JPH0727448A - Freezer device - Google Patents
Freezer deviceInfo
- Publication number
- JPH0727448A JPH0727448A JP5175155A JP17515593A JPH0727448A JP H0727448 A JPH0727448 A JP H0727448A JP 5175155 A JP5175155 A JP 5175155A JP 17515593 A JP17515593 A JP 17515593A JP H0727448 A JPH0727448 A JP H0727448A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- capillary tube
- high pressure
- pressure
- refrigeration cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011651 chromium Substances 0.000 claims abstract description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001704 evaporation Methods 0.000 claims abstract description 7
- 239000007769 metal material Substances 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000005057 refrigeration Methods 0.000 claims description 18
- 230000003746 surface roughness Effects 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000010721 machine oil Substances 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000008014 freezing Effects 0.000 abstract 1
- 238000007710 freezing Methods 0.000 abstract 1
- 239000000460 chlorine Substances 0.000 description 27
- 229910052802 copper Inorganic materials 0.000 description 19
- 239000010949 copper Substances 0.000 description 19
- 229910052801 chlorine Inorganic materials 0.000 description 18
- 238000005260 corrosion Methods 0.000 description 18
- 230000007797 corrosion Effects 0.000 description 18
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 150000001879 copper Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- -1 methacrene Chemical compound 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010726 refrigerant oil Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/37—Capillary tubes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は冷凍装置に関し、とくに
冷凍サイクル内のキャピラリーチューブ内面の腐食や腐
食生成物の付着量を少なくすることのできる冷凍装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus, and more particularly to a refrigerating apparatus capable of reducing corrosion on the inner surface of a capillary tube in a refrigeration cycle and reducing the amount of corrosion products attached.
【0002】[0002]
【従来の技術】エアコンや冷蔵庫等に代表される冷凍サ
イクルが組込まれた冷凍装置は、密閉された系内を冷媒
が蒸発、圧縮、凝縮、膨脹しながら循環することで冷却
を行っている。このような冷凍サイクルは、熱交換器、
圧縮機、キャピラリーチューブ等から構成され、構成部
品の材料は、加工性、熱伝導性の良さ、コストの面から
圧縮機内部を除いて主に銅製が多い。このような構成部
品を製造するときに、切削、拡管等の加工時に使用する
油が多量に残存したままの状態で冷凍サイクルを組む
と、残存油が冷凍サイクルを回り、キャピラリーチュー
ブ内に堆積するため、冷媒の流量の低下を引き起こすと
いう問題につながる。したがって、冷凍サイクルを組む
前の単品の製造工程において、それらの残存を極力減ら
す必要がある。 従来、単品製造工程の最終段階におい
て、脱脂洗浄工程を設け、洗浄性、浸透性の良さ、部品
に残存しにくいなどの理由からフロン113 、1,1,1-トリ
クロロエタン、メタクレンなどのフロン系、塩素系有機
溶剤等による洗浄を行っている。 しかし、これらのフ
ロン系、塩素系有機溶剤等はオゾン層破壊や水質汚染等
の環境問題から使用が規制されている。そこで、フロン
系、塩素系有機溶剤等に代替する水溶性アルカリ洗浄や
洗浄レス化などが検討されている。2. Description of the Related Art In a refrigerating apparatus including a refrigerating cycle represented by an air conditioner and a refrigerator, a refrigerant is circulated in a closed system while being evaporated, compressed, condensed and expanded to perform cooling. Such a refrigeration cycle has a heat exchanger,
It is composed of a compressor, a capillary tube and the like, and the material of the constituent parts is mainly copper except for the inside of the compressor in terms of workability, good thermal conductivity and cost. When manufacturing a component like this, if a refrigeration cycle is assembled with a large amount of oil used during cutting, pipe expansion, etc. remaining, the residual oil goes around the refrigeration cycle and accumulates in the capillary tube. Therefore, it leads to a problem that the flow rate of the refrigerant decreases. Therefore, it is necessary to reduce the residuals as much as possible in the manufacturing process of a single product before the refrigeration cycle is assembled. Conventionally, a degreasing cleaning process was provided at the final stage of the single product manufacturing process, and due to its cleanability, good permeability, and difficulty in remaining in parts, CFCs 113, 1,1,1-trichloroethane, and CFCs such as methacrene, Cleaning is done with chlorine-based organic solvents. However, the use of these CFC-based and chlorine-based organic solvents is regulated due to environmental problems such as ozone layer depletion and water pollution. Therefore, a water-soluble alkaline cleaning method or a cleaning-less method, which substitutes for a chlorofluorocarbon-based or chlorine-based organic solvent, is being studied.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
銅製キャピラリーチューブを用いている冷凍サイクル内
をフロン系、塩素系有機溶剤等以外の水系アルカリ洗浄
剤等で洗浄したのち、あるいは無洗浄にて冷凍装置を組
み立て運転すると運転中に冷凍能力の低下が生じるとい
う問題が生じた。However, after the inside of the refrigeration cycle using the conventional copper capillary tube is washed with a water-based alkaline cleaner other than a CFC-based or chlorine-based organic solvent, or is frozen without cleaning. When the device is assembled and operated, there is a problem that the refrigerating capacity is deteriorated during the operation.
