
る群の1種又は2種以上の含有量が0〜25%であり、
B2 O3 、SiO2 、MgO、CaO、SrO、BaO
及びZnOからなる群の1種又は2種以上の含有量が5
〜37%であり、かつP2 O5 、Al2 O3 、B
2 O3 、SiO2 、MgO、CaO、SrO、BaO及
びZnOからなる群の含有量の合計が85%以上である
請求項1又は2記載の近赤外線吸収ガラス。3. Expressed in% by weight, the content of B 2 O 3 is 0 to 15%, the content of SiO 2 is 0 to 25%, and MgO, CaO, SrO, BaO and ZnO are used. The content of one or more of the group consisting of 0 to 25%,
B 2 O 3 , SiO 2 , MgO, CaO, SrO, BaO
And the content of one or more of the group consisting of ZnO and 5 is 5
˜37% and P 2 O 5 , Al 2 O 3 , B
The near-infrared absorbing glass according to claim 1 or 2, wherein the total content of the group consisting of 2 O 3 , SiO 2 , MgO, CaO, SrO, BaO and ZnO is 85% or more.
赤外線吸収ガラスからなることを特徴とする固体撮像素
子保護用フィルター。4. A filter for protecting a solid-state image sensor, comprising the near-infrared absorbing glass according to any one of claims 1 to 3.
を形成してなり、前記基板が請求項1〜3のいずれか1
項に記載の近赤外線吸収ガラスからなることを特徴とす
る固体撮像素子保護用ローパスフィルター。5. A diffraction grating is formed on at least one surface of a substrate, and the substrate is any one of claims 1 to 3.
A low-pass filter for protecting a solid-state imaging device, which is made of the near-infrared absorbing glass according to the item.
であって、前記保護用光透過部材が請求項4記載の保護
用フィルターであることを特徴とする固体撮像素子。6. A solid-state image sensor including a protective light-transmitting member, wherein the protective light-transmitting member is the protective filter according to claim 4.
であって、前記保護用光透過部材が請求項5記載のロー
パスフィルターであることを特徴とする固体撮像素子。7. A solid-state image sensor including a protective light-transmitting member, wherein the protective light-transmitting member is the low-pass filter according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6073498A JP2989739B2 (en) | 1994-04-12 | 1994-04-12 | Near-infrared absorbing glass, filter for protecting solid-state imaging device using this glass, and solid-state imaging device using this filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6073498A JP2989739B2 (en) | 1994-04-12 | 1994-04-12 | Near-infrared absorbing glass, filter for protecting solid-state imaging device using this glass, and solid-state imaging device using this filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07281021A true JPH07281021A (en) | 1995-10-27 |
JP2989739B2 JP2989739B2 (en) | 1999-12-13 |
Family
ID=13519987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6073498A Expired - Lifetime JP2989739B2 (en) | 1994-04-12 | 1994-04-12 | Near-infrared absorbing glass, filter for protecting solid-state imaging device using this glass, and solid-state imaging device using this filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2989739B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1104181A2 (en) * | 1999-11-17 | 2001-05-30 | HAVIT Co., Ltd., Suite 6114 TBI Center | Solid-state imaging device into which optical low pass filter is integrated |
KR100843621B1 (en) * | 2006-08-08 | 2008-07-03 | 주식회사 거성기업 | Charge coupled device for forming 3-dimensional image |
JP2008160321A (en) * | 2006-12-21 | 2008-07-10 | Casio Comput Co Ltd | Lens / sensor assembly, sensor mounting structure, and method of manufacturing lens / sensor assembly |
US7589780B2 (en) | 2002-04-26 | 2009-09-15 | Olympus Optical Co., Ltd. | Camera and image pick-up device unit used therefor having a sealing structure between a dust-proofing member and an image pick-up device |
US7591598B2 (en) | 2002-07-30 | 2009-09-22 | Olympus Optical Co., Ltd. | Camera having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing part that seals a space between the dust-proofing member and an image pickup-device |
JP2009267396A (en) * | 2008-03-31 | 2009-11-12 | Asahi Glass Co Ltd | Glazing for solid imaging device package |
JP2015099239A (en) * | 2013-11-19 | 2015-05-28 | セイコーエプソン株式会社 | Optical filter device, optical module, and electronic apparatus |
JP2017014042A (en) * | 2015-06-30 | 2017-01-19 | 日本電気硝子株式会社 | Glass laminated body and solid state imaging device |
JP2017120285A (en) * | 2015-12-28 | 2017-07-06 | 旭硝子株式会社 | Near-infrared cut filter |
KR20200062280A (en) | 2017-11-09 | 2020-06-03 | 후지필름 가부시키가이샤 | Device, composition for forming an organic layer |
-
1994
- 1994-04-12 JP JP6073498A patent/JP2989739B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001157121A (en) * | 1999-11-17 | 2001-06-08 | Havit Co Ltd | Optical low-bandpass filter integrated solid-state imaging device |
EP1104181A3 (en) * | 1999-11-17 | 2002-04-17 | HAVIT Co., Ltd., Suite 6114 TBI Center | Solid-state imaging device into which optical low pass filter is integrated |
