[go: up one dir, main page]

JPH07273722A - Power controller - Google Patents

Power controller

Info

Publication number
JPH07273722A
JPH07273722A JP6482294A JP6482294A JPH07273722A JP H07273722 A JPH07273722 A JP H07273722A JP 6482294 A JP6482294 A JP 6482294A JP 6482294 A JP6482294 A JP 6482294A JP H07273722 A JPH07273722 A JP H07273722A
Authority
JP
Japan
Prior art keywords
base station
power
sir
signal
pilot signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6482294A
Other languages
Japanese (ja)
Other versions
JP3148071B2 (en
Inventor
Kouji Takeo
幸次 武尾
Taiji Amazawa
泰治 雨澤
Takao Suzuki
孝夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP06482294A priority Critical patent/JP3148071B2/en
Publication of JPH07273722A publication Critical patent/JPH07273722A/en
Application granted granted Critical
Publication of JP3148071B2 publication Critical patent/JP3148071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02D70/449

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To control the base station request power and the pilot signal power to improve the SIR degradation of a base station in the code division multiple access mobile communication system. CONSTITUTION:SIR measurement is performed in an SIR measurement part 2 of each base station, and a signal power control part 3 performs such control in accordance with the deviation from an SIR reference value that a base station request power PBD(t) is raised and a pilot signal power PP(t) is reduced or the power PBD(t) is reduced and the power PP(t) is raised. Thus, the degradation of the quality is improved if traffic is concentrated to a base station to degrade the quality in the base station, and the quality is restored to the reference if traffic is reduced to bring about an excessive quality, thereby leveling the qualities in base stations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、符号分割多元接続
(Code Division Multiple Access:CDMA)通信方式に基
づく移動通信システムにおける基地局での、リバースリ
ンクの基地局要求電力及びフォワードリンクのパイロッ
ト信号電力の電力制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reverse link base station required power and forward link pilot signal power in a base station in a mobile communication system based on a code division multiple access (CDMA) communication system. The present invention relates to a power control device.

【0002】[0002]

【従来の技術】CDMA通信方式では、全ての移動局は
同一の周波数帯域を用いて通信を行う。このため、これ
ら移動局からの信号を受ける基地局においては、各移動
局からの信号は互いに干渉となる。リバースリンク(移
動局から基地局への接続)では、基地局において、移動
局からの受信信号電力が全て等しくなる様に各移動局の
送信電力を制御する(リバースリンクパワーコントロー
ル)。即ち、基地局において受信信号電力の要求値(基
地局要求電力)を設定し、各移動局からの受信電力がそ
の要求値になる様に、各移動局に制御情報を送信する。
各移動局では、制御情報に基づき送信電力の制御を行
う。リバースリンクのパワーコントロールにより、基地
局において、各移動局信号の品質すなわち信号対干渉比
(SIR)が全て等しくなる(下記文献参照)。この時の
品質を基地局の品質とする。 文献名 Eisuke KUDOH and Tadashi MATSUMOTO:"Effect
of Power Control Error on the System User Capacit
y of DS/CDMA Cellular Mobile Radios",IEICE Trans.C
ommun.,Vol.E75-B,No.6,June 1992 一般的に、基地局が各移動局に対して要求する受信信号
電力は、各基地局共等しく、不変である。また、基地局
から送信されるパイロット信号電力は、セル領域の大き
さに依存するが、1つの基地局においては不変である。
この一例を図6、7に示す。この例では、基地局BS0〜B
S2を1次元に配置した。移動局は、各基地局からのパイ
ロット信号を受信し、その受信強度を比較して、強度が
強いパイロット信号を持つ基地局と接続する。基地局か
ら離れるに従い、そのパイロット信号強度は弱まり、逆
に隣接基地局パイロット信号強度が強くなり、ある位置
で等しくなる。この位置をセル境界とし、図中CL0-1、C
L1-2で表す(図6)。各基地局でのパイロット信号電力
が等しい時、セル境界は基地局間の中間となる。これを
二次元上で考えると、基地局を均一に並べた場合、セル
境界で囲まれるセル領域面積は全て等しくなる。各基地
局が要求する受信信号電力をPBD0〜PBD2とすると、次の
ようになる。 PBD0=PBD1=PBD2 一般に、信号は伝播距離の数乗に比例して減衰するた
め、基地局要求電力を満たすための移動局送信電力PT
は、伝播距離をrとすると、次のようになる。 PT=PBD×(rの数乗) つまり基地局から離れるほど移動局は送信電力を高くし
なければならない。セル境界が基地局間の中心にある場
合、両基地局要求電力を満足させる移動局送信電力PTの
軌跡はセル境界において交差する(図7)。即ち、CL1-
2が基地局BS1とBS2の中間なら、PT1とPT2の交点はCL1-2
上となる。この場合、隣接基地局と接続している移動局
からの干渉は、最大PBDとなる。り接基地局BS2と接続し
ている移動局がCL1-2上にいる場合、基地局BS1への干渉
電力はPBD1となる。移動局がCL1-2より基地局BS2側にい
る場合は、基地局BS1への干渉電力はより弱くなる。
2. Description of the Related Art In the CDMA communication system, all mobile stations communicate using the same frequency band. Therefore, in the base station that receives the signals from these mobile stations, the signals from the mobile stations interfere with each other. In the reverse link (connection from the mobile station to the base station), the base station controls the transmission power of each mobile station so that the received signal powers from the mobile stations are all equal (reverse link power control). That is, the base station sets a required value of received signal power (base station required power), and transmits control information to each mobile station so that the received power from each mobile station becomes the required value.
Each mobile station controls the transmission power based on the control information. The power control of the reverse link makes the quality of each mobile station signal, that is, the signal-to-interference ratio (SIR), all equal in the base station (see the following document). The quality at this time is the quality of the base station. Reference name Eisuke KUDOH and Tadashi MATSUMOTO: "Effect
of Power Control Error on the System User Capacit
y of DS / CDMA Cellular Mobile Radios ", IEICE Trans.C
ommun., Vol. E75-B, No. 6, June 1992 In general, the received signal power required by a base station for each mobile station is the same and unchanged for each base station. Further, the pilot signal power transmitted from the base station depends on the size of the cell area, but is unchanged in one base station.
An example of this is shown in FIGS. In this example, base stations BS0-B
S2 is arranged in one dimension. The mobile station receives the pilot signal from each base station, compares the received strengths, and connects with the base station having the pilot signal having a strong strength. As the distance from the base station increases, the pilot signal strength becomes weaker, and conversely, the adjacent base station pilot signal strength becomes stronger and becomes equal at a certain position. This position is the cell boundary, and CL0-1, C in the figure
It is represented by L1-2 (Fig. 6). When the pilot signal powers at each base station are equal, the cell boundary is in the middle between base stations. Considering this two-dimensionally, when the base stations are uniformly arranged, the cell area areas surrounded by the cell boundaries are all equal. When the received signal power required by each base station is PBD0 to PBD2, the following is obtained. PBD0 = PBD1 = PBD2 Generally, the signal attenuates in proportion to the power of the propagation distance, so the mobile station transmission power PT for satisfying the base station required power
Is as follows, where the propagation distance is r. PT = PBD × (power of r) That is, the mobile station has to increase the transmission power as the distance from the base station increases. When the cell boundary is located at the center between the base stations, the loci of the mobile station transmission power PT satisfying both base station required powers intersect at the cell boundary (FIG. 7). That is, CL1-
If 2 is between BS1 and BS2, the intersection of PT1 and PT2 is CL1-2
Will be on top. In this case, the maximum interference from the mobile station connected to the adjacent base station is PBD. When the mobile station connected to the closest base station BS2 is on CL1-2, the interference power to the base station BS1 is PBD1. When the mobile station is closer to the base station BS2 than CL1-2, the interference power to the base station BS1 becomes weaker.

【0003】[0003]

【発明が解決しようとする課題】CDMAシステムのリ
バースリンクにおける基地局の品質は、その基地局と接
続されている移動局の局数と他セルからの干渉信号の強
度により大体決まる。即ち、接続されている移動局数を
N、他セルからの全干渉量をZとすると、基地局SIRは、
次のようになる。 SIR=PBD/((N-1)×PBD+Z) しかし、移動局のトラヒック分布は場所、時間等により
変動するため、トラヒックがある基地局に集中し(上式
のN増加)、そのSIRを劣化させたり、逆にトラヒックが
減少し、品質が過剰となることが生じる。しかし、パイ
ロット信号電力は一定である為、セル領域も不変であ
り、トラヒックの分布に応じた対応は不可能である。ま
た、トラヒックの増加した基地局において、接続移動局
数を減らすために、パイロット信号電力を下げ、セル領
域を縮小させた場合、隣接セルからの干渉が大きくなる
(上式のZ増加)。即ち、図6において、基地局BS1にト
ラヒックが集中し、BS1の基地局SIRが劣下したと仮定
し、接続移動局数を減らすために、基地局BS1のパイロ
ット信号電力を下げ、セル境界CL0-1をCL '0-1とする
と、BS0と接続される移動局の送信電力PT0が高くなり、
基地局BS1における干渉波の受信電力PR'がPBD1より高く
なり、干渉量が増大する。本発明では、トラヒックがあ
る基地局に集中し、基地局での品質劣下が生じた場合、
それを基準値まで改善し、逆にトラヒックが減少し品質
が過剰になった場合、品質を基準まで戻すことにより、
各基地局での品質を均一にし、トラヒック分布に応じた
信号の電力制御を可能とする方法を提案することを目的
とする。
The quality of a base station on the reverse link of a CDMA system is roughly determined by the number of mobile stations connected to the base station and the strength of interference signals from other cells. That is, the number of connected mobile stations
If N is the total amount of interference from other cells and Z is the base station SIR,
It looks like this: SIR = PBD / ((N-1) × PBD + Z) However, since the traffic distribution of mobile stations fluctuates depending on the location, time, etc., the traffic concentrates on the base station with traffic (N increase in the above equation), and the SIR May be deteriorated, or conversely traffic may be reduced, resulting in excessive quality. However, since the pilot signal power is constant, the cell area is also unchanged, and it is impossible to cope with the traffic distribution. Also, in a base station with increased traffic, when the pilot signal power is reduced and the cell area is reduced in order to reduce the number of connected mobile stations, interference from adjacent cells becomes large (Z increase in the above equation). That is, in FIG. 6, it is assumed that the traffic is concentrated on the base station BS1 and the base station SIR of the BS1 is degraded, and in order to reduce the number of connected mobile stations, the pilot signal power of the base station BS1 is lowered and the cell boundary CL0. If -1 is set to CL '0-1, the transmission power PT0 of the mobile station connected to BS0 becomes high,
The reception power PR ′ of the interference wave at the base station BS1 becomes higher than PBD1 and the amount of interference increases. In the present invention, when traffic is concentrated on a certain base station and a quality deterioration occurs at the base station,
By improving it to the standard value, and conversely, if the traffic decreases and the quality becomes excessive, by returning the quality to the standard,
It is an object of the present invention to propose a method that makes the quality of each base station uniform and enables signal power control according to the traffic distribution.

【0004】[0004]

【課題を解決するための手段】この発明は、符号分割多
元接続通信方式に基づく移動通信システムにおける基地
局での、リバースリンクの基地局要求電力及びフォワー
ドリンクのパイロット信号電力の制御に関するものであ
る。この発明は、信号を受信する手段と、受信された信
号から基地局での信号対干渉比を測定する手段と、基地
局要求電力に応じて各移動局に要求する送信電力に関す
る制御情報を送出するリバースリンクパワーコントロー
ル手段と、パイロット信号電力に応じてパイロット信号
の送信電力を制御するフォワードリンクパワーコントロ
ール手段と、信号電力制御手段とを有する。この信号電
力制御手段は、測定された基地局SIRが基準SIRより悪い
基地局においては、パイロット信号電力を下げるもので
あり、これによりその基地局が管轄するセル領域を縮小
させ且つ接続移動局数を減少させるように機能させるも
のであり、同時に基地局要求電力を上げるものであり、
これにより隣接セルからの干渉を抑え且つ基地局SIRを
基準SIRまで改善させるように機能させるものであり、
測定された基地局SIRが基準SIRより良い基地局において
は、パイロット信号電力を上げるものであり、これによ
りその基地局が管轄するセル領域を拡大させるように機
能させるものであり、同時に基地局要求電力を下げるも
のであり、これにより隣接セルに与える干渉を抑え且つ
過剰な品質を基準SIRまで抑制させるように機能させる
ものである。
The present invention relates to control of reverse link base station required power and forward link pilot signal power in a base station in a mobile communication system based on a code division multiple access communication system. . The present invention provides means for receiving a signal, means for measuring a signal-to-interference ratio at a base station from the received signal, and transmission of control information relating to transmission power requested to each mobile station according to base station required power. Reverse link power control means, a forward link power control means for controlling the transmission power of the pilot signal according to the pilot signal power, and a signal power control means. This signal power control means lowers the pilot signal power in a base station whose measured base station SIR is worse than the reference SIR, thereby reducing the cell area covered by the base station and connecting mobile stations. To increase the power required by the base station at the same time,
This suppresses interference from adjacent cells and functions to improve the base station SIR to the reference SIR,
In a base station where the measured base station SIR is better than the reference SIR, it raises the pilot signal power, thereby making it function to expand the cell area covered by the base station, and at the same time base station request. It lowers the power, thereby suppressing the interference given to the adjacent cell and suppressing the excessive quality up to the reference SIR.