【0004】冷凍能力の低下について調査した結果、銅
製キャピラリーチューブ内での異物の堆積による冷媒流
量の低下が原因であった。さらに、堆積した異物につい
て調査したところ、従来のような切削油等の有機系の残
存物が堆積したのではなく、銅酸化物などの銅化合物を
主体にした無機系の堆積物であり、他に塩素(Cl)イオ
ンなども検出された。しかも付着物は凹凸が大きく、ま
た表面には浸蝕跡も観察されたことから塩素(Cl)イオ
ンによる銅の腐食反応の進行によって凹凸の激しい腐食
生成物が生じたことが判明した。As a result of investigating the deterioration of the refrigerating capacity, it was found that the refrigerant flow rate was decreased due to the accumulation of foreign matters in the copper capillary tube. Furthermore, when investigating the accumulated foreign matter, it was found that the organic residue such as cutting oil was not accumulated as in the past, but the inorganic residue was mainly composed of copper compounds such as copper oxide. Chlorine (Cl) ions were also detected. Moreover, since the deposits had large irregularities and erosion marks were observed on the surface, it was found that corrosion products with severe irregularities were generated due to the progress of the copper corrosion reaction by chlorine (Cl) ions.
【0005】銅の腐食反応について調査をすすめた結
果、サイクル内での残存水分による影響が大きいものと
考えられ、従来のフロン系、塩素系有機溶剤等は、脱脂
の他に水きり乾燥性を有していることが確認された。そ
してフロン系、塩素系有機溶剤等以外の洗浄剤で洗浄す
ると残存水分量が増加したり、また洗浄工程によって残
存水分量が大きくバラツクことが判明した。As a result of further investigation on the corrosion reaction of copper, it is considered that the residual water content in the cycle has a large effect, and conventional CFC-based and chlorine-based organic solvents have a water-drying property in addition to degreasing. It was confirmed that It was also found that the amount of residual water increases when washed with a cleaning agent other than a chlorofluorocarbon-based or chlorine-based organic solvent, and the amount of residual water greatly varies depending on the washing process.
【0006】したがって、フロン系、塩素系有機溶剤等
以外の洗浄剤で洗浄するとサイクル内の残存水分量が多
くなり、それによって冷媒の分解あるいは塩素系工程副
資材の分解等により塩素(Cl)イオンの発生が促進され
る。さらに塩素(Cl)イオンがキャピラリーチューブま
で運ばれ、銅の腐食反応を引き起こす。通常、銅表面は
自然被膜にて保護されているが、冷媒の流れや塩素(C
l)イオンによって破壊され、その破壊された部分の表
面が活性となり腐食(イオンとして溶解、銅または銅酸
化物、塩化物として再付着)が進行する。Therefore, when cleaning with a cleaning agent other than a CFC-based or chlorine-based organic solvent, the amount of residual water in the cycle increases, which causes chlorine (Cl) ions due to the decomposition of the refrigerant or the decomposition of chlorine-based process auxiliary materials. Is promoted. Chlorine (Cl) ions are also carried to the capillary tube and cause the corrosion reaction of copper. Normally, the copper surface is protected by a natural film, but the flow of refrigerant and chlorine (C
l) It is destroyed by ions, and the surface of the destroyed part becomes active and corrosion (dissolution as ions, redeposition as copper or copper oxide, chloride) proceeds.
