JPH0727748A - Thermal stress destructive test method for plate material - Google Patents
Thermal stress destructive test method for plate materialInfo
- Publication number
- JPH0727748A JPH0727748A JP30076691A JP30076691A JPH0727748A JP H0727748 A JPH0727748 A JP H0727748A JP 30076691 A JP30076691 A JP 30076691A JP 30076691 A JP30076691 A JP 30076691A JP H0727748 A JPH0727748 A JP H0727748A
- Authority
- JP
- Japan
- Prior art keywords
- plate material
- thermal stress
- stress
- foam glass
- glass material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は板ガラス、泡ガラス材な
どの熱的脆性板材、特に軽量建材、断熱材等に利用され
る泡ガラス材の熱応力破壊試験法にかかり、小型の試験
用板材を採用して大型実用サイズの板材と等価の評価が
得られるような熱応力破壊試験法に関する。BACKGROUND OF THE INVENTION The present invention relates to a thermal brittle plate material such as plate glass and foam glass material, and particularly to a thermal stress fracture test method for foam glass material used for lightweight building materials, heat insulating materials, etc. The present invention relates to a thermal stress fracture test method in which the evaluation equivalent to that of a large practical size plate material can be obtained.
【0002】[0002]
【従来技術とその問題点】板材の日照熱等による熱応力
破壊挙動を測定、評価するうえで、大型実用サイズの板
材に歪ゲージを配設したうえで板材端部、あるいは局所
を冷却しつつ板材の片面より熱線を照射し、適宜応力を
測定することは公知であり、また板材にアコースティッ
クエミッションセンサーを取付け、アコースティックエ
ミッションの発生頻度やエネルギーを測定することは知
られるところである。[Prior art and its problems] In measuring and evaluating the thermal stress fracture behavior of a plate material due to sunlight heat, etc., while disposing a strain gauge on a large-sized practical size plate material while cooling the edge part or local part of the plate material. It is known to irradiate a heat ray from one surface of a plate material and measure stress appropriately, and it is known to attach an acoustic emission sensor to the plate material and measure the frequency and energy of occurrence of acoustic emission.
【0003】しかし、大型実用サイズの板材の熱応力破
壊試験においては、装置が大掛かりとなり、材料の取扱
も容易でない等不便、非効率的で、その経費も少なから
ず掛かる等不具合な点が多い。他方小型の試験用板材で
同様な挙動を得るべく、単に照射熱量を加減しても、板
材の長さ(または幅)方向および厚み方向の応力分布を
ともに近似させ、等価の評価を得ることは困難である。However, in the thermal stress fracture test of a large-sized practical size plate material, there are many inconveniences such as large scale equipment, inconvenience in handling materials, inefficiency, and considerable cost. On the other hand, in order to obtain the same behavior with a small test plate material, even if the irradiation heat quantity is simply adjusted, the stress distribution in the length (or width) direction and the thickness direction of the plate material can be approximated to obtain an equivalent evaluation. Have difficulty.
【0004】本発明は上記問題点に鑑み、小型の試験用
板材を用いて大型の実用サイズの板材と等価の評価が得
られる熱応力破壊試験法を提供するものであり、特に泡
ガラス材等の熱的脆性板材の、日照熱等による熱応力破
壊に好適に適用できる試験法を提供するものである。In view of the above problems, the present invention provides a thermal stress fracture test method in which a small test plate material can be used to obtain an evaluation equivalent to a large practical size plate material, and in particular, a foam glass material or the like. The present invention provides a test method which can be suitably applied to thermal stress fracture of the thermally brittle plate material due to sunshine heat or the like.
【0005】[0005]
【問題点を解決するための手段】本発明は試験用小型板
材の周辺を中空サッシで囲繞し冷却媒体を流しつつ、加
熱制御手段により板材表面より加熱し、かつ板材適所に
歪計およびアコースティックエミッション(音響放出)
センサーを付設し、その熱応力発生状況、アコースティ
ックエミッションの発生状況を基に破壊挙動を評価する
方法であって、前記板材の片面から加熱するとともに他
の面から補助加熱することにより、大型板材の同様な片
面加熱による試験と等価の評価を得るようにした板材の
熱応力破壊試験法からなり、さらに予め熱応力解析シュ
ミレーション試験により、大型板材モデルの応力分布に
小型板材モデルのそれを類似させるべく熱的環境条件を
選定するようにしたこと、加えて板材が泡ガラス材であ
ることからなる。According to the present invention, the periphery of a small test plate material is surrounded by a hollow sash, and a cooling medium is flown, while heating is performed from the surface of the plate material by a heating control means, and a strain gauge and an acoustic emission are provided at appropriate positions of the plate material. (Sound emission)
Attaching a sensor, a method to evaluate the fracture behavior based on the thermal stress generation status, the acoustic emission generation status, by heating from one side of the plate material and auxiliary heating from the other surface, It consists of a thermal stress fracture test method of a plate material that obtains an equivalent evaluation to a test by similar one-sided heating, and further, in order to make the stress distribution of the large plate model similar to that of the small plate model by a thermal stress analysis simulation test in advance. The thermal environment conditions are selected, and in addition, the plate material is a foam glass material.
【0006】泡ガラス材を例にとってみれば、実用サイ
ズのものとして長さまたは幅が1000mm近くのものから20
00mmに達するものがある。厚みは10mm付近から50mmを越
える各種のものがある。前記したようにこれらのものを
そのまま熱応力破壊試験するには装置が大掛かりとなり
材料の取扱も不便である等不具合な点が多い。[0006] Taking a foam glass material as an example, from practically sized glass having a length or width of approximately 1000 mm to 20
Some can reach 00 mm. There are various thicknesses from around 10 mm to over 50 mm. As described above, there are many inconveniences such as the large equipment and the inconvenience of handling the materials for the thermal stress fracture test of these materials as they are.
【0007】本発明においては長さまたは幅を数百mmな
いし400 〜500mm 以下とした小型サイズのものを採用し
て熱応力破壊試験を行い、前記実用サイズのものと等価
の評価を得ること、それにより前記問題点を解消するこ
とを狙ったものである。In the present invention, a thermal stress fracture test is carried out using a small size having a length or width of several hundred mm to 400 to 500 mm or less to obtain an evaluation equivalent to that of the practical size, This aims to solve the above problems.
【0008】[0008]
【実施例】以下本発明を一実施例を基に説明する。供試
板材として既存の泡ガラス材を採用した。泡ガラス材を
サッシに組込み、日照等による熱応力破壊挙動をみる
と、主に泡ガラス材における端部から発生するケースが
多いことが知られている。当該事実に鑑み、本発明にお
いてはまず実用に供される大サイズ泡ガラス材について
サッシに組込み、太陽放射を想定して泡ガラス材の片面
から赤外線加熱手段により加熱しつつ、発生する歪、お
よびアコースティックエミッション(以下AEという)を
測定して破壊挙動を調査、検討し、さらに同サイズモデ
ルのシュミレーション試験による応力解析を併用して前
記事実との整合性を確認し、これをもとに小サイズモデ
ルのシュミレーション試験において近似した応力分布を
得るべく熱的環境条件、すなわち片面および他の面から
の熱線照射量を設定し、同様な小サイズ泡ガラス材の熱
応力破壊試験を実施し、確認するという手順を編み出し
たものである。EXAMPLES The present invention will be described below based on examples. The existing foam glass material was adopted as the test plate material. It is known that when the foam glass material is incorporated into the sash and the thermal stress fracture behavior due to sunlight etc. is observed, it often occurs mainly from the end portion of the foam glass material. In consideration of the fact, in the present invention, the large-sized foam glass material to be put into practical use is first incorporated into the sash, while heating with infrared heating means from one side of the foam glass material assuming solar radiation, the strain that occurs, and Acoustic emission (hereinafter referred to as AE) is measured to investigate and investigate the fracture behavior, and stress analysis by a simulation test of the same size model is also used to confirm the consistency with the above facts. In a model simulation test, set thermal environment conditions, that is, the amount of heat ray irradiation from one side and the other side, to obtain an approximate stress distribution, and conduct and confirm a thermal stress fracture test of a similar small-sized foam glass material. This is a procedure that has been devised.
【0009】〔大サイズ泡ガラス材における熱応力破壊
試験〕図1の概略斜視図に示すように、表装緻密ガラス
層(表面層)1a、中間泡ガラス層(中間層)1b、ベース
泡ガラス層(ベース層)1cの三層構造からなる泡ガラス
材1 について、そのサイズを900mm □×30mm厚の実用サ
イズとし、その周辺部は中空サッシ2 で囲繞し、その中
に水3 、3 を通し、循環することにより泡ガラス材1 の
周辺部を冷却し、また泡ガラス材1 の表面、および裏面
に図示のごとく歪ゲージ4 および、熱電対5 、5 を配置
し、夫々記録計6 、7 に接続して歪、温度を記録し、さ
らにAEセンサー8 取付け、発生するAEをAEテスター9 を
介してAEパルス、およびエネルギーを記録計10に記録し
た。[Thermal Stress Fracture Test on Large-sized Foam Glass Material] As shown in the schematic perspective view of FIG. 1, a surface-packed dense glass layer (surface layer) 1a, an intermediate foam glass layer (intermediate layer) 1b, a base foam glass layer (Base layer) Regarding the foam glass material 1 with a three-layer structure of 1c, its size is set to a practical size of 900 mm □ × 30 mm thickness, and the surrounding area is surrounded by a hollow sash 2, and water 3 and 3 are passed through it. , The peripheral part of the foam glass material 1 is cooled by circulating it, and the strain gauges 4 and thermocouples 5 and 5 are arranged on the front surface and the back surface of the foam glass material 1, respectively, as shown in the figure, and recorders 6 and 7 respectively. Strain and temperature were recorded by connecting to, and the AE sensor 8 was attached, and the generated AE was recorded via the AE tester 9 to the AE pulse and energy in the recorder 10.
【0010】泡ガラス材の一方の面( 表面) 側からは赤
外ランプ (図示せず) により780kcal/m2h の熱線11を照
射する。これは日本における垂直壁に入射する最大日射
量に相当する。An infrared lamp (not shown) irradiates a heat ray 11 of 780 kcal / m 2 h from one surface (front surface) side of the foam glass material. This corresponds to the maximum amount of solar radiation incident on the vertical wall in Japan.
【0011】なお試料は表1に示す3種よりなる。The samples consist of the three types shown in Table 1.
【0012】[0012]
【表1】 [Table 1]
【0013】図3A、B、Cには夫々大サイズ泡ガラス
材 (大サイズ試料) A、B、Cの端部付近の歪量と、無
次元化したAEエネルギー積算量との関係をグラフに示し
た。表2左欄には各大サイズ試料の破壊に到る時間と、
その直前の試料端面部の最大歪量を示した。[0013] Figure 3 A, graph B, respectively large size foamed glass material in C (large size sample) A, B, and strain of the vicinity of the end portion of the C, and the relationship between dimensionless AE energy accumulated amount It was shown to. The left column of Table 2 shows the time taken to break each large sample,
Immediately before that, the maximum amount of strain of the sample end face is shown.
【0014】[0014]
【表2】 [Table 2]
【0015】これらの結果から、3種の大サイズ試料と
も歪量が 100μεを越えたところでAEの発生が頻繁とな
り、 300μεを越えたところで巨視的破壊に到る。破壊
に到る歪量には相互に大差ないが、熱照射時間(耐久時
間)においてはA<B<Cの順で優れることが判る。From these results, AE is frequently generated when the strain amount exceeds 100 με for all three large size samples, and macroscopic destruction occurs when the strain amount exceeds 300 με. It can be seen that there is no great difference in the amount of strain leading to destruction, but the heat irradiation time (durability time) is superior in the order of A <B <C.
【0016】〔大サイズ泡ガラス材にかかるシュミレー
ション試験〕前記大サイズ泡ガラス材の試験に関し、汎
用有限要素法ソフトCOSMOS/Mを用い熱応力解析を行っ
た。熱応力シュミレーションモデルには計算上便宜的に
極座標系を用い、図2の斜視図に示すような半径500mm
、厚さ30mmの円盤型を想定した。熱的境界条件は大サ
イズ泡ガラス材の試験を模して表面に 780kcal/m2hの熱
量11が入射するものとし、端面および端面から半径方向
で10mmを30℃、10〜20mmを断熱とした。またシュミレー
ションに用いた基礎物性値を表3に示す。[Simulation Test for Large-sized Foam Glass Material] Regarding the test of the large-sized foam glass material, thermal stress analysis was performed using general-purpose finite element method software COSMOS / M. The thermal stress simulation model uses a polar coordinate system for convenience of calculation, and has a radius of 500 mm as shown in the perspective view of FIG.
, A disk type with a thickness of 30 mm is assumed. The thermal boundary condition is that the heat amount 11 of 780 kcal / m 2 h is incident on the surface imitating the test of the large-sized foam glass material. did. Table 3 shows basic physical property values used in the simulation.
【0017】[0017]
【表3】 [Table 3]
【0018】図4には微視的破壊が頻繁に生ずる表面端
部の歪量が 150με (約12MPa)の時点での熱応力解析結
果を示した。応力値は正が引張である。なお図4Aには
半径方向の応力分布を、図4Bには厚み方向の応力分布
を示す。FIG. 4 shows the results of thermal stress analysis at the time when the amount of strain at the surface end where the microscopic fracture frequently occurs is 150 με (about 12 MPa). The positive stress value is tensile. Note the stress distribution in the radial direction in FIG. 4 A, in FIG. 4 B shows the stress distribution in the thickness direction.
【0019】図4Aにおいて半径方向の応力分布をみる
と、円周方向の応力(Hoop Stress)は中心付近では圧縮
(約2MPa) で端部の断熱領域付近から急激に引張りに転
じ、端面で最大となる。半径方向の応力(Radial Stres
s)は中心部で周方向の応力と同様に圧縮で、値も周方向
の応力とほぼ一致する。しかし端面では0MPaであった。[0019] Looking at the stress distribution in the radial direction in FIG. 4 A, circumferential stress (Hoop Stress) is compressed in the vicinity of the center
At (about 2MPa), it suddenly turns into tension from the vicinity of the heat insulation area at the end and reaches the maximum at the end face. Radial Stres
s) is compressive in the central part like the stress in the circumferential direction, and the value is almost the same as the stress in the circumferential direction. However, it was 0 MPa at the end face.
【0020】他の応力成分、すなわち剪断応力(Shear S
tress)、軸方向応力(AxialStress)は中心から端面まで
殆ど0MPaであった。周方向の応力が最大となった試料端
面の厚さ方向の熱応力解析結果を図4Bに示す。周方向
の応力を除く他の応力成分(Radial Stress、Shear Stre
ss、AxialStress)はほぼ0MPaで無視できる。The other stress component, the shear stress (Shear S
The stress and the axial stress (Axial Stress) were almost 0 MPa from the center to the end face. Thermal stress analysis results in the thickness direction of the circumferential edge of the sample surface stress is maximized in FIG 4 B. Other stress components except radial stress (Radial Stress, Shear Stre
ss, Axial Stress) can be ignored at almost 0 MPa.
【0021】周方向の応力の分布は表面層、中間層、ベ
ース層の順に段階的に小さくなっており、これはヤング
率が表面層、中間層、ベース層の順に小さくなること、
試料中心部と端部の温度差が表面から裏面に向け小さく
なることに起因する。The distribution of stress in the circumferential direction gradually decreases in the order of the surface layer, the intermediate layer and the base layer, which means that the Young's modulus becomes smaller in the order of the surface layer, the intermediate layer and the base layer.
This is because the temperature difference between the center part and the end part of the sample becomes smaller from the front surface to the back surface.
【0022】以上から破壊は引張応力によるもので、最
も大きい周方向の応力により端面から起こると想起され
るが、この破壊様式は泡ガラス材の破壊が端面から生じ
易いと、亀裂が端面に垂直に進展すること等の事実とも
整合する。From the above, it is recalled that the fracture is caused by the tensile stress and is caused from the end face by the largest circumferential stress. However, when the fracture of the foam glass material is easily caused from the end face, the crack is perpendicular to the end face. It is also consistent with the fact that progresses to.
【0023】〔小サイズ泡ガラス材にかかるシュミレー
ション試験および熱的環境条件の設定〕大サイズモデル
の結果を小サイズモデルで再現するために、図2と同様
な形態で、ただし円盤型モデルの半径を100mm に設定
し、熱照射量を各種設定して応力分布を解析した。[Simulation Test on Small-Sized Foam Glass Material and Setting of Thermal Environmental Conditions] In order to reproduce the result of the large-sized model on the small-sized model, the same form as that of FIG. Was set to 100 mm and various heat irradiation amounts were set to analyze the stress distribution.
【0024】その結果熱照射を表面および裏面(11 およ
び11')から行い、夫々適宜照射量を選定することによ
り、近似した応力分布が得られることが判った。図2に
おいて、表面からの熱11の照射量を1560kcal/m2h、裏面
からの熱11' の照射量を780 kcal/m2hとした場合の大サ
イズモデル同様の歪量 150μεの時点での熱応力解析結
果を図4に示す。なお図4Cに小サイズモデルの半径方
向の応力分布を、図4Dにその厚み方向の応力分布を示
す。As a result, it was found that an approximate stress distribution can be obtained by performing heat irradiation from the front surface and the back surface (11 and 11 ') and appropriately selecting the irradiation amount respectively. 2, the irradiation amount of heat 11 from the surface 1560kcal / m 2 h, at the time of large-size model similar strain amounts 150με when the irradiation amount of heat 11 'from the back side and 780 kcal / m 2 h The thermal stress analysis result of is shown in FIG. Note the radial stress distribution of small size model in Figure 4 C, shows the stress distribution in the thickness direction in FIG. 4 D.
【0025】図4Cから明らかなように周方向の応力は
中心部で圧縮強度で約7MPaであった。また端面断熱部の
領域から急激に引張りに転じ端面で最大となる。中心部
での半径方向応力は周方向の応力とほぼ一致し、端面で
は0MPaであり、この傾向は大サイズモデルの応力分布傾
向と一致する。他の応力成分は大サイズモデル同様に中
心から端面まで0MPaである。[0025] Figure 4 as apparent circumferential stress from C was about 7MPa in compressive strength at the central portion. In addition, the area of the heat insulating portion on the end face suddenly changes to tensile and becomes maximum at the end face. The radial stress at the center is almost the same as the circumferential stress and 0 MPa at the end face, which is in agreement with the stress distribution tendency of the large size model. Other stress components are 0MPa from the center to the end face as in the large size model.
【0026】また、図4Dの深さ方向の応力分布は大サ
イズモデルと殆ど一致しているのが判る。すなわち、小
サイズモデルにおいて上記熱的環境条件とすることによ
り、大サイズモデルに近似した応力分布が得られること
が明らかであり、以後の小サイズ泡ガラス材の熱応力破
壊試験のベースとするものである。Further, the stress distribution in the depth direction of FIG. 4 D is seen that is most consistent with the large size model. That is, it is clear that the stress distribution similar to that of the large size model can be obtained by setting the thermal environment conditions in the small size model, and is used as the base for the subsequent thermal stress fracture test of the small size foam glass material. Is.
【0027】〔小サイズ泡ガラス材の熱応力破壊試験〕
前記結果を基に小サイズ泡ガラス材 (小サイズ試料) の
熱応力破壊試験を実施した。[Thermal stress fracture test of small-sized foam glass material]
Based on the above results, a thermal stress fracture test of a small-sized foam glass material (small-sized sample) was carried out.
【0028】図1における大サイズ試料の試験に準拠
し、但しサイズを200mm □×30mm厚みとし、前記シュミ
レーション試験において選定した熱的環境条件、すなわ
ち表面における照射熱量(11)を1560kcal/m2h、裏面にお
ける照射熱量(11') を780 kcal/m2hとした。According to the test of the large size sample in FIG. 1, the size is 200 mm □ × 30 mm, and the thermal environment conditions selected in the simulation test, that is, the irradiation heat quantity (11) on the surface is 1560 kcal / m 2 h. The irradiation heat amount (11 ') on the back surface was 780 kcal / m 2 h.
【0029】中空サッシ2 の取付け、歪ゲージ4 、AEセ
ンサー8 の配置等は大サイズ試料の場合と同様である。
また泡ガラス材の種類は大サイズ試料同様のA、B、C
の3種 (表1参照) である。The attachment of the hollow sash 2, the arrangement of the strain gauge 4, the AE sensor 8 and the like are the same as in the case of the large size sample.
The types of foam glass materials are A, B, and C, which are the same as those for large size samples.
There are three types (see Table 1).
【0030】結果は図3および表2右欄に示した。図3
は大サイズ試料に対比した小サイズ試料の歪量とAEエネ
ルギーの積算量 (無次元化して示す) との関係を示し
た。歪量がほぼ 100μεを越えたところで微視的破壊が
顕著に発生しており、その増加傾向において各試料にお
ける大サイズ−小サイズ間の差異は認められない。なお
試料Bにおいては大サイズにおける微視的破壊の始点が
約30με、小サイズにおいては150 μεと差があるが、
試料の初期欠陥の差異と推定される。The results are shown in the right column of FIG. 3 and Table 2. Figure 3
Shows the relationship between the strain amount of the small size sample and the integrated amount of AE energy (shown as dimensionless) in comparison with the large size sample. Microscopic fracture occurs remarkably when the strain exceeds approximately 100 με, and there is no difference between large size and small size in each sample in the increasing tendency. It should be noted that in Sample B, the starting point of microscopic destruction in the large size is about 30 με, and there is a difference of 150 με in the small size.
It is estimated to be the difference in the initial defects of the sample.
【0031】またいずれの試料も約 300μεを越えたと
ころで巨視的破壊に至っており、大サイズ試料と近似し
た結果を示す。表2右欄は各小サイズ試料の巨視的破壊
に到る時間と歪量を示した。歪量において各試料間に顕
著な差異はなく、破壊時間は大サイズ試料における試験
に比べ加速でき、大サイズ試料同様A<B<Cの順で長
くなる。Further, all of the samples reached macroscopic fracture at a point exceeding about 300 με, and the results are similar to those of the large size sample. The right column of Table 2 shows the time to reach macroscopic fracture and the amount of strain of each small size sample. There is no remarkable difference in the strain amount between the samples, and the fracture time can be accelerated as compared with the test in the large size sample, and becomes longer in the order of A <B <C as in the large size sample.
【0032】以上のとおり小サイズ試料について、シュ
ミレーション試験結果に基づき試料の前面および裏面か
ら適宜量の熱照射を行うことにより、大サイズ試料と等
価の結果が得られるものである。As described above, by irradiating an appropriate amount of heat from the front surface and the back surface of the small size sample based on the simulation test result, the result equivalent to the large size sample can be obtained.