【0005】[0005]

【作用】本発明では、トラヒックがある基地局に集中
し、基地局での品質劣下が生じた場合、それを改善し、
逆にトラヒックが減少し品質が過剰になった場合、品質
を基準まで戻すことにより、各基地局での品質を均一に
する。本発明の概念を図4及び図5に示す。基地局BS1
にトラヒックが集中し、基地局BS1での基地局SIRが劣下
した場合、基地局BS1でのパイロット信号電力PP1を下げ
る(図4)。セル境界はパイロット信号の受信電力PRの
交点となり、CL0-1、CL1-2で示される。パイロット信号
電力PP1を下げることで、セル境界が基地局BS1に近
づき、セル領域が縮小し、基地局BS1での接続移動局
数が減少する。基地局BS1において、基地局BS0、BS2の
セルからの干渉量が増加しないように、基地局要求電力
PBD1を上げる(図5)。この時、移動局送信電力PTがセ
ル境界において等しくなるようにする。基地局BS0からC
L0-1までの距離をr0、CL0-1からBS1までの距離をr1と
し、距離減衰定数をwとすると、 PP0/r0w=PP1/r1w PBD0×r0w=PBD1×r1w となり、これより、次の関係が得られる。 PP0×PBD0=PP1×PBD1 即ち、一辺を定数とした場合、パイロット信号電力PPを
X倍すると、基地局要求電力PBDは1/Xとなる。この結
果、移動局送信電力PTがセル境界において等しくなり、
隣接セル移動局からの干渉波の電力は、その基地局にお
ける要求電力以下となる。即ち、 PP × PBD = constant とすることで、最も効果的な制御が可能となる。これに
より、基地局BS1でのセル領域が縮小し、トラヒックの
一部を隣接セルに振り分けることで自セル内干渉を減ら
し、基地局要求電力を上げることで隣接セル干渉を抑制
し、基地局SIRの改善を行う。また、図4及び図5は、
次の説明ともなる。基地局BS0、BS2においてトラヒック
が減少し、基地局SIRが過剰となった場合、パイロット
信号電力PP0、PP2を上げ、基地局要求電力PBD0、PBD2を
下げることで、基地局BS0、BS2の品質を基準値まで抑制
する。
According to the present invention, when traffic is concentrated on a certain base station and a quality deterioration occurs at the base station, it is improved,
On the contrary, when the traffic decreases and the quality becomes excessive, the quality is returned to the standard to make the quality uniform in each base station. The concept of the present invention is shown in FIGS. Base station BS1
When the traffic is concentrated on the base station S1 and the base station SIR at the base station BS1 deteriorates, the pilot signal power PP1 at the base station BS1 is lowered (FIG. 4). The cell boundary is the intersection of the received power PR of the pilot signal and is indicated by CL0-1 and CL1-2. By reducing the pilot signal power PP1, the cell boundary approaches the base station BS1, the cell area is reduced, and the number of connected mobile stations in the base station BS1 is reduced. At the base station BS1, the power required by the base station BS0 and BS2 is set so that the amount of interference from the cells does not increase.
Raise PBD1 (Figure 5). At this time, the mobile station transmission power PT is set to be equal at the cell boundary. Base stations BS0 to C
If the distance to L0-1 is r0, the distance from CL0-1 to BS1 is r1, and the distance attenuation constant is w, PP0 / r0w = PP1 / r1w PBD0 × r0w = PBD1 × r1w. Relationship is obtained. PP0 x PBD0 = PP1 x PBD1 That is, when one side is a constant, the pilot signal power PP
When multiplied by X, the base station required power PBD becomes 1 / X. As a result, the mobile station transmission power PT becomes equal at the cell boundary,
The power of the interference wave from the adjacent cell mobile station is less than or equal to the required power at the base station. That is, the most effective control becomes possible by setting PP x PBD = constant. This reduces the cell area at the base station BS1, reduces some intra-cell interference by allocating part of the traffic to adjacent cells, and suppresses adjacent cell interference by increasing the power required by the base station. Make improvements. In addition, FIG. 4 and FIG.
It also serves as the following explanation. When the traffic decreases in the base stations BS0 and BS2 and the base station SIR becomes excessive, the pilot signal powers PP0 and PP2 are increased and the base station required powers PBD0 and PBD2 are decreased to improve the quality of the base stations BS0 and BS2. Suppress to the standard value.