【0007】とくにキャピラリーチューブ部分は他の一
般配管と比較して冷媒の流速が大きく乱流になりやすい
ことからチューブ内表面の被膜が破壊されやすく、表面
が活性となりやすいため著しく反応が進行する。キャピ
ラリーチューブ表面の溶解、付着により、凹凸の大きい
腐食生成物の付着が生じる。In particular, the capillary tube portion has a large flow velocity of the refrigerant as compared with other general pipes and is likely to be turbulent, so that the coating film on the inner surface of the tube is easily broken and the surface is easily activated, so that the reaction proceeds significantly. Dissolution and adhesion of the surface of the capillary tube causes adhesion of corrosion products with large irregularities.
【0008】また、通常、キャピラリーチューブは引き
抜き加工によって製造されるため、加工傷が残り易く、
加工傷のようにもともと保護被膜の弱い部分については
そこから優先的に付着が生じ、また凹部分には腐食物質
が止まり易いため、腐食が進行しやすい。Further, since the capillary tube is usually manufactured by a drawing process, processing scratches are likely to remain,
The adhesion is preferentially generated from the weak portion of the protective film originally due to the processing flaw, and the corrosive substance is easily stopped in the concave portion, so that the corrosion easily progresses.
【0009】また、キャピラリー表面への付着はキャピ
ラリー自身から一度溶出したものからの再付着のみでな
く熱交換器、配管から溶出したものが運搬されてきてキ
ャピラリーチューブ部分で析出するものも考えられる。
以上のような過程によって、流れの抵抗が大きくなるた
めに冷媒流量の減少が起こり、冷凍能力の低下へとつな
がる。このようにキャピラリーチューブ部分は、凹凸の
大きい腐食生成物ができると、とくに冷凍能力低下に対
して大きな影響を与え、冷凍装置の耐久性と信頼性に問
題を生じる。このような問題を解決するにはサイクル内
の残存水分を極力減らす必要があるが、実際上完全に無
くすることは困難である。Further, the adhesion to the capillary surface is not limited to the re-adhesion from the material once eluted from the capillary itself, but the one eluted from the heat exchanger or the pipe may be conveyed and deposited on the capillary tube portion.
Due to the above process, the flow resistance increases, so that the refrigerant flow rate decreases, and the refrigerating capacity decreases. As described above, when the corrosion product having large irregularities is formed in the capillary tube portion, it has a great influence particularly on the deterioration of the refrigerating capacity and causes a problem in durability and reliability of the refrigerating apparatus. In order to solve such a problem, it is necessary to reduce the residual water content in the cycle as much as possible, but it is practically difficult to completely eliminate it.
【0010】本発明は、このような問題に対処してなさ
れたもので、冷凍装置の冷凍サイクルにおける、とくに
キャピラリーチューブ内表面での冷媒流量の低下を防止
し、耐久性と信頼性を向上させることのできる冷凍装置
を提供することを目的とする。The present invention has been made to address such a problem, and in the refrigerating cycle of a refrigerating apparatus, it is possible to prevent a decrease in the flow rate of the refrigerant, particularly on the inner surface of the capillary tube, to improve durability and reliability. It is an object of the present invention to provide a refrigerating device that can be used.
【0011】[0011]
【課題を解決するための手段】本発明の冷凍装置は、ガ
ス状の冷媒を低圧より高圧に圧縮する圧縮機構と、高圧
に圧縮された冷媒を凝縮する機構と、凝縮された冷媒を
キャピラリーチューブにより膨脹させる膨脹機構と、膨
脹した冷媒を蒸発させ低圧の冷媒とする蒸発機構とから
なる密閉された冷凍サイクルを有する冷凍装置におい
て、キャピラリーチューブがクロム(Cr)を含有する鉄
系金属材料からなることを特徴とする。A refrigerating apparatus of the present invention comprises a compression mechanism for compressing a gaseous refrigerant to a pressure higher than a low pressure, a mechanism for condensing a refrigerant compressed to a high pressure, and a capillary tube for the condensed refrigerant. In a refrigerating apparatus having a closed refrigeration cycle consisting of an expansion mechanism for expanding by means of an expansion mechanism and an evaporation mechanism for evaporating the expanded refrigerant into a low-pressure refrigerant, the capillary tube is made of an iron-based metallic material containing chromium (Cr). It is characterized by
【0012】また、本発明の冷凍装置は冷凍サイクル内
面が冷媒および冷凍機油に対し安定な樹脂により形成さ
れていることを特徴とする。Further, the refrigerating apparatus of the present invention is characterized in that the inner surface of the refrigerating cycle is formed of a resin which is stable with respect to the refrigerant and the refrigerating machine oil.