EP1104181A2 (en) * | 1999-11-17 | 2001-05-30 | HAVIT Co., Ltd., Suite 6114 TBI Center | Solid-state imaging device into which optical low pass filter is integrated |
US7589780B2 (en) | 2002-04-26 | 2009-09-15 | Olympus Optical Co., Ltd. | Camera and image pick-up device unit used therefor having a sealing structure between a dust-proofing member and an image pick-up device |
US7591598B2 (en) | 2002-07-30 | 2009-09-22 | Olympus Optical Co., Ltd. | Camera having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing part that seals a space between the dust-proofing member and an image pickup-device |
US7686524B2 (en) | 2002-07-30 | 2010-03-30 | Olympus Optical Co., Ltd. | Image pick-up device unit having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing structure that seals an interval between the dust-proofing member and an image pick-up device |
KR100843621B1 (en) * | 2006-08-08 | 2008-07-03 | 주식회사 거성기업 | Charge coupled device for forming 3-dimensional image |
JP2008160321A (en) * | 2006-12-21 | 2008-07-10 | Casio Comput Co Ltd | Lens / sensor assembly, sensor mounting structure, and method of manufacturing lens / sensor assembly |
JP2009267396A (en) * | 2008-03-31 | 2009-11-12 | Asahi Glass Co Ltd | Glazing for solid imaging device package |
JP2015099239A (en) * | 2013-11-19 | 2015-05-28 | セイコーエプソン株式会社 | Optical filter device, optical module, and electronic apparatus |
JP2017014042A (en) * | 2015-06-30 | 2017-01-19 | 日本電気硝子株式会社 | Glass laminated body and solid state imaging device |
JP2017120285A (en) * | 2015-12-28 | 2017-07-06 | 旭硝子株式会社 | Near-infrared cut filter |
KR20200062280A (en) | 2017-11-09 | 2020-06-03 | 후지필름 가부시키가이샤 | Device, composition for forming an organic layer |
US12062675B2 (en) | 2017-11-09 | 2024-08-13 | Fujifilm Corporation | Device including an α-ray source and an electronic circuit influenced by α-ray |
Also Published As
Publication number | Publication date |
---|---|
JP2989739B2 (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1714948A2 (en) | Alumninophosphate glass containing copper (II) oxide and uses thereof for light filtering | |
JP5659499B2 (en) | Near-infrared cut filter glass | |
JP3965352B2 (en) | Copper-containing glass, near infrared light absorption element, and near infrared light absorption filter | |
CN106990463B (en) | Near infrared cut-off filter | |
JP2002249340A (en) | Cover glass for semiconductor package | |
JP5036229B2 (en) | Visibility correction filter glass and visibility correction filter | |
JP2989739B2 (en) | Near-infrared absorbing glass, filter for protecting solid-state imaging device using this glass, and solid-state imaging device using this filter | |
JPWO2018021222A1 (en) | Optical glass and near infrared cut filter | |
JP4953347B2 (en) | Visibility correction filter glass and visibility correction filter | |
JP5051817B2 (en) | Visibility correction filter glass and visibility correction filter | |
JP5057505B2 (en) | Visibility correction filter glass manufacturing method | |
JP3532178B2 (en) | Window material glass for semiconductor package and method of manufacturing the same | |
US7170154B2 (en) | Glass for window of semiconductor package, glass window for semiconductor package, process for production of glass window, and semiconductor package | |
JP4493417B2 (en) | Glass for semiconductor package window, glass window for semiconductor package and semiconductor package | |
JP3835718B2 (en) | Phosphate glass for precision molding, optical element using the same, and method for producing optical element | |
JP3110325B2 (en) | Method for adjusting spectral characteristics of near-infrared cut filter glass | |
JP3283722B2 (en) | Window glass for semiconductor package and method of manufacturing the same | |
JP2004238283A (en) | Window material glass for semiconductor package | |
JP4433391B2 (en) | Glass for semiconductor package window, glass window for semiconductor package and semiconductor package | |
JP3157696B2 (en) | Near infrared cut filter glass | |
JP3589421B2 (en) | Window material glass for semiconductor package and method of manufacturing the same | |
JPH07237933A (en) | Glass for packaging and production thereof | |
TWI388529B (en) | Near-infrared absorbing filter | |
JP3206804B2 (en) | Window glass for solid-state imaging device package | |
JP2660891B2 (en) | Window glass for solid-state image sensor package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121008 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121008 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |