JPH07278684A - Sintered ore manufacturing method - Google Patents
Sintered ore manufacturing methodInfo
- Publication number
- JPH07278684A JPH07278684A JP9284094A JP9284094A JPH07278684A JP H07278684 A JPH07278684 A JP H07278684A JP 9284094 A JP9284094 A JP 9284094A JP 9284094 A JP9284094 A JP 9284094A JP H07278684 A JPH07278684 A JP H07278684A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- ore
- layer
- sintered ore
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
(57)【要約】
【目的】 アルミナ成分を2.0重量%以上含有する高
アルミナ鉱石を焼結鉱製造時の配合原料の一部として使
用する際に生じる成品焼結鉱の歩留の低下を、品質を低
下させることなく防止する。
【構成】 FeO成分を5.0〜31.0重量%含むマ
グネタイト鉱石および/またはスケールを、原料装入時
に焼結原料充填層の層高方向の表層より下層方向へ20
0mm以上でかつ最下層より表層方向へ200mm以上
の位置に添加する。添加量は、図1に示すように、配合
原料中Al2 O3 含有量に応じて0.5〜10.0重量
%とする。
【効果】 アルミナ成分の増加に起因する流動性の悪化
を改善し、高歩留で高品質の焼結鉱が製造できる。
(57) [Abstract] [Purpose] A decrease in the yield of the product sintered ore that occurs when high-alumina ore containing 2.0% by weight or more of alumina component is used as a part of the blended raw material during the production of the sintered ore. Are prevented without degrading the quality. [Composition] Magnetite ore and / or scale containing 5.0 to 31.0 wt% of FeO component is added to the sintering raw material packed bed at the time of charging the raw material in a direction downward from the surface layer in the layer height direction.
It is added at a position of 0 mm or more and 200 mm or more in the surface layer direction from the bottom layer. As shown in FIG. 1, the addition amount is 0.5 to 10.0% by weight depending on the Al 2 O 3 content in the blended raw material. [Effect] It is possible to improve the deterioration of fluidity due to the increase of the alumina component, and to manufacture a high-quality sintered ore with a high yield.
Description
【0001】[0001]
【産業上の利用分野】本発明は、粉粒体から通風式自己
燃焼型焼結で焼結鉱、すなわち鉄鉱石焼結鉱およびC
r、Mn、Tiなどの合金用焼結鉱を製造する方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sinter ore, ie, an iron ore sinter and a C, which is produced from a granular material by ventilation type self-combustion type sintering.
The present invention relates to a method for producing a sintered ore for alloys such as r, Mn, and Ti.
【0002】[0002]
【従来の技術】一般的な焼結鉱製造工程を図4に示す。
原料槽から切り出された複数銘柄の鉄鉱石粉1に石灰石
4、粉コークス6、場合によっては珪石、蛇紋岩5など
を配合し、ドラムミキサー7で水分添加し、混合、造粒
した配合原料をサージホッパー10に貯える。ドワイト
ロイド型焼結機9では、移動するパレット上に床敷ホッ
パー12から4〜6mm以上の焼結鉱を約10〜50m
mの厚みでグレート上に敷き、その上にサージホッパー
10から装入装置11により焼結原料を約300〜60
0mmの厚さで敷いた後、点火炉で原料層表面に着火す
るとともに下方吸引により焼成を行い、排鉱部で破砕、
整粒して成品焼結鉱とする。整粒篩分け過程(図4には
省略する)で発生する通常−5mmの粉と通常+5mm
の良塊との良塊化比率で焼結鉱の歩留が決定される。2. Description of the Related Art A general sinter production process is shown in FIG.
Multiple brands of iron ore powder 1 cut out from the raw material tank are blended with limestone 4, powder coke 6, and in some cases silica stone, serpentine 5, etc., water is added with a drum mixer 7, and the mixed raw material is surged. Store in hopper 10. In the Dwightroid-type sintering machine 9, about 4 to 6 mm or more of sintered ore is placed on the moving pallet from the floor hopper 12 for about 10 to 50 m.
It is laid on the grate with a thickness of m and the sintering raw material is supplied from the surge hopper 10 by the charging device 11 to about 300-60.
After laying it with a thickness of 0 mm, the surface of the raw material layer is ignited in an ignition furnace and fired by downward suction, and crushed in the mine ore,
The particles are sized to obtain a product sinter. Normally -5 mm powder and normally +5 mm generated in the sieving process (not shown in Fig. 4)
The yield of the sintered ore is determined by the ratio of good lumps to the good lumps.