【0013】さらに、キャピラリーチューブ内面の表面
粗さ(Rmax )が 20 μm 以下であることを特徴とす
る。Further, the inner surface of the capillary tube has a surface roughness (Rmax) of 20 μm or less.
【0014】本発明に係わるキャピラリーチューブは冷
凍サイクルにおいて冷媒を高圧から低圧状態にする部分
を構成する。このようなキャピラリーチューブの内表面
腐食を防止するため、本発明は使用材料を少なくともク
ロム(Cr)を含有する鉄系金属材料とする。クロム(C
r)以外にニッケル(Ni)、モリブデン(Mo)等を含有
することができる。好ましい具体例として、 SUS304, S
US316 のようなオーステナイト系のステンレスを挙げる
ことができる。このような鉄系金属材料とすることによ
り、金属表面を保護する不動態被膜が塩素(Cl)イオン
や冷媒の流れに対して銅の場合よりも強固に生成するこ
とで耐蝕性にすぐれている。また、キャピラリーチュー
ブに求められる曲げ性や伸び性などの加工性にも富んで
いる。The capillary tube according to the present invention constitutes a portion for changing the pressure of the refrigerant from high pressure to low pressure in the refrigeration cycle. In order to prevent the inner surface corrosion of such a capillary tube, the present invention uses a ferrous metal material containing at least chromium (Cr) as the material to be used. Chrome (C
Other than r), nickel (Ni), molybdenum (Mo), etc. can be contained. As a preferred specific example, SUS304, S
Austenitic stainless steels such as US316 can be mentioned. By using such an iron-based metal material, the passivation film that protects the metal surface is formed more strongly against chlorine (Cl) ions and the flow of the refrigerant than with copper, and thus has excellent corrosion resistance. . In addition, it has excellent workability such as bendability and extensibility required for capillary tubes.
【0015】本発明に係わるキャピラリーチューブにお
いては、キャピラリーチューブ内面素地の金属が水や塩
素(Cl)イオンなどの腐食物質に直接接触しないように
することが重要である。このため、他の本発明において
は、キャピラリーチューブ内面を冷媒および冷凍機油に
対し安定な樹脂により形成する。ここで、冷媒および冷
凍機油に対し安定であるとは冷凍装置の運転時または停
止時において、冷媒および冷凍機油に溶解したりヒビが
はいったりするなどの変化を起こさないことをいう。ま
た、樹脂はキャピラリーチューブとの密着性、被覆後の
加工性、耐摩耗性、耐熱性等に優れていることが必要で
ある。本発明に好適な樹脂として、二弗化樹脂、四弗化
樹脂などの弗素樹脂、エポキシ樹脂、シリコン樹脂など
を例示することができる。樹脂被覆の効果はキャピラリ
ーチューブだけでなく、熱交換器、配管などの冷凍サイ
クル全体の内面についても有効である。熱交換器中で局
部的に塩素(Cl)イオンなどが残存した場合、腐食が生
じ、そこからガスリークが生じるなどの事故を防止する
ことができる。In the capillary tube according to the present invention, it is important that the metal of the inner surface of the capillary tube does not come into direct contact with corrosive substances such as water and chlorine (Cl) ions. Therefore, in another aspect of the present invention, the inner surface of the capillary tube is formed of a resin that is stable against the refrigerant and the refrigerating machine oil. Here, being stable with respect to the refrigerant and the refrigerating machine oil means that the refrigerant and the refrigerating machine oil are not dissolved or cracked when the refrigerating apparatus is operated or stopped. Further, the resin is required to have excellent adhesion to the capillary tube, workability after coating, abrasion resistance, heat resistance and the like. Examples of resins suitable for the present invention include fluororesins such as difluorinated resins and tetrafluorinated resins, epoxy resins, and silicone resins. The effect of the resin coating is effective not only on the capillary tube but also on the inner surface of the entire refrigeration cycle such as the heat exchanger and the piping. When chlorine (Cl) ions and the like locally remain in the heat exchanger, it is possible to prevent an accident such as corrosion, which causes a gas leak.
【0016】さらに他の本発明に係わるキャピラリーチ
ューブは、チューブ内表面を均一平滑にして、表面粗さ
(Rmax )を 20 μm 以下とする。表面粗さ(Rmax )
を 20 μm 以下とすることにより、キャピラリーチュー
ブ内面の凹凸を平滑とすることができる。それにより、
たとえば加工傷部分等の凹部分などに腐食物質がとどま
るのを抑えることができ、腐食の進行を抑える働きはキ
ャピラリーチューブの材質が銅であっても有効に働くこ
とが認められた。なお、表面粗さ(Rmax )はキャピラ
リーチューブ内面でのうねり部分を含まない値をいう。
また表面粗さ(Rmax )を 20 μm 以下とする方法とし
ては、とくに制限はないが、機械研磨、化学研磨、電解
研磨などの研磨法により行うことができる。In still another capillary tube according to the present invention, the inner surface of the tube is made uniform and smooth, and the surface roughness (Rmax) is 20 μm or less. Surface roughness (Rmax)
Is 20 μm or less, the irregularities on the inner surface of the capillary tube can be made smooth. Thereby,
For example, it has been confirmed that the corrosive substance can be suppressed from remaining in a recessed portion such as a processing scratched portion, and that the function of suppressing the progress of corrosion is effective even if the material of the capillary tube is copper. The surface roughness (Rmax) is a value that does not include a waviness portion on the inner surface of the capillary tube.
The method for adjusting the surface roughness (Rmax) to 20 μm or less is not particularly limited, but polishing methods such as mechanical polishing, chemical polishing and electrolytic polishing can be used.
【0017】[0017]
【作用】キャピラリーチューブ材料を、少なくともクロ
ム(Cr)を含有する鉄系金属材料とすると、銅材料より
も強固な不動態被膜がチューブ内表面に形成されやすく
なり、水分や塩素(Cl)イオンによる表面の腐食を防ぐ
ことができる。[Function] When the capillary tube material is an iron-based metal material containing at least chromium (Cr), a passivation film that is stronger than the copper material is more likely to be formed on the inner surface of the tube, and water or chlorine (Cl) ions Surface corrosion can be prevented.
【0018】また、キャピラリーチューブ内面を樹脂層
とすることにより、金属素地と冷媒や冷凍機油中に含ま
れる塩素(Cl)イオン等の腐食原因物質との直接接触を
防ぐことができる。その結果、金属素地からのイオン溶
出を防ぐことができる。Further, by forming the resin layer on the inner surface of the capillary tube, it is possible to prevent direct contact between the metal base and the corrosion-causing substance such as chlorine (Cl) ion contained in the refrigerant or the refrigerating machine oil. As a result, the elution of ions from the metal base can be prevented.
【0019】さらに、キャピラリーチューブ内面の表面
粗さを 20 μm 以下とすると腐食表面の凹凸が少なくな
るため、腐食原因物質がキャピラリー表面にとどまりに
くくなり腐食の進行を抑えることができる。Further, if the surface roughness of the inner surface of the capillary tube is 20 μm or less, the corroded surface has less irregularities, so that the causative substance is less likely to stay on the capillary surface and the progress of corrosion can be suppressed.
【0020】[0020]
【実施例】以下、本発明の実施例について説明する。 実施例1 ステンレス(SUS316)製のパイプ(内径 1.5mm、長さ 1
m )をキャピラリーチューブとして使用した。EXAMPLES Examples of the present invention will be described below. Example 1 Stainless steel (SUS316) pipe (internal diameter 1.5 mm, length 1
m) was used as the capillary tube.
【0021】あらかじめ以下の方法でチューブ内の流量
を測定した。The flow rate in the tube was measured in advance by the following method.
【0022】圧力ボンベ内にフロン 113を充填して、空
気にて加圧(2Kg/cm2 )することによりフロン 113をキ
ャピラリーチューブに流し、一定温度で一定時間( 30
秒間)に流れた量を測定した。Freon 113 was filled in a pressure cylinder and pressurized (2 Kg / cm 2 ) with air to flow Freon 113 into a capillary tube and kept at a constant temperature for a fixed time (30
Flow rate was measured.
