[go: up one dir, main page]

JPH0727729B2 - Method for manufacturing conductors for audio / visual equipment - Google Patents

Method for manufacturing conductors for audio / visual equipment

Info

Publication number
JPH0727729B2
JPH0727729B2 JP60278802A JP27880285A JPH0727729B2 JP H0727729 B2 JPH0727729 B2 JP H0727729B2 JP 60278802 A JP60278802 A JP 60278802A JP 27880285 A JP27880285 A JP 27880285A JP H0727729 B2 JPH0727729 B2 JP H0727729B2
Authority
JP
Japan
Prior art keywords
conductor
audio
manufacturing
image
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60278802A
Other languages
Japanese (ja)
Other versions
JPS62136707A (en
Inventor
和夫 澤田
由弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60278802A priority Critical patent/JPH0727729B2/en
Publication of JPS62136707A publication Critical patent/JPS62136707A/en
Publication of JPH0727729B2 publication Critical patent/JPH0727729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、画像表示機器や音響機器など、高周波信号
伝達回路が必要な機器の配線に用いられる導体の製造方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a conductor used for wiring equipment such as image display equipment and audio equipment that requires a high-frequency signal transmission circuit.

[従来の技術] これらの電子機器においては、信号が正確に、位相差を
生じることなく伝達されないと、画像や音響に悪影響を
及ぼす。すなわち、像がぼけたり、音が鮮明でなかった
りする。
[Prior Art] In these electronic devices, unless signals are accurately transmitted without causing a phase difference, images and sound are adversely affected. That is, the image is blurred or the sound is not clear.

従来、音響・画像機器用導体としては、タフピッチ銅や
無酸素銅を冷間加工後焼鈍軟化して再結晶させた軟銅
線、冷間加工したままの硬銅線、またはこれらに錫等の
めっきを施した線などが使用されてきた。
Conventionally, as conductors for audio / visual equipment, tough pitch copper and oxygen-free copper have been cold-worked, then annealed and softened to recrystallize, annealed copper wire, hard-copper wire as cold-worked, or tin-plated Wires and the like have been used.

しかし、これらの線は次のような理由により、必ずしも
信号の正確な伝達に好都合なものとは言えなかった。
However, these lines have not always been suitable for accurate signal transmission for the following reasons.

軟銅線の場合、焼鈍による再結晶で結晶粒は、通常、等
軸に近い形状に分布する。そのため、導体の長手方向に
電流が流れる際、その電流が横切るであろう結晶粒界の
数が多くなる。このような結晶粒界は、特に、高周波成
分信号にとって位相差発生等の原因として大きく作用す
るものと考えられる。
In the case of annealed copper wire, recrystallization by annealing usually causes the crystal grains to be distributed in an equiaxed shape. Therefore, when a current flows in the longitudinal direction of the conductor, the number of crystal grain boundaries that the current may cross increases. It is considered that such a crystal grain boundary has a great effect on a high-frequency component signal, especially as a cause of a phase difference or the like.

一方、硬銅線は、繊維状に長手方向に延びた結晶の形を
呈しているので、軟銅線に比べて、電流が長手方向に流
れる際に横切るであろう結晶粒界は見かけ上少なくな
る。したがって、結晶粒界の悪影響は、軟銅線に比べ
て、受けにくくなる。その反面、原子空孔(点欠陥)、
転位(線状の結晶欠陥)の密度が、軟銅線に比べて極端
に多くなり、さらに電気伝導に不適当な電子密度の不均
質などが多くなる。これらは、高周波成分信号にとって
位相差発生の原因となると考えられる。
On the other hand, the hard copper wire has the shape of a crystal that extends in the longitudinal direction in a fibrous shape, so that the number of crystal grain boundaries that may cross when a current flows in the longitudinal direction is apparently smaller than that of the annealed copper wire. . Therefore, the adverse effect of the crystal grain boundary is less likely to be received as compared with the annealed copper wire. On the other hand, atomic vacancies (point defects),
The density of dislocations (linear crystal defects) becomes extremely larger than that of the annealed copper wire, and moreover, the electron density becomes inhomogeneous, which is inappropriate for electrical conduction. It is considered that these cause a phase difference in the high frequency component signal.

この発明は、上述の問題点を解消するためになされたも
のであり、その目的は、信号伝達特性に優れた音響・画
像機器用導体の製造方法を提供することである。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a method for manufacturing a conductor for audio / visual equipment having excellent signal transmission characteristics.

[問題点を解決するための手段]および[発明の効果] この発明に従った音響・画像機器用導体の製造方法は、
酸素含有量が30ppm以下の銅線を中間工程で軟化処理
し、その後再結晶されることなく、最終処理工程として
減面率が30〜70%の範囲の冷間加工を施すことによって
所定サイズの線にまで伸線することを特徴とする。
[Means for Solving Problems] and [Effects of the Invention] A method for manufacturing a conductor for audio / visual equipment according to the present invention comprises:
A copper wire with an oxygen content of 30 ppm or less is subjected to a softening treatment in an intermediate step, and then is not recrystallized. Characterized by drawing up to a wire.

酸素含有量が30ppm以下の銅線を用いるのは、酸素含有
量が30ppmを越えるようならば、結晶粒界にCu2O粒が存
在し、そのために銅が著しく脆くなり、音響や画像に対
して悪影響を及ぼすからである。
The use of a copper wire having an oxygen content of 30 ppm or less means that if the oxygen content exceeds 30 ppm, Cu 2 O grains are present in the crystal grain boundaries, which makes copper extremely brittle, which may cause acoustic or image deterioration. Because it will have an adverse effect.

中間工程で軟化処理するのは、この処理によって点欠陥
や転位の密度を減少させるためである。軟化処理するた
めの方法として、たとえば通電軟化またはトンネル炉軟
化が採用される。ゆっくり結晶成長させ結晶を粗大化さ
せるバッチ式方法と異なり、通電軟化法やトンネル炉軟
化法によれば高能率生産が期待される。
The softening treatment in the intermediate step is intended to reduce the density of point defects and dislocations by this treatment. As a method for softening treatment, for example, electric current softening or tunnel furnace softening is adopted. Unlike the batch method in which crystals are grown slowly and the crystals are coarsened, high-efficiency production is expected by the electric current softening method and tunnel furnace softening method.

最終処理工程として、減面率が30〜70%の範囲の冷間加
工を施すのは、この加工によって線は長さ方向に繊維状
に延びた結晶組織を有するようになるからである。減面
率が30%未満の冷間加工では音響・画像鮮明化の効果が
少なく、また減面率が70%を越える冷間加工では、音響
・画像鮮明化の効果が飽和し、またむしろ加工により導
入される欠陥のため上記効果が損われる恐れがあり、さ
らに導体としてのしなやかさを失いやすくなる。
As the final treatment step, cold working is performed with a surface reduction rate in the range of 30 to 70% because the wire has a crystal structure extending in a fibrous shape in the length direction. Cold working with a surface reduction rate of less than 30% has little effect on sound and image sharpening, and cold working with a surface reduction rate of more than 70% saturates the effect of sound and image sharpening. The above effect may be impaired due to the defects introduced by, and the flexibility of the conductor is likely to be lost.

中間工程での軟化処理後に、再結晶させないのは、導体
の長手方向に電流が流れる際に横切るであろう結晶粒界
の数を増大させないためである。
The reason why recrystallization is not performed after the softening treatment in the intermediate step is to prevent an increase in the number of grain boundaries that may cross when a current flows in the longitudinal direction of the conductor.

好ましくは、最終的に得られる線の引張り強さが、32〜
42kg/mm2となるようにされる。引張り強さが32kg/mm2
満であれば、音響・画像に対する鮮明化の効果が少な
く、一方、引張り強さが42kg/mm2を越えるようならば、
導体としてのしなやかさを失うおそれがある。さらに、
導体としての接続特性を高めるために、伸線加工後の線
に、Ag、Sn、またはこれらの元素を主成分とする材料を
電気めっきしてもよい。電気めっき法の他に溶融めっき
法も考えられるが、この溶融めっき法では結晶組織が乱
れ、音響・画像鮮明化の効果が少なくなるおそれがあ
る。電気めっき法ではこのような効果を害するおそれは
なく、好ましい方法であると言える。
Preferably, the tensile strength of the finally obtained wire is 32 to
It is set to 42 kg / mm 2 . If the tensile strength is less than 32 kg / mm 2 , the effect of sharpening the sound and image is small, while if the tensile strength exceeds 42 kg / mm 2 ,
The conductor may lose its flexibility. further,
In order to improve the connection characteristics as a conductor, the wire after drawing may be electroplated with Ag, Sn, or a material containing these elements as a main component. In addition to the electroplating method, a hot dipping method is also conceivable. However, in the hot dipping method, the crystal structure is disturbed and the effect of sound / image sharpening may be reduced. It can be said that the electroplating method is a preferable method because there is no fear of impairing such effects.

以上のように、この発明によれば、ほとんど特別な処理
工程を必要とすることなく、容易に、音響や画像を鮮明
にし得る導体を製造することができる。
As described above, according to the present invention, it is possible to easily manufacture a conductor that can make the sound and image clear without requiring any special treatment process.

[実施例] 酸素量6ppmの無酸素銅荒引線を8mmφより冷間加工によ
って0.26mmφまで伸線し、この伸線工程とタンデムに連
続的に通電軟化し軟材とした。この軟材を、最終製品サ
イズである0.18mmφまで52%の減面率で冷間伸線加工し
た。このようにして得られた素導体を、使用する部位に
応じて7本撚り、19本撚り等の撚り線にして、所望の被
覆電線を得た。このようにして得られた導体が、後述す
る試料番号1の導体である。
[Example] An oxygen-free copper wire having an oxygen content of 6 ppm was drawn from 8 mmφ to 0.26 mmφ by cold working, and was continuously softened by current conduction in this wiredrawing process and tandem to obtain a soft material. This soft material was cold drawn to a final product size of 0.18 mmφ with a surface reduction rate of 52%. The strand conductor thus obtained was twisted into 7 strands, 19 strands or the like depending on the site to be used to obtain a desired covered electric wire. The conductor thus obtained is the conductor of Sample No. 1 described later.

比較のため、通常の無酸素銅軟材から得られた導体を、
試料番号5とする。試料番号1の導体と試料番号5の導
体を高品質ビデオの配線電線として使用した場合、画像
の鮮明度、音質の豊かさ、澄んでいる点等において、試
料番号1の導体が、試料番号5の導体に比し、大きく優
れていた。
For comparison, a conductor obtained from normal oxygen-free copper soft material,
The sample number is 5. When the conductor of sample No. 1 and the conductor of sample No. 5 are used as a wiring wire for high-quality video, the conductor of sample No. 1 is replaced with sample No. 5 in terms of image clarity, rich sound quality, and clearness. It was significantly superior to the conductor.

比較のため、0.18mmφの素線を作製するのに、中間軟化
サイズ、冷間加工度等を種々変更してみた。前述した試
料番号1および試料番号5を含めて、製造工程、導体の
特性、画像・音響効果の結果を以下に記述する。
For the purpose of comparison, various intermediate softening sizes, cold workability, etc. were changed in order to manufacture a 0.18 mmφ wire. Including the sample number 1 and the sample number 5 described above, the manufacturing process, the characteristics of the conductor, and the results of the image and acoustic effects are described below.

試料番号1(本発明例) 製造方法:途中0.26mmφにて中間軟化した後、0.18mmφ
にまで冷間加工した。冷間加工度は52%である。
Sample No. 1 (Example of the present invention) Manufacturing method: 0.18 mmφ after intermediate softening at 0.26 mmφ in the middle
Cold worked up to. The cold workability is 52%.

引張り強さ:38.9kg/mm2 画像・音質評価結果:画像が鮮明であった。また、音響
が豊かで澄んでいた。
Tensile strength: 38.9 kg / mm 2 Image / sound quality evaluation result: The image was clear. Also, the sound was rich and clear.

試料番号2(本発明例) 製造方法:試料番号1の導体に電気Snめっきを施した。 Sample No. 2 (Example of the present invention) Manufacturing method: The conductor of Sample No. 1 was electroplated with Sn.

引張り強さ:37.2kg/mm2 画像・音質評価結果:画像が鮮明であった。また、音響
が豊かで、澄んでいた。
Tensile strength: 37.2kg / mm 2 Image / sound quality evaluation result: The image was clear. The sound was rich and clear.

試料番号3(本発明例) 途中0.3mmφにて中間軟化した後、0.18mmφにまで冷間
加工した。冷間加工度は64%である。
Sample No. 3 (Example of the present invention) Intermediate softening was performed at 0.3 mmφ and then cold working was performed to 0.18 mmφ. The cold workability is 64%.

引張り強さ:40.1kg/mm2 画像・音質評価結果:画像が鮮明であった。また、音響
が豊かで、澄んでいた。
Tensile strength: 40.1 kg / mm 2 Image / sound quality evaluation result: The image was clear. The sound was rich and clear.

試料番号4(本発明例) 試料番号3の導体を120℃×1hr加熱処理した。 Sample No. 4 (Example of the present invention) The conductor of Sample No. 3 was heat-treated at 120 ° C. for 1 hr.

引張り強さ:39.9kg/mm2 画像・音質評価結果:画像が鮮明であった。また、音響
が豊かで、澄んでいた。
Tensile strength: 39.9kg / mm 2 Image and sound quality evaluation result: The image was clear. The sound was rich and clear.

試料番号5(従来例) 製造方法:最終素線線径(0.18mmφ)にて軟化した。冷
間加工度は0%である。
Sample No. 5 (conventional example) Manufacturing method: Softened at the final strand wire diameter (0.18 mmφ). The cold workability is 0%.

引張り強さ:24.0kg/mm2 画像・音質評価結果:画像の鮮明さが劣り、また音響の
豊かさが劣っていた。
Tensile strength: 24.0kg / mm 2 Image / sound quality evaluation result: Image clarity was poor and sound richness was poor.

試料番号6(比較例) 製造方法:途中2.6mmφで中間軟化した後、0.18mmφに
まで冷間加工した。冷間加工度は99.5%である。
Sample No. 6 (Comparative Example) Manufacturing method: After intermediate softening at 2.6 mmφ on the way, it was cold worked to 0.18 mmφ. The cold workability is 99.5%.

引張り強さ:50.3kg/mm2 画像・音質評価結果:画像の鮮明さが劣り、また音響の
豊かさが劣っていた。さらに、導体はしなやかさに欠け
ていて、取扱いにくかった。
Tensile strength: 50.3kg / mm 2 Image / sound quality evaluation result: Image clarity was poor and sound richness was poor. Moreover, the conductor lacked flexibility and was difficult to handle.

試料番号7(比較例) 製造方法:途中0.19mmφにて中間軟化した後、0.18mmφ
にまで冷間加工した。冷間加工度は10%である。
Sample No. 7 (Comparative Example) Manufacturing method: 0.18 mmφ after intermediate softening at 0.19 mmφ
Cold worked up to. Cold workability is 10%.

引張り強さ:26.1kg/mm2 画像・音質評価結果:画像の鮮明さが劣り、また音響の
豊かさが劣っていた。
Tensile strength: 26.1kg / mm 2 Image / sound quality evaluation result: Image clarity was poor and sound richness was poor.

試料番号8(比較例) 製造方法:0.18mmφの硬材に溶融Snめっきをした。この
とき、導体は軟化していた。
Sample No. 8 (Comparative Example) Manufacturing method: 0.18 mmφ hard material was hot-dip plated with Sn. At this time, the conductor was softened.

引張り強さ:23.8kg/mm2 画像・音質評価結果:画像の鮮明さが劣り、また音響の
豊かさが劣っていた。
Tensile strength: 23.8kg / mm 2 Image / sound quality evaluation result: Image clarity was poor and sound richness was poor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸素含有量が30ppm以下の銅線を中間工程
で軟化処理し、その後再結晶させることなく、最終処理
工程として減面率が30〜70%の範囲の冷間加工を施すこ
とによって所定サイズの線にまで伸線することを特徴と
する、音響・画像機器用導体の製造方法。
1. A copper wire having an oxygen content of 30 ppm or less is subjected to a softening treatment in an intermediate step and then subjected to cold working in a final treatment step with a surface reduction ratio of 30 to 70% without recrystallization. A method for manufacturing a conductor for audio / visual equipment, which comprises drawing a wire of a predetermined size according to.
【請求項2】前記軟化処理は、通電軟化処理またはトン
ネル炉軟化処理である、特許請求の範囲第1項に記載の
音響・画像機器用導体の製造方法。
2. The method for manufacturing a conductor for audio / visual equipment according to claim 1, wherein the softening treatment is an electric current softening treatment or a tunnel furnace softening treatment.
【請求項3】最終的に得られる線の引張り強さが、32〜
42kg/mm2である、特許請求の範囲第1項または第2項に
記載の音響・画像機器用導体の製造方法。
3. The tensile strength of the finally obtained wire is 32 to
The method for producing a conductor for audio / visual equipment according to claim 1 or 2, which has a weight of 42 kg / mm 2 .
【請求項4】前記伸線後に、Ag、Sn、またはこれらの元
素を主成分とする材料を電気めっきする、特許請求の範
囲第1項〜第3項のいずれか1項に記載の音響・画像機
器用導体の製造方法。
4. The sound according to any one of claims 1 to 3, wherein after the wire drawing, Ag, Sn, or a material containing these elements as a main component is electroplated. Manufacturing method of conductor for imaging equipment.
JP60278802A 1985-12-10 1985-12-10 Method for manufacturing conductors for audio / visual equipment Expired - Lifetime JPH0727729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278802A JPH0727729B2 (en) 1985-12-10 1985-12-10 Method for manufacturing conductors for audio / visual equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278802A JPH0727729B2 (en) 1985-12-10 1985-12-10 Method for manufacturing conductors for audio / visual equipment