【0003】銑鉄製造用の溶鉱炉に装入される原料とし
て焼結鉱が広く使用されているが、日本の製鉄業におい
ては、品質の安定した焼結鉱を得るために種々の性質を
有する鉄鉱石をブレンドして焼結原料として使用するの
が一般である。このようにブレンドされる鉄鉱石のう
ち、Al2 O3 を2.0重量%以上含有する高Al2 O
3 鉄鉱石は焼結性に悪影響を及ぼす因子を種々有してお
り、焼結原料中のAl2O3 成分の増加にしたがって焼
結鉱の歩留や冷間強度や低温還元粉化指数(RDI)な
どの焼結鉱品質が悪化する傾向がある。Sintered ore is widely used as a raw material to be charged into a blast furnace for producing pig iron, but in the Japanese steel industry, iron ore having various properties in order to obtain a sintered ore of stable quality. Generally, stone is blended and used as a sintering raw material. Among the iron ores blended in this way, high Al 2 O containing 2.0% by weight or more of Al 2 O 3.
3 Iron ore has various factors that adversely affect the sinterability, and as the Al 2 O 3 content in the sintering raw material increases, the yield of the ore, cold strength and low temperature reduction powdering index ( The quality of sinter such as RDI) tends to deteriorate.
【0004】上記のような高Al2 O3 鉄鉱石を焼結原
料として多量使用した場合における悪化要因に対して
は、いくつかの対策や原料処理方法が提案されている。
例えば、特開昭61−113729号公報には、高Al
2 O3 鉄鉱石にFeO成分を多めに傾斜配合する方法が
記載されている。この方法は焼結反応過程で生じる二次
ヘマタイトの生成を抑制し、カルシウムフェライトを中
心とする焼結鉱組織を形成させることによって焼結鉱品
質および歩留を改善することを目的としている。Several countermeasures and raw material processing methods have been proposed for the factors causing deterioration in the case where a large amount of high Al 2 O 3 iron ore as described above is used as a sintering raw material.
For example, Japanese Patent Laid-Open No. 61-113729 discloses high Al.
A method is described in which 2 O 3 iron ore is mixed with a large amount of FeO component in a gradient. The purpose of this method is to suppress the formation of secondary hematite that occurs during the sintering reaction process and to improve the quality and yield of sinter by forming a sinter structure centered on calcium ferrite.
【0005】[0005]
【発明が解決しようとする課題】特開昭61−1137
29号公報記載の方法における還元鉄粉をはじめとする
FeO成分の全層添加によるミクロな鉱物組織制御は焼
結鉱の一部分の改善なので、粉鉱石の緻密化や貫通気孔
の形成制御によるシンターケーキ全体の改善に比べて本
質的でなく効果が小さく、Al2 O3 が2.0重量%未
満の低Al2 O3鉱石のみを用いた場合の焼結鉱品質
(冷間強度、低温還元粉化指数)、歩留には及ばない。
また、全層にわたってマグネタイト鉱石やスケールを添
加するための焼結鉱製造コストの増大も大きい。Problems to be Solved by the Invention JP-A-61-1137
In the method described in Japanese Patent Publication No. 29, the fine mineral structure control by adding all layers of FeO components including the reduced iron powder is an improvement of a part of the sinter, so the sinter cake by densifying the powder ore and controlling the formation of through pores small effect not essential as compared to the overall improvement, baked ore quality (cold strength when Al 2 O 3 was used only low Al 2 O 3 ore of less than 2.0 wt%, the low temperature reduction powder Chemical conversion index) and yield are not reached.
Further, the addition of magnetite ore and scale to all layers greatly increases the production cost of sinter.
【0006】また、特願平5−139281号明細書に
は、シンターケーキ構造形成の観点から、中下層部分の
融液流動性を高めるため、金属鉄を含む物質等の添加物
を焼結原料中に添加する方法が記載されているが、添加
物の量が多い場合にはコストがかさむなどの他に、添加
物の装入ホッパーの新設や原料の二段装入設備の導入な
ど設備費が増大するなどの欠点がある。From the viewpoint of forming a sinter cake structure, Japanese Patent Application No. 5-139281 discloses a sintering raw material containing additives such as a substance containing metallic iron in order to enhance the melt fluidity of the middle and lower layers. Although the method of addition is described inside, in addition to the cost being high if the amount of additives is large, equipment costs such as the installation of new additive hoppers and the introduction of two-stage charging equipment for raw materials Has the drawback of increasing
【0007】本発明は、高Al2 O3 鉄鉱石を多量配合
する焼結鉱の製造方法における成品焼結鉱の歩留の低下
を、冷間強度および低温還元粉化指数などの焼結鉱品質
を低下させることなく防止することを目的とする。The present invention reduces the yield of the product sintered ore in the method for producing the sintered ore in which a large amount of high Al 2 O 3 iron ore is blended, and reduces the cold strength and the low temperature reduction powdering index. The purpose is to prevent without degrading the quality.
【0008】[0008]
【課題を解決するための手段】本発明の焼結鉱の製造方
法は以下の、の通りである。The method for producing a sinter according to the present invention is as follows.
【0009】 Al2 O3 を2.0重量%以上含有す
る高Al2 O3 鉱石を焼結鉱製造時の配合原料の一部と
して5.0〜70.0重量%使用する際、FeO成分を
5.0〜31.0重量%含むマグネタイト鉱石および/
またはスケールを、原料装入時に焼結原料充填層の層高
方向の表層より下層方向へ200mm以上でかつ最下層
より表層方向へ200mm以上の位置に、配合原料中A
l2 O3 含有量に応じて図1の斜線で示される範囲の量
だけ添加することを特徴とする焼結鉱の製造方法。[0009] Al 2 O 3 5.0~70.0 when weight% using a high Al 2 O 3 ore containing 2.0% by weight or more as part of the mixed material during sintered ore production, FeO component Ore containing 5.0 to 31.0 wt% of
Alternatively, when the raw material is charged, the scale is placed at a position 200 mm or more downward from the surface layer in the layer height direction of the sintering raw material packed layer and 200 mm or more from the bottom layer to the surface layer direction in the raw material mixture.
A method for producing a sintered ore, which comprises adding an amount in a range shown by a slanted line in FIG. 1 according to the content of 1 2 O 3 .
【0010】 Al2 O3 を2.0重量%以上含有す
る高Al2 O3 鉱石を焼結鉱製造時の配合原料の一部と
して5.0〜70.0重量%使用する際、粒径が1〜3
mmのFeO成分を5.0〜31.0重量%含むマグネ
タイト鉱石および/またはスケールを、原料装入時に焼
結原料充填層の層高方向の表層より下層方向へ200m
m以上でかつ最下層より表層方向へ200mm以上の位
置に、配合原料中Al2O3 含有量に応じて図1の斜線
で示される範囲の量だけ添加することを特徴とする焼結
鉱の製造方法。[0010] Al 2 O 3 5.0~70.0 when weight% using a high Al 2 O 3 ore containing 2.0% by weight or more as part of the mixed material during sintered ore production, particle size Is 1-3
The magnetite ore and / or scale containing 5.0 to 31.0% by weight of FeO component of mm is 200 m downward from the surface layer in the layer height direction of the sintering raw material packed bed when the raw material is charged.
m or more and 200 mm or more in the surface layer direction from the lowermost layer, according to the Al 2 O 3 content in the blended raw material, an amount in the range shown by the slanted line in FIG. 1 is added. Production method.
【0011】[0011]
【作用】以下、本発明について詳細に説明する。The present invention will be described in detail below.
【0012】焼結配合原料中のAl2 O3 成分が増加す
ると焼結鉱の歩留が低下する原因については様々考えら
れているが、本発明者らは、粉コークスの燃焼によって
粉鉱石が赤熱溶融する際に生じる融液の流動性が冷却し
た後に形成されるシンターケーキの構造に大きく影響
し、それが歩留や冷間強度および低温還元粉化指数とい
った成品焼結鉱品質にも影響を及ぼすことを見いだし
た。融液流動性が小さいと十分な貫通気孔が発達せず、
固体の合体も進まないシンターケーキ構造になり、歩留
・強度が低下する。これは、固相の高Al2 O3 含有難
溶解性カルシウムフェライトの生成が原因と思われる。
すなわち、図5に示すよにAl2 O3 濃度が2%を越え
ると歩留が急激に悪化するのは、焼結過程で生じる融液
の流動性が急激に低下することに原因がある。すなわ
ち、Al2 O3 成分が増加したときに生じる歩留および
焼結鉱品質の悪化の原因は、二次ヘマタイトへのAl2
O3 成分の固溶やカルシウムフェライトの生成量増加と
いったミクロな鉱物組成の変化よりも、粉鉱石粒子の緻
密化阻害といったマクロな構造変化の影響の方が大き
い。このことは、高Al2 O3 鉄鉱石、すなわちAl2
O3 を2.0重量%以上含有する鉱石では、二次ヘマタ
イトやカルシウムフェライトといった鉱物組織の制御で
はなく、融液流動性を高めることが歩留および焼結鉱品
質の改善に重要であることを示している。[0012] Various causes have been considered as to the reason why the yield of the sintered ore decreases when the Al 2 O 3 content in the sintering compounded material increases. The fluidity of the melt generated during red hot melting has a great influence on the structure of the sinter cake formed after cooling, which in turn affects the quality of the product sinter such as yield, cold strength and low temperature reduction pulverization index. Found that If the melt fluidity is small, sufficient through pores will not develop,
A solid cake structure that does not allow solid coalescence will be formed, and the yield and strength will decrease. This is considered to be due to the formation of solid Al 2 O 3 -containing hardly soluble calcium ferrite.