【0033】[0033]
【発明の効果】本発明によれば、小型板材においてその
前面および裏面から熱照射すること、各熱照射量を適宜
選定することにより、大型板材と同様の結果を得ること
ができ、試験装置の小型化、試料の小型化が図れ、測定
効率の向上、コストの低減が図れるという効果を奏す
る。According to the present invention, by irradiating heat from the front surface and the back surface of a small plate material and appropriately selecting each heat irradiation amount, the same result as that of the large plate material can be obtained. It is possible to reduce the size and size of the sample, improve the measurement efficiency, and reduce the cost.
【図1】試験装置の概略斜視図である。FIG. 1 is a schematic perspective view of a test apparatus.
【図2】シュミレーションモデルの斜視図である。FIG. 2 is a perspective view of a simulation model.
【図3】大(実用)サイズ試料、小サイズ試料を対比し
た歪量、AE積算量の関係を示し、Aは試料A、Bは試料
B、Cは試料Cに関する。FIG. 3 shows the relationship between the amount of strain and the integrated amount of AE in comparison between a large (practical) size sample and a small size sample, where A is sample A, B is sample B and C is sample C.
【図4】シュミレーションモデルにおける熱応力解析結
果を示し、うちA、Bは大サイズモデルにかかるもので
Aが半径方向の応力分布、Bが深さ方向の応力分布を、
またC、Dは小サイズモデルにかかるもので、Cが半径
方向の応力分布、Dが深さ方向の応力分布を夫々示す。FIG. 4 shows the results of thermal stress analysis in a simulation model, of which A and B are for a large size model.
A is the stress distribution in the radial direction, B is the stress distribution in the depth direction,
Further, C 1 and D 2 are for a small size model, where C is the stress distribution in the radial direction and D is the stress distribution in the depth direction.
1 ------泡ガラス材 2 ------中空サッシ 4 ------歪ゲージ 5 ------熱電対 8 ------AEセンサー 1 ------ Foam glass material 2 ------ Hollow sash 4 ------ Strain gauge 5 ------ Thermocouple 8 ------ AE sensor
フロントページの続き (72)発明者 橋田 俊之 宮城県仙台市宮城野区五輪2−1−5 (72)発明者 佐藤 一志 宮城県仙台市太白区八木山緑町16−11 (72)発明者 近江 伸 東京都千代田区神田錦町三丁目7番地1 セントラル硝子株式会社内Front page continued (72) Inventor Toshiyuki Hashida 2-1-5 Olympics, Miyagino-ku, Sendai-shi, Miyagi (72) Inventor Kazushi Sato 16-11 Yagiyama Midoricho, Taihaku-ku, Sendai-shi, Miyagi (72) Inventor Shin Omi Tokyo Central Glass Co., Ltd. 1-7-3 Kandanishikicho, Chiyoda-ku, Tokyo
Claims (3)
し冷却媒体を流しつつ、加熱制御手段により板材表面よ
り加熱し、かつ板材適所に歪計およびアコースティック
エミッション(音響放出)センサーを付設し、その熱応
力発生状況、アコースティックエミッションの発生状況
を基に破壊挙動を評価する方法であって、前記板材の片
面から加熱するとともに他の面から補助加熱するように
したことを特徴とする板材の熱応力破壊試験法。1. A small test plate is surrounded by a hollow sash, and a cooling medium is allowed to flow through the plate. The heating control means heats the plate surface, and a strain gauge and an acoustic emission (acoustic emission) sensor are attached at appropriate positions. , A method of evaluating the fracture behavior based on the thermal stress occurrence status, the occurrence status of acoustic emission, characterized in that the plate material is heated from one side of the plate material and auxiliary heating from the other surface. Thermal stress fracture test method.
り、大型板材モデルの応力分布に小型板材モデルのそれ
を近似させるべく熱的環境条件を選定するようにしたこ
とを特徴とする請求項1記載の板材の熱応力破壊試験
法。2. A sheet material according to claim 1, wherein a thermal environment condition is selected in advance by a thermal stress analysis simulation test so as to approximate the stress distribution of the large sheet material model to that of the small sheet material model. Thermal stress fracture test method.