【0006】[0006]

【実施例】図1にこの発明の一実施例の電力制御装置の
構成図、図2に図1における信号電力制御部の構成図、
図3に図1の動作を説明するフローチャートを示す。こ
れらは全て基地局側におけるものである。図中示される
SIR及び信号電力は全てデシベル表示となる。まず、図
1の信号受信部1において信号が受信される(図3のST
1)。次に、図1のSIR測定部2において、受信された信
号より基地局におけるSIRが測定される(ST2)。CDM
Aシステムのリバースリンクにおける基地局の品質は、
その基地局と接続されている移動局の局数と他セルから
の干渉信号の強度により大体決まる。即ち、接続されて
いる移動局数をN、他セルからの全干渉量をZとすると、
基地局SIRは、次のようになる。 SIR=PBD/((N-1)×PBD+Z)
1 is a block diagram of a power control device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a signal power control unit in FIG.
FIG. 3 shows a flowchart for explaining the operation of FIG. These are all on the base station side. Shown in the figure
SIR and signal power are all displayed in decibels. First, a signal is received by the signal receiving unit 1 of FIG. 1 (ST of FIG. 3).
1). Next, the SIR measuring section 2 in FIG. 1 measures the SIR at the base station from the received signal (ST2). CDM
The quality of the base station on the reverse link of the A system is
It is roughly determined by the number of mobile stations connected to the base station and the strength of interference signals from other cells. That is, if the number of connected mobile stations is N and the total amount of interference from other cells is Z,
The base station SIR is as follows. SIR = PBD / ((N-1) × PBD + Z)

【0007】測定された結果は、時刻により変動するた
めSIR(t)で示される。測定されたSIR値は、信号電力制
御部3に送られる。信号電力制御部では、図2の減算器
8を用いて、SIR測定値SIR(t)とSIR基準値SIRoとの偏差
D_SIR(t)がとられる(ST3)。即ち、次のようになる。 D_SIR(t) = SIRo - SIR(t) SIR基準値は、SIR測定値の制御目標値であり、測定値が
常に、この値になる様に系全体が制御される。SIR基準
値は、品質保証値(SIRがその値以下となると、品質の
保証が出来ない)のやや高めに設定される。
The measured result is represented by SIR (t) because it varies with time. The measured SIR value is sent to the signal power control unit 3. In the signal power control unit, the difference between the SIR measurement value SIR (t) and the SIR reference value SIRo is calculated by using the subtractor 8 in FIG.
D_SIR (t) is taken (ST3). That is, it becomes as follows. D_SIR (t) = SIRo-SIR (t) The SIR reference value is the control target value of the SIR measurement value, and the entire system is controlled so that the measurement value is always this value. The SIR reference value is set slightly higher than the quality assurance value (when the SIR is below that value, quality cannot be guaranteed).