That is, as shown in FIG. 5, when the Al 2 O 3 concentration exceeds 2%, the yield is sharply deteriorated because the fluidity of the melt generated in the sintering process is sharply reduced. That, Al 2 O 3 causes the component yield occurs when increased and sinter quality deterioration, Al 2 to the secondary hematite
The influence of macroscopic structural changes such as the densification of fine ore particles is greater than the changes in the microscopic mineral composition such as the solid solution of O 3 components and the increase in the production of calcium ferrite. This means that high Al 2 O 3 iron ore, namely Al 2
In the case of ores containing O 3 in an amount of 2.0 wt% or more, it is important to improve the melt flowability, not the control of the mineral structure such as secondary hematite and calcium ferrite, in order to improve the yield and sinter quality. Is shown.
【0013】融液流動性を高める方法として、FeO、
CaO、フッ化物、ホウ素化合物、バリウム化合物の1
種または2種以上を添加することなどが考えられる。し
かし、CaOの添加は高炉における操業条件の中では限
界があり、その効果にも限度があるため最適の流動性を
回復するまでにはいたらず、実施が困難であり、微量で
有効なフッ化物、ホウ素化合物、バリウム化合物などの
添加は高炉への装入鉄分が添加物の分だけ相対的に減少
するなどの欠点がある。そこで、酸素分圧を低下させる
ことによってカルシウムフェライトの生成を抑制し融点
を下げるFeO成分を含有し、また熱源としても有効な
スケールまたはマグネタイト鉱石の添加が有効である。As a method for improving the melt fluidity, FeO,
CaO, fluoride, boron compound, barium compound 1
It is conceivable to add one kind or two or more kinds. However, the addition of CaO is limited under the operating conditions in the blast furnace, and its effect is also limited, so it is not possible to restore the optimum fluidity, and it is difficult to carry out, and a trace amount of effective fluoride is required. However, the addition of boron compounds, barium compounds, etc. has the drawback that the amount of iron charged to the blast furnace is relatively reduced by the amount of the additives. Therefore, it is effective to add a scale or magnetite ore that contains an FeO component that suppresses the formation of calcium ferrite and lowers the melting point by reducing the oxygen partial pressure, and is also effective as a heat source.
【0014】また、図6に示すように、焼結原料充填層
の表層から200mm未満の上層部分は上部より融液が
供給されないことから、原料層上部の過剰な融液流動は
残った固体部が細くなりすぎてむしろ焼結時に悪影響に
なる。そこで、適正な通気孔ができず通気性の悪い焼結
原料充填層の中層の流動性を高めることが焼結鉱の歩留
向上の点で重要である。さらに、最下層から表層方向に
200mm以上の中層部分だけに鉄スクラップまたは粒
銑を加えると、中層は勿論のこと下層部分へも融液の流
動によって添加物成分が移動することと、中層部分に適
正な通気孔が形成されることにより下層部分の貫通気孔
もその影響を受けて適正に形成され、歩留および通気性
が改善される。また、中層部分のみに添加物を装入する
ことにより、添加物の添加量が減るためコストを著しく
低減することができる。よってFeO成分を5.0〜3
1.0重量%含むマグネタイト鉱石および/またはスケ
ールを焼結原料充填層の表層から下層方向に200mm
以上でかつ最下層より表層方向に200mm以上の位置
に装入することとした。Further, as shown in FIG. 6, since the melt is not supplied from the upper portion to the upper layer portion of less than 200 mm from the surface layer of the sintering raw material packed layer, the excessive melt flow in the upper portion of the raw material layer remains in the solid portion. Becomes too thin, which rather adversely affects sintering. Therefore, it is important to improve the fluidity of the middle layer of the sintering raw material packed bed, which does not have proper ventilation holes and has poor air permeability, in order to improve the yield of the sintered ore. Furthermore, when iron scrap or granular pig iron is added only to the middle layer portion of 200 mm or more from the bottom layer to the surface layer, the additive components move not only to the middle layer but also to the lower layer portion due to the flow of the melt, and to the middle layer portion. By forming the appropriate ventilation holes, the through-pores in the lower layer portion are also affected by the formation, and the yield and air permeability are improved. Further, by charging the additive only to the middle layer portion, the amount of the additive added is reduced, so that the cost can be remarkably reduced. Therefore, the FeO component is 5.0 to 3
200 mm of magnetite ore and / or scale containing 1.0% by weight downward from the surface layer of the sintering raw material packed bed
Above, it was decided to insert at a position of 200 mm or more from the lowermost layer in the surface layer direction.
【0015】そこで、図2に示す様に、Al2 O3 を
2.0重量%以上含有する高Al2 O3 鉱石2を焼結鉱
製造時の配合原料の一部として使用する際、FeO成分
を5.0〜31.0重量%含むマグネタイト鉱石および
/またはスケールの添加物8を、焼結原料充填層の層高
方向の表層より下層方向に200mm以上でかつ最下層
より表層方向に200mm以上の位置に、床敷ホッパー
12とサージホッパー10の間に付設したホッパー1
0′から、図1斜線内に示すように配合原料中Al2 O
3 含有量に応じて配合原料全体の0.5〜10.0重量
%添加して焼成する。配合原料中Al2 O3 含有量が増
加するにしたがい融液流動性が悪化するため、それを回
復させるためAl2 O3 成分の増加にしたがいマグネタ
イト鉱石やスケールの添加量を増加させることが必要で
あるが、多量に添加しすぎると流動性が過剰になり、貫
通気孔の閉塞がおこり逆効果である。したがって、添加
量には適正範囲が存在し、その範囲は図1に示すとおり
である。[0015] Therefore, as shown in FIG. 2, when using a high Al 2 O 3 ore 2 containing Al 2 O 3 2.0 wt% or more as part of the mixed material during sintered ore production, FeO The magnetite ore containing 5.0 to 31.0 wt% of the component and / or the scale additive 8 is 200 mm or more downward from the surface layer in the layer height direction of the sintering raw material packed layer and 200 mm from the bottom layer toward the surface layer. The hopper 1 attached at the above position between the floor hopper 12 and the surge hopper 10.
0 ', blended raw material Al 2 O As shown in FIG. 1 within the hatched
(3) Add 0.5 to 10.0% by weight of the whole blended raw material according to the content and fire. Since the melt fluidity deteriorates as the Al 2 O 3 content in the blended raw material increases, it is necessary to increase the amount of magnetite ore or scale added in order to recover it as the Al 2 O 3 component increases. However, if too much is added, the fluidity becomes excessive and the through pores become blocked, which has the opposite effect. Therefore, there is a proper range for the addition amount, and the range is as shown in FIG.
【0016】また、図3に示すように、粒度が1〜3m
mの添加物8を、原料装入時にふるい分け機能を持つ粒
度偏析型装入装置13を用いて焼結原料充填層の層高方
向の表層より下層方向に200mm以上でかつ最下層よ
り表層方向に200mm以上の位置に、図1斜線内に示
す範囲でAl2 O3 含有量に応じて配合原料全体の0.
5〜10.0重量%添加して焼成する。ここで、ふるい
分け機能を持つ粒度偏析型装入装置とは、例えば特公昭
59−30776号公報、特開昭61−223136号
公報、特公平3−31995号公報に示されるような、
助走板の先に先端にいくにしたがって垂直方向の間隔が
広くなる平行バーを設けた装入装置である。これらの装
入装置13を用いて原料を装入すると、粒度が1mm以
上の粒子は表層から下層方向に200mm未満の部分に
装入され、また、3mm超の粒子のほとんどは最下層か
ら表層方向に200mm未満の部分に装入されてしま
い、流動性改善による固体粒子の緻密化、貫通気孔形成
の効果が原料充填層の中で有効に発揮されない。1〜3
mmの粒子は、焼結原料充填層の層高方向の表層より下
層方向に200mm以上でかつ最下層より表層方向に2
00mm以上の適正な層に集中して装入されることにな
る。Further, as shown in FIG. 3, the grain size is 1 to 3 m.
The additive 8 of m is used in a particle size segregation type charging device 13 having a sieving function at the time of charging the raw material, and is 200 mm or more downward from the surface layer in the layer height direction of the sintering raw material packed layer and in the surface layer direction from the bottom layer. to 200mm or more positions, 0 in the entire mixed material in accordance with the content of Al 2 O 3 in the range shown in FIG. 1 within the hatched.
Add 5 to 10.0 wt% and bake. Here, the particle size segregation type charging device having a sieving function is, for example, as shown in Japanese Patent Publication No. 59-30776, Japanese Patent Publication No. 61-223136, and Japanese Patent Publication No. 3-31995.