請求項1または2記載の板材の熱応力破壊試験法。3. The thermal stress fracture test method for a plate material according to claim 1, wherein the plate material is a foam glass material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30076691A JPH0727748A (en) | 1991-11-15 | 1991-11-15 | Thermal stress destructive test method for plate material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30076691A JPH0727748A (en) | 1991-11-15 | 1991-11-15 | Thermal stress destructive test method for plate material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0727748A true JPH0727748A (en) | 1995-01-31 |
Family
ID=17888844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30076691A Pending JPH0727748A (en) | 1991-11-15 | 1991-11-15 | Thermal stress destructive test method for plate material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727748A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883397B2 (en) | 1998-05-15 | 2011-02-08 | Applied Materials, Inc. | Substrate retainer |
CN106092764A (en) * | 2016-08-04 | 2016-11-09 | 清华大学 | There is ultrasonic and acoustic emission detection function concrete temperature stress testing machine |
-
1991
- 1991-11-15 JP JP30076691A patent/JPH0727748A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883397B2 (en) | 1998-05-15 | 2011-02-08 | Applied Materials, Inc. | Substrate retainer |
US8298047B2 (en) | 1998-05-15 | 2012-10-30 | Applied Materials, Inc. | Substrate retainer |
US8628378B2 (en) | 1998-05-15 | 2014-01-14 | Applied Materials, Inc. | Method for holding and polishing a substrate |
CN106092764A (en) * | 2016-08-04 | 2016-11-09 | 清华大学 | There is ultrasonic and acoustic emission detection function concrete temperature stress testing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110296898B (en) | Hopkinson pull rod device and method for dynamic and static combined loading in high-temperature environment | |
Zhou et al. | Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed | |
Mignogna et al. | Thermographic investigation of high-power ultrasonic heating in materials | |
Ravichandran et al. | On the conversion of plastic work into heat during high‐strain‐rate deformation | |
Cheng et al. | Defect detection of concrete structures using both infrared thermography and elastic waves | |
CN109708980A (en) | A kind of multi-field multi-parameter synchronous monitoring dynamic loading experimental device and application method | |
CN110274871B (en) | A thermal/vibration coupling test device for lightweight heat-resistant materials in an extremely high temperature environment | |
Avdelidis et al. | Infrared thermography as a nondestructive tool for materials characterisation and assessment | |
JPH0727748A (en) | Thermal stress destructive test method for plate material | |
GB2048486A (en) | Method for determining the location of reinforcement steel in a concrete structure | |
Maruyama et al. | Elastic modulus and bend strength of a nuclear graphite at high temperature | |
Swiderski | Lock-in thermography for rapid evaluation of the destruction area in composite materials used in military applications | |
Cramer et al. | Status of thermal NDT of space shuttle materials at NASA | |
US3008029A (en) | Means and method for testing of composite sandwich structures | |
Li et al. | Nondestructive evaluation of carbon fiber reinforced polymer (CFRP)-timber interfacial debonding using active microwave thermography (AMT) | |
US20080049808A1 (en) | Method for appraising bodies | |
Zalameda et al. | Air coupled acoustic thermography (ACAT) inspection technique | |
CN211235665U (en) | Building material structural performance detection device | |
Rösner et al. | Thermographic materials characterization | |
Brady et al. | Thermal image analysis for the in-situ NDE of composites | |
JPH05142067A (en) | Measuring method for distribution of concentrated stress | |
Drouin et al. | Pressures of thermal origin exerted by ice sheets upon hydraulic structures | |
Fong et al. | Guided wave testing (GWT) of high temperature piping | |
CN109916738B (en) | Test system and evaluation method for thermal damage effect on bending resistance of sandwich structures | |
Yajima et al. | X-Ray Examination of Fracture Surfaces of Silicon Nitride Ceramics |