【0008】SIR偏差D_SIR(t)は、図2の信号変換部9
にて基地局要求電力更新値U_PR(t)に変換される(ST
4)。変換関数は、比例関数を用い、その係数をαとす
ると、次のようになる。 U_PR(t) = α × D_SIR(t) この更新値を用いて、基地局要求電力の更新を行う(ST
5)。更新は、図2の遅延器12で遅延させた(ST7)更
新前要求電力に更新値を加算器10で加算することで得
られる。即ち、基地局要求電力PR(t)は、次のようにな
る。 PR(t) = PR(t-1) + U_PR(t) = PR(t-1) + α × D_SIR(t) ここでPR(t-1)は、更新前要求電力値を示す。例えば、S
IR測定値が基準値より悪い場合には、その偏差 D_SIR
(t) はプラスとなり(SIR値はマイナスのデシベル値で
示される)、要求電力の更新値もプラスとなり、要求電
力は増加する。SIR及び電力値はデシベル値で示されて
いるため、実数上では更新値による乗算となる。得られ
た結果が、要求電力のダイナミックレンジ内に入るよう
に図2の制限器11においてレンジの制限を行う(ST
6)。これにより制御が暴走することを防ぐ。
The SIR deviation D_SIR (t) is calculated by the signal converter 9 of FIG.
Converted to base station required power update value U_PR (t) at (ST
Four). The conversion function is as follows, where a proportional function is used and its coefficient is α. U_PR (t) = α × D_SIR (t) The base station request power is updated using this update value (ST
Five). The update is obtained by adding the update value to the pre-update request power delayed by the delay unit 12 in FIG. 2 (ST7) by the adder 10. That is, the base station required power PR (t) is as follows. PR (t) = PR (t-1) + U_PR (t) = PR (t-1) + α × D_SIR (t) Here, PR (t-1) represents the required power value before update. For example, S
If the IR measurement value is worse than the reference value, the deviation D_SIR
(t) becomes positive (SIR value is indicated by negative decibel value), the updated value of required power also becomes positive, and required power increases. Since the SIR and the power value are shown in decibel values, they are multiplied by the updated value on a real number. The range is limited in the limiter 11 of FIG. 2 so that the obtained result falls within the dynamic range of the required power (ST
6). This prevents the control from running out of control.

【0009】基地局要求電力PR(t)は、図1のリバース
リンクパワーコントロール部4におくられる(ST8)。
リバースリンクパワーコントロール部4では、算出され
た基地局要求電力と各移動局からの受信信号電力の比較
を行い、パワーコントロールに関する制御情報を移動局
に送信する。各移動局では、制御情報に基づき送信電力
の制御を行う。基地局要求電力を用いて、パイロット信
号電力を算出する。基地局要求電力値とパイロット信号
電力値を足したものを基地局基準電力値とする。基地局
基準電力値は常に一定になるように設定される。即ち、
図2において、設定された基地局基準電力値13から減
算器14を用いて、基地局要求電力を引くことで、次に
示すパイロット信号電力PP(t)が得られる(ST9)。 PP(t) = PBSo - PR(t) これら電力はデシベル値の為、実数上では、次の関係が
得られる。 PP' = PBSo' / PR'
The base station required power PR (t) is sent to the reverse link power control unit 4 in FIG. 1 (ST8).
The reverse link power control unit 4 compares the calculated base station required power with the received signal power from each mobile station, and transmits control information regarding power control to the mobile station. Each mobile station controls the transmission power based on the control information. The pilot signal power is calculated using the base station required power. The base station reference power value is the sum of the base station required power value and the pilot signal power value. The base station reference power value is set to be always constant. That is,
In FIG. 2, the base station required power is subtracted from the set base station reference power value 13 using the subtractor 14 to obtain the pilot signal power PP (t) shown below (ST9). PP (t) = PBSo-PR (t) Since these electric powers are decibel values, the following relation is obtained on a real number. PP '= PBSo' / PR '

【0010】パイロット信号電力PP(t)は、図1のフォ
ワードリンクパワーコントロール部5へ送られ(ST1
0)、そのパイロット信号電力を持って、パイロット信
号が送信される。基地局基準電力値の内、基地局要求電
力の初期値は、基地局に依らず一定であり、パイロット
信号電力の初期値は、設計された段階でのセルの大きさ
によりおよそ決定できる。即ち、基地局基準電力値は、
初期のセルの大きさにより決められ、設定される。
The pilot signal power PP (t) is sent to the forward link power control section 5 (ST1
0), the pilot signal is transmitted with the pilot signal power. Of the base station reference power values, the initial value of the required power of the base station is constant regardless of the base station, and the initial value of the pilot signal power can be roughly determined by the size of the cell at the design stage. That is, the base station reference power value is
It is determined and set according to the initial cell size.