This is a charging device in which parallel bars are provided at the tip of the run-up plate so that the vertical interval becomes wider toward the tip. When the raw materials are charged using these charging devices 13, particles having a particle size of 1 mm or more are charged in a portion of less than 200 mm from the surface layer to the lower layer, and most of particles having a particle size of more than 3 mm are directed from the lowermost layer to the surface layer. Since it is charged into a portion of less than 200 mm, the effect of densification of solid particles and formation of through pores due to improvement of fluidity cannot be effectively exhibited in the raw material packed bed. 1-3
The particles having a diameter of 2 mm are 200 mm or more below the surface layer in the layer height direction of the sintering raw material packed layer and 2 in the surface layer direction from the bottom layer.
It will be charged intensively in a proper layer of 00 mm or more.
【0017】上記のような添加物の添加を行うことによ
って、高Al2 O3 に起因する流動性の低下を改善で
き、焼結層全体にわたって高歩留かつ高品質の焼結鉱が
製造できる。By adding the additives as described above, it is possible to improve the deterioration of the fluidity due to the high Al 2 O 3 , and it is possible to produce a high-yield and high-quality sintered ore over the entire sintered layer. .
【0018】[0018]
【実施例1】表1に示す焼結配合原料を用い、原料装入
法は従来法と図2に示す方法で焼結操業を実施した。こ
の際の焼結原料層の高さは600mmであった。本発明
法は配合原料に対してマグネタイト鉱石(クドレムク
鉱石)を5.0重量%、本発明法は同じくマグネタイ
ト鉱石(クドレムク鉱石)を1.0重量%、スケールを
3.0重量%、本発明法は同じくスケール5.0重量
%を、床敷ホッパー12とサージホッパー10の間に付
設したホッパー10′から充填層の層高方向の表層より
下層方向に200mm以上400mm以下の範囲に添加
した。焼成操業条件はすべて一定とした。その結果、図
7に示すように、従来法では高Al2 O3 鉄鉱石(例え
ばA鉱石、B鉱石)の配合割合を増加して原料中の平均
Al2 O3 量が1.21%から2.90%に増加すると
歩留が7%低下したが、本発明法では平均Al2 O3 量
の増加にもかかわらず従来法に比べ歩留が3〜10%向
上した。また、従来法ではAl2 O3 成分の増加により
RDIが3%悪化したが、本発明法ではRDIは従来法
に比べ0〜2%向上した。Example 1 Using the sintering compounded raw materials shown in Table 1, the sintering operation was carried out by the conventional raw material charging method and the method shown in FIG. At this time, the height of the sintering raw material layer was 600 mm. The method of the present invention is 5.0% by weight of magnetite ore (Kudremuku ore) with respect to the blended raw material, and the method of the present invention is 1.0% by weight of magnetite ore (Kudremuku ore) and 3.0% by weight of the scale. In the method, 5.0% by weight of scale was similarly added from a hopper 10 'attached between the floor hopper 12 and the surge hopper 10 to a range of 200 mm or more and 400 mm or less below the surface layer in the height direction of the packed bed. All firing operating conditions were constant. As a result, as shown in FIG. 7, in the conventional method, the mixing ratio of high Al 2 O 3 iron ore (for example, A ore or B ore) was increased so that the average amount of Al 2 O 3 in the raw material was 1.21%. When it increased to 2.90%, the yield decreased by 7%, but in the method of the present invention, the yield improved by 3 to 10% as compared with the conventional method despite the increase in the average amount of Al 2 O 3 . Further, in the conventional method, the RDI was deteriorated by 3% due to the increase of the Al 2 O 3 component, but in the method of the present invention, the RDI was improved by 0 to 2% as compared with the conventional method.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【実施例2】表2に示す焼結配合原料を用い、原料装入
法は従来法と図3に示す方法で焼結操業を実施した。こ
の際の焼結原料層の高さは600mmであった。本発明
法は配合原料に対し粒径1〜3mmのマグネタイト鉱
石(キャロル鉱石)3.0重量%を、本発明法は同じ
く1〜3mmのスケール4.0重量%を、助走板の先に
先端にいくにしたがって垂直方向の間隔が広くなる平行
バーを設けた装入装置13より充填層の層高方向の表層
より200mm以上400mm以下の範囲に添加した。
その結果、図8に示すように、従来法では高Al2 O3
鉱石の配合量の増加にしたがい歩留が低下し、それを補
うためにコークス原単位を上昇させざるをえなかった
が、本発明法ではAl2 O3 成分の増加にもかかわらず
歩留はほとんど低下せず、Al2 O3 成分の増加が少な
い場合には同じ歩留を維持しつつコークス原単位を低下
させることができた。なお、試験操業中は冷間強度、低
温還元粉化指数の焼結鉱品質はほとんど変化しなかっ
た。Example 2 Using the sintering compounded raw materials shown in Table 2, the raw material charging method was the conventional method and the sintering operation was carried out by the method shown in FIG. At this time, the height of the sintering raw material layer was 600 mm. In the method of the present invention, 3.0% by weight of magnetite ore (carol ore) having a particle diameter of 1 to 3 mm is added to the blended raw material, and in the method of the present invention, 4.0% by weight of a scale of 1 to 3 mm is also added to the tip of the runner plate. It was added in a range of 200 mm or more and 400 mm or less from the surface layer in the layer height direction of the packed bed by the charging device 13 provided with parallel bars whose vertical spacing increases as the distance increases.