【0023】つぎに、このキャピラリーチューブを使用
した冷凍サイクルを有する冷凍装置であるエアコンを組
み立て、冷媒としてフロン 22 、冷凍機油として鉱物油
を封入する。さらに水 5mlを強制添加して加速試験を行
った。加速試験はエアコンを12 時間連続冷房運転およ
び 12 時間停止を 1サイクルとする断続運転を行い、冷
房運転時間が合計で 500時間となるまで運転した。加速
試験終了後、キャピラリーチューブを取り外し再び上述
と同一の条件でチューブ内の流量を測定し、運転前の値
との差を運転前の値に対する流量変化量(%)とした。
その結果を表1に示す。Next, an air conditioner, which is a refrigerating device having a refrigerating cycle using this capillary tube, is assembled, and Freon 22 as a refrigerant and mineral oil as a refrigerating machine oil are sealed. Further, 5 ml of water was forcibly added to carry out an acceleration test. In the accelerated test, the air conditioner was operated continuously for 12 hours and intermittently for 12 hours as one cycle, until the total cooling operation time reached 500 hours. After completion of the acceleration test, the capillary tube was removed, the flow rate in the tube was measured again under the same conditions as above, and the difference from the value before operation was taken as the flow rate change amount (%) with respect to the value before operation.
The results are shown in Table 1.
【0024】実施例2 銅製のパイプ(内径 1.5mm、長さ 1m )をキャピラリー
チューブ用材料として準備した。この銅製のパイプをフ
ッ化黒鉛微粉末(平均粒径約 0.2μm ) 5g/lと水溶性
フルオロカーボン系カチオン界面活性剤とを含む液に 5
分間浸漬、 250℃にて 10 分間加熱することを 5回繰り
返すことにより、銅製のパイプ全面にテフロンコーティ
ングを行った。このテフロンコーティング銅製パイプを
キャピラリーチューブとして用いる以外は実施例1と同
一の条件で流量変化量を測定した。その結果を表1に示
す。Example 2 A copper pipe (internal diameter 1.5 mm, length 1 m) was prepared as a material for a capillary tube. This copper pipe was put into a liquid containing 5 g / l of fluorinated graphite fine powder (average particle size of about 0.2 μm) and a water-soluble fluorocarbon-based cationic surfactant.
Teflon coating was applied to the entire surface of the copper pipe by repeating immersion for 5 minutes and heating at 250 ° C for 10 minutes 5 times. The flow rate change amount was measured under the same conditions as in Example 1 except that this Teflon-coated copper pipe was used as a capillary tube. The results are shown in Table 1.
【0025】実施例3 銅製のパイプ(内径 1.5mm、長さ 1m )をキャピラリー
チューブ用材料として準備した。この銅製のパイプを硝
酸(HNO3 ) 32容、硫酸(H2 SO4 ) 64容、塩酸(HCl) 1
容、純水(H2 O) 64 容の混合液(キリンス液)に常温で
10 分間浸漬してキャピラリーチューブとした。このキ
ャピラリーチューブを用いる以外は実施例1と同一の条
件で流量変化量を測定した。その結果を表1に示す。な
お、このキャピラリーチューブ内面の表面粗さを測定し
た結果、表面粗さ(Rmax )は 15μm であった。Example 3 A copper pipe (internal diameter 1.5 mm, length 1 m) was prepared as a material for a capillary tube. This copper pipe is used for 32 volumes of nitric acid (HNO 3 ), 64 volumes of sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl) 1
Volume and pure water (H 2 O) 64 volumes mixed solution (Kirinsu) at room temperature
It was immersed for 10 minutes into a capillary tube. The flow rate change amount was measured under the same conditions as in Example 1 except that this capillary tube was used. The results are shown in Table 1. As a result of measuring the surface roughness of the inner surface of this capillary tube, the surface roughness (Rmax) was 15 μm.
【0026】比較例1 銅製のパイプ(内径 1.5mm、長さ 1m )をキャピラリー
チューブ用材料として準備した。この銅製のパイプを何
も処理しないでキャピラリーチューブとした。このキャ
ピラリーチューブを用いる以外は実施例1と同一の条件
で流量変化量を測定した。その結果を表1に示す。な
お、このキャピラリーチューブ内面の表面粗さを測定し
た結果、表面粗さ(Rmax )は 24 μm であった。Comparative Example 1 A copper pipe (internal diameter 1.5 mm, length 1 m) was prepared as a material for a capillary tube. This copper pipe was used as a capillary tube without any treatment. The flow rate change amount was measured under the same conditions as in Example 1 except that this capillary tube was used. The results are shown in Table 1. As a result of measuring the surface roughness of the inner surface of this capillary tube, the surface roughness (Rmax) was 24 μm.