Publications (2)

Publication Number Publication Date
JPS62136707A JPS62136707A (en) 1987-06-19
JPH0727729B2 true JPH0727729B2 (en) 1995-03-29

Family

ID=17602376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278802A Expired - Lifetime JPH0727729B2 (en) 1985-12-10 1985-12-10 Method for manufacturing conductors for audio / visual equipment

Country Status (1)

Country Link
JP (1) JPH0727729B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081530Y2 (en) * 1991-09-05 1996-01-17 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coating robot cables
JPH0523330U (en) * 1991-09-05 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
JPH0523333U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
JPH0523334U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
JPH0523337U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable
JPH081531Y2 (en) * 1991-09-09 1996-01-17 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coating robot cables
JP5742859B2 (en) * 2013-01-30 2015-07-01 日立金属株式会社 High-speed transmission cable conductor, manufacturing method thereof, and high-speed transmission cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715138B2 (en) * 1983-12-10 1995-02-22 住友電気工業株式会社 Method for manufacturing conductors for image display equipment and audio equipment
JPH0694587B2 (en) * 1983-12-10 1994-11-24 住友電気工業株式会社 Method for manufacturing conductor for image display device and audio device
JPH0715139B2 (en) * 1983-12-10 1995-02-22 住友電気工業株式会社 Method for manufacturing conductor for image display device and audio device

Also Published As

Publication number Publication date
JPS62136707A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP2001148205A (en) Ultrafine copper alloy wire and method of manufacturing the same
JPH0727729B2 (en) Method for manufacturing conductors for audio / visual equipment
JP4288844B2 (en) Extra fine copper alloy wire
JPS60125357A (en) Manufacture of conductor for electronic apparatus
JPH0790430A (en) Copper wire for extra fine wire and manufacturing method thereof
CN111223591B (en) Capacity-increasing conductor formed by twisting a super-strong steel core and a semi-hard aluminum wire and a manufacturing method thereof
US5443665A (en) Method of manufacturing a copper electrical conductor, especially for transmitting audio and video signals and quality control method for such conductors
JP4914153B2 (en) Copper conductors for audio and video signals
JPS61163504A (en) Conductor for image display equipment and audio equipment
JPH0664945B2 (en) Method for manufacturing conductors for audio / visual equipment
JPH0715139B2 (en) Method for manufacturing conductor for image display device and audio device
JPH0694587B2 (en) Method for manufacturing conductor for image display device and audio device
JP3374401B2 (en) Manufacturing method of conductors for audio / visual equipment
JP3173226B2 (en) Flexible cable
JPS62287508A (en) Copper wire for signal transmission
JPH0524601B2 (en)
JPH046296A (en) Nickel-plated copper wire and its production
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JPH01264110A (en) magnet wire
JPH07118216B2 (en) Sound and image equipment conductors
JPH0743966B2 (en) Ritsutsu Line
JP3858861B2 (en) Copper wire for overhead distribution lines and method for manufacturing the same
JP2007077505A (en) Cu-Ag alloy wire and Cu-Ag alloy wire for coaxial cable
JPH07116566B2 (en) Metal thin wire processing method