As a result, as shown in FIG. 8, high Al 2 O 3 was obtained by the conventional method.
The yield decreased as the amount of ore compounded increased, and the coke consumption rate had to be increased to compensate for it. However, in the method of the present invention, the yield was increased despite the increase in the Al 2 O 3 component. When the increase in Al 2 O 3 component was small, the coke consumption rate could be reduced while maintaining the same yield. During the test operation, the cold strength and the sinter quality of the low temperature reduction powdering index hardly changed.
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【発明の効果】本発明により、焼結鉱製造工程における
焼結原料中Al2 O3 成分増加による歩留の低下、RD
Iの悪化といった悪影響を低減させることが可能とな
り、焼結鉱製造工程の歩留の向上ならびに製造コストの
低減などが可能となる。EFFECTS OF THE INVENTION According to the present invention, the yield decreases due to the increase of the Al 2 O 3 component in the sintering raw material in the sinter production process, and the RD
It is possible to reduce the adverse effects such as the deterioration of I, and it is possible to improve the yield of the sintered ore manufacturing process and reduce the manufacturing cost.
【図1】Al2 O3 含有量に対するスケールおよび/ま
たはマグネタイト鉱石の適正添加量の範囲を示す図であ
る。FIG. 1 is a diagram showing a range of an appropriate addition amount of scale and / or magnetite ore with respect to an Al 2 O 3 content.
【図2】本発明の焼結鉱の製造方法の工程を示す図であ
る。FIG. 2 is a diagram showing steps of a method for producing a sintered ore according to the present invention.
【図3】本発明の焼結鉱の製造方法の工程を示す図であ
る。FIG. 3 is a diagram showing steps of a method for producing a sinter according to the present invention.
【図4】従来の焼結鉱の製造方法の工程を示す図であ
る。FIG. 4 is a diagram showing steps of a conventional method for producing a sintered ore.
【図5】従来技術における焼結鉱歩留に及ぼすアルミナ
濃度の影響を示す図である。FIG. 5 is a diagram showing the effect of alumina concentration on the yield of a sintered ore in the prior art.
【図6】層高700mmの焼結原料充填層における添加
物添加位置が歩留、生産率に及ぼす影響を示す図であ
る。FIG. 6 is a diagram showing the influence of an additive addition position on a yield and a production rate in a sintering raw material packed bed having a layer height of 700 mm.
【図7】実施例における配合原料中アルミナ濃度と歩留
との関係を示す図である。FIG. 7 is a diagram showing a relationship between an alumina concentration in a blended raw material and a yield in an example.
【図8】実施例における操業成績を示す図である。FIG. 8 is a diagram showing operation results in Examples.
1 鉄鉱石粉 2 高Al2 O3 鉱石 3 返鉱 4 石灰石 5 珪石、蛇紋岩 6 粉コークス 7 ドラムミキサー 8 添加物 9 ドワイトロイド型焼結機 10 サージホッパー 10′ ホッパー 11 装入装置 12 床敷ホッパー 13 粒度偏析型装入装置1 Iron ore powder 2 High Al 2 O 3 ore 3 Return ore 4 Limestone 5 Silica and serpentine 6 Powder coke 7 Drum mixer 8 Additive 9 Dwightroid type sintering machine 10 Surge hopper 10 'Hopper 11 Charging device 12 Floor hopper 13 Particle size segregation type charging device
Claims (2)
高Al2 O3 鉱石を焼結鉱製造時の配合原料の一部とし
て5.0〜70.0重量%使用する際、FeO成分を
5.0〜31.0重量%含むマグネタイト鉱石および/
またはスケールを、原料装入時に焼結原料充填層の層高
方向の表層より下層方向へ200mm以上でかつ最下層
より表層方向へ200mm以上の位置に、配合原料中A
l2 O3含有量に応じて図1の斜線で示される範囲の量
だけ添加することを特徴とする焼結鉱の製造方法。1. A Al 2 O 3 5.0~70.0 when weight% using a high Al 2 O 3 ore containing 2.0% by weight or more as part of the mixed material during sintered ore production, Magnetite ore containing 5.0 to 31.0 wt% FeO component and /
Alternatively, when the raw material is charged, the scale is placed at a position 200 mm or more downward from the surface layer in the layer height direction of the sintering raw material packed layer and 200 mm or more from the bottom layer to the surface layer direction in the raw material mixture.