【0027】[0027]
【表1】 表1から明らかなように、実施例1から実施例3におい
ては比較例1に較べて流量変化量が小さく測定誤差の範
囲内であり、腐食生成物の付着が殆どないことがわか
る。[Table 1] As is clear from Table 1, in Examples 1 to 3, the flow rate change amount was smaller than that in Comparative Example 1, which was within the range of measurement error, and it was found that there was almost no adhesion of corrosion products.
【0028】[0028]
【発明の効果】本発明の冷凍装置は、キャピラリーチュ
ーブがクロム(Cr)を含有する鉄系金属材料、または冷
媒および冷凍機油に対し安定な樹脂からなるか、あるい
はキャピラリーチューブ内面の表面粗さ(Rmax )を 2
0 μm 以下としたので、冷凍装置運転中において腐食生
成物の発生を抑えることができる。According to the refrigerating apparatus of the present invention, the capillary tube is made of an iron-based metallic material containing chromium (Cr), or a resin stable with respect to the refrigerant and the refrigerating machine oil, or the surface roughness of the inner surface of the capillary tube ( Rmax) to 2
Since it is set to 0 μm or less, generation of corrosion products can be suppressed during operation of the refrigeration system.
【0029】その結果、キャピラリーチューブ内表面で
の冷媒流量の低下を防止することができ、冷凍装置の耐
久性と信頼性を向上させることができる。As a result, it is possible to prevent a decrease in the flow rate of the refrigerant on the inner surface of the capillary tube and improve the durability and reliability of the refrigeration system.
Claims (3)
圧縮機構と、前記高圧に圧縮された冷媒を凝縮する機構
と、前記凝縮された冷媒をキャピラリーチューブにより
膨脹させる膨脹機構と、前記膨脹した冷媒を蒸発させ低
圧の冷媒とする蒸発機構とからなる密閉された冷凍サイ
クルを有する冷凍装置において、 前記キャピラリーチューブがクロム(Cr)を含有する鉄
系金属材料からなることを特徴とする冷凍装置。1. A compression mechanism for compressing a gaseous refrigerant to a high pressure from a low pressure, a mechanism for condensing the compressed refrigerant to a high pressure, an expansion mechanism for expanding the condensed refrigerant by a capillary tube, and the expansion. In a refrigerating apparatus having a closed refrigeration cycle consisting of an evaporation mechanism that evaporates the formed refrigerant to a low-pressure refrigerant, the capillary tube is made of an iron-based metallic material containing chromium (Cr), .
圧縮機構と、前記高圧に圧縮された冷媒を凝縮する機構
と、前記凝縮された冷媒を膨脹させる膨脹機構と、前記
膨脹した冷媒を蒸発させ低圧の冷媒とする蒸発機構とか
らなる密閉された冷凍サイクルを有する冷凍装置におい
て、 前記冷凍サイクル内面が前記冷凍サイクル内の前記冷媒
および冷凍機油に対し安定な樹脂により形成されている
ことを特徴とする冷凍装置。2. A compression mechanism for compressing a gaseous refrigerant from a low pressure to a high pressure, a mechanism for condensing the compressed refrigerant to a high pressure, an expansion mechanism for expanding the condensed refrigerant, and an expanded refrigerant. In a refrigerating apparatus having a closed refrigeration cycle consisting of an evaporation mechanism that evaporates and becomes a low-pressure refrigerant, the refrigeration cycle inner surface is formed of a resin stable to the refrigerant and refrigerating machine oil in the refrigeration cycle. Characterizing refrigeration equipment.