A method for producing a sintered ore, which comprises adding an amount in a range shown by a slanted line in FIG. 1 according to the content of 1 2 O 3 .
高Al2 O3 鉱石を焼結鉱製造時の配合原料の一部とし
て5.0〜70.0重量%使用する際、粒径が1〜3m
mのFeO成分を5.0〜31.0重量%含むマグネタ
イト鉱石および/またはスケールを、原料装入時に焼結
原料充填層の層高方向の表層より下層方向へ200mm
以上でかつ最下層より表層方向へ200mm以上の位置
に、配合原料中Al2 O3 含有量に応じて図1の斜線で
示される範囲の量だけ添加することを特徴とする焼結鉱
の製造方法。Wherein Al 2 O 3 5.0-70.0 when weight% using a high Al 2 O 3 ore containing 2.0% by weight or more as part of the mixed material during sintered ore production, Particle size is 1-3m
The magnetite ore and / or scale containing 5.0 to 31.0% by weight of FeO component of m is 200 mm downward from the surface layer in the layer height direction of the sintering raw material filling layer when the raw material is charged.
Manufacturing of a sintered ore characterized by adding the above-mentioned amount and a distance of 200 mm or more from the lowermost layer to the surface layer in the range shown by the diagonal lines in FIG. 1 according to the Al 2 O 3 content in the compounded raw material. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9284094A JPH07278684A (en) | 1994-04-07 | 1994-04-07 | Sintered ore manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9284094A JPH07278684A (en) | 1994-04-07 | 1994-04-07 | Sintered ore manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07278684A true JPH07278684A (en) | 1995-10-24 |
Family
ID=14065637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9284094A Withdrawn JPH07278684A (en) | 1994-04-07 | 1994-04-07 | Sintered ore manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07278684A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100149A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2007100150A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2010185104A (en) * | 2009-02-12 | 2010-08-26 | Jfe Steel Corp | Method for producing sintered ore for blast furnace |
JP2015063716A (en) * | 2013-09-24 | 2015-04-09 | 株式会社神戸製鋼所 | Iron ore mini pellet for sintered ore manufacturing |
-
1994
- 1994-04-07 JP JP9284094A patent/JPH07278684A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100149A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2007100150A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2010185104A (en) * | 2009-02-12 | 2010-08-26 | Jfe Steel Corp | Method for producing sintered ore for blast furnace |
JP2015063716A (en) * | 2013-09-24 | 2015-04-09 | 株式会社神戸製鋼所 | Iron ore mini pellet for sintered ore manufacturing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20120042981A (en) | Unfired carbon-containing agglomerate for blast furnaces and production method therefor | |
JP2009097027A (en) | Method for producing sintered ore | |
JP5950098B2 (en) | Method for producing sintered ore | |
JP5168802B2 (en) | Method for producing sintered ore | |
JP3900721B2 (en) | Manufacturing method of high quality low SiO2 sintered ore | |
JPH07278684A (en) | Sintered ore manufacturing method | |
JP2003096521A (en) | Sinter ore containing high alumina iron ore and production method thereof | |
JP2007277594A (en) | Sinter ore manufacturing method | |
JP2008057028A (en) | Method for producing sintered ore | |
JP2001294945A (en) | Method for producing high quality low SiO2 sintered ore for blast furnace | |
JPH05311254A (en) | Sintered ore manufacturing method | |
JP3675105B2 (en) | Sintering raw material processing method | |
JP3952988B2 (en) | Method for producing low SiO2 sintered ore | |
JP3709001B2 (en) | Non-fired agglomerated ore for iron making and method of using the same | |
JP2001348622A (en) | Method for producing high quality low SiO2 sintered ore for blast furnace | |
JP2007169707A (en) | Manufacturing method of dephosphorizing agent for steel making using sintering machine | |
JPH0583620B2 (en) | ||
JP2007119841A (en) | Method for producing semi-reduced sintered ore | |
JP3485787B2 (en) | How to charge raw materials for blast furnace | |
JP4982986B2 (en) | Method for producing sintered ore | |
JP4501656B2 (en) | Method for producing sintered ore | |
JPH06330192A (en) | Production of sintered ore | |
JPH0867919A (en) | Method for producing sintered ore from limonite ore | |
JP4661077B2 (en) | Method for producing sintered ore | |
JPH0617152A (en) | Manufacturing method of sinter for blast furnace using high goethite ore as raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010703 |