圧縮機構と、前記高圧に圧縮された冷媒を凝縮する機構
と、前記凝縮された冷媒をキャピラリーチューブにより
膨脹させる膨脹機構と、前記膨脹した冷媒を蒸発させ低
圧の冷媒とする蒸発機構とからなる密閉された冷凍サイ
クルを有する冷凍装置において、 前記キャピラリーチューブ内面の表面粗さ(Rmax )が
20 μm 以下であることを特徴とする冷凍装置。3. A compression mechanism for compressing a gaseous refrigerant to a high pressure from a low pressure, a mechanism for condensing the compressed refrigerant to a high pressure, an expansion mechanism for expanding the condensed refrigerant by a capillary tube, and the expansion mechanism. In a refrigerating apparatus having a closed refrigeration cycle consisting of an evaporation mechanism that evaporates the refrigerant to a low-pressure refrigerant, the surface roughness (Rmax) of the inner surface of the capillary tube is
Refrigeration equipment characterized by having a size of 20 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5175155A JPH0727448A (en) | 1993-07-15 | 1993-07-15 | Freezer device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5175155A JPH0727448A (en) | 1993-07-15 | 1993-07-15 | Freezer device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0727448A true JPH0727448A (en) | 1995-01-27 |
Family
ID=15991234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5175155A Withdrawn JPH0727448A (en) | 1993-07-15 | 1993-07-15 | Freezer device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727448A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5806326A (en) * | 1995-12-11 | 1998-09-15 | Matsushita Electric Industrial Co., Ltd. | Refrigeration cycle |
US6006544A (en) * | 1995-12-11 | 1999-12-28 | Matsushita Electric Industrial Co., Ltd. | Refrigeration cycle |
JP2020003104A (en) * | 2018-06-26 | 2020-01-09 | 株式会社富士通ゼネラル | Air conditioner |
-
1993
- 1993-07-15 JP JP5175155A patent/JPH0727448A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5806326A (en) * | 1995-12-11 | 1998-09-15 | Matsushita Electric Industrial Co., Ltd. | Refrigeration cycle |
US6006544A (en) * | 1995-12-11 | 1999-12-28 | Matsushita Electric Industrial Co., Ltd. | Refrigeration cycle |
JP2020003104A (en) * | 2018-06-26 | 2020-01-09 | 株式会社富士通ゼネラル | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11976234B2 (en) | Refrigerant additives and compositions | |
WO2006088764A1 (en) | Compositions and methods for cleaning vapor compression systems | |
US5944917A (en) | Stainless steel for ozone added water and manufacturing method thereof | |
JPH0727448A (en) | Freezer device | |
CN113680625B (en) | Method for constructing super-hydrophobic modified layer on surface of aluminum-copper alloy | |
AU733972B2 (en) | Cleaning vapor compression systems | |
WO2020246231A1 (en) | Azeotropic composition, azeotrope-like composition, composition, cleaning agent, solvent, and heat transfer medium | |
CN113667966B (en) | Method for constructing super-hydrophobic modified layer on 2024 type aluminum alloy surface | |
Avdeev et al. | Corrosion and hydrogenation of steels in solutions of mineral acids containing iron (III) salts | |
Chou | Stress corrosion cracking of leaded brass in a sulphuric acid environment | |
CN108700356A (en) | Container for storing compositions comprising tetrafluoropropene and method for storing same | |
Covington | Pitting corrosion of titanium tubes in hot concentrated brine solutions | |
JPH01174588A (en) | Absorption liquid for absorption refrigerators | |
US5888418A (en) | Azeotropic refrigerant comprising bis-(difluoromethyl)ether and 1,1,2-trifluoroethane | |
Boyle et al. | A look at developments in vapor phase corrosion inhibitors | |
JPH062181A (en) | Method of washing ferrous sliding parts | |
JPH0641585B2 (en) | Absorption liquid for absorption refrigerator | |
Ignatowicz | Corrosion aspects in indirect systems with secondary refrigerants | |
JPH1183248A (en) | Piping structure of refrigeration cycle | |
RU2107707C1 (en) | Liquid for removing ice from frozen objects | |
JPH0625339B2 (en) | Absorption liquid for absorption refrigerator | |
WO2023027189A1 (en) | Azeotropic composition, pseudoazeotropic composition, composition, cleaning agent, solvent, aerosol, and heat transfer medium | |
Tebbal et al. | Liquid film thickness and weak acids in the CO2 pitting of steel | |
Chou et al. | A protocol for evaluating the cleaning efficiency, corrosion property and oxygen compatibility of non-ozone depleting cleaning agents | |
IE63028B1 (en) | Process for producing pitting-resistant hard-drawn pipes of copper or copper alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001003 |