【0011】なお、この実施例では、SIRの偏差を基地
局要求電力の更新値に変換し且つその更新値に応じてパ
イロット信号電力の更新することによって、基地局要求
電力及びパイロット信号電力をSIRの偏差に応じて更新
するようにしたが、SIRの偏差をパイロット信号電力の
更新値に変換し且つその更新値に応じて基地局要求電力
を更新するようにしても同様である。また、SIR及び信
号電力は全てデシベル表示としたが、実数値とすること
も出来る。この場合は、デシベルの加算部分が実数の乗
算となる。また、信号変換部での関数を比例関数とした
が、階段関数や数次関数も可能である。また、SIR基準
値は一定としたが、隣接基地局における品質を観測しな
がら、可変とすることも可能である。
In this embodiment, the SIR deviation is converted into the update value of the base station required power, and the pilot signal power is updated according to the update value, whereby the base station required power and the pilot signal power are SIR. Although the SIR deviation is converted into the update value of the pilot signal power and the base station required power is updated according to the update value, the same is true. Although the SIR and signal power are all displayed in decibels, they can also be real values. In this case, the addition part of the decibel is the multiplication of the real number. Further, the function in the signal conversion unit is a proportional function, but a step function or a quadratic function is also possible. Further, although the SIR reference value is fixed, it can be made variable while observing the quality at the adjacent base station.

【0012】[0012]

【発明の効果】以上説明したように、各セルにおけるト
ラヒックに応じて、基地局要求電力、パイロット信号電
力を制御することで、各基地局における品質を一定に保
ち、トラヒックの分布に応じた制御が可能となる。
As described above, by controlling the power required by the base station and the power of the pilot signal according to the traffic in each cell, the quality in each base station is kept constant and the control is performed according to the traffic distribution. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す電力制御装置の構成
FIG. 1 is a configuration diagram of a power control device showing an embodiment of the present invention.

【図2】図1における信号電力制御部の構成図FIG. 2 is a configuration diagram of a signal power control unit in FIG.

【図3】図1における電力制御装置の動作を説明するた
めのフローチャート
FIG. 3 is a flowchart for explaining the operation of the power control device in FIG.

【図4】この発明の概念の説明図FIG. 4 is an explanatory view of the concept of the present invention.

【図5】この発明の概念の説明図FIG. 5 is an explanatory view of the concept of the present invention.

【図6】従来技術の概念の説明図FIG. 6 is an explanatory view of the concept of the prior art.

【図7】従来技術の概念の説明図FIG. 7 is an explanatory view of the concept of the prior art.

【符号の説明】[Explanation of symbols]

1 信号受信部 2 SIR測定部 3 信号電力制御部 4 リバースリンクパワーコントロール部 5 フォワードリンクパワーコントロール部 BS0〜BS2 基地局 PBD0〜PBD2 基地局要求電力 PP0〜PP2 パイロット信号電力 CL0-1、1-2 セル境界 SIR(t) 測定SIR値 SIRo SIR基準値 PBSo 基地局基準電力 1 signal receiving unit 2 SIR measuring unit 3 signal power control unit 4 reverse link power control unit 5 forward link power control unit BS0 to BS2 base station PBD0 to PBD2 base station required power PP0 to PP2 pilot signal power CL0-1, 1-2 Cell boundary SIR (t) Measured SIR value SIRo SIR reference value PBSo Base station reference power

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 信号を受信する手段と、 受信された信号から基地局での信号対干渉比を測定する
手段と、 基地局要求電力に応じて各移動局に要求する送信電力に
関する制御情報を送出するリバースリンクパワーコント
ロール手段と、 パイロット信号電力に応じてパイロット信号の送信電力
を制御するフォワードリンクパワーコントロール手段
と、 測定された前記信号対干渉比が基準の信号対干渉比より
悪い場合は、測定された当該信号対干渉比と基準の当該
信号対干渉比との偏差に応じて、前記パイロット信号電
力を下げ且つ前記基地局要求電力を上げるように更新
し、また、測定された前記信号対干渉比が基準の信号対
干渉比より良い場合は、測定された当該信号対干渉比と
基準の当該信号対干渉比との偏差に応じて、前記パイロ
ット信号電力を上げ且つ前記基地局要求電力を下げるよ
うに更新する信号電力制御手段とを備えている、ことを
特徴とした、符号分割多元接続通信方式に基づく移動通
信システムの基地局における電力制御装置。
1. A means for receiving a signal, a means for measuring a signal-to-interference ratio at a base station from the received signal, and control information relating to transmission power requested to each mobile station according to a base station required power. Reverse link power control means for sending, forward link power control means for controlling the transmission power of the pilot signal according to the pilot signal power, if the measured signal to interference ratio is worse than the reference signal to interference ratio, According to the deviation between the measured signal-to-interference ratio and the reference signal-to-interference ratio, the pilot signal power is updated to be lowered and the base station required power is increased, and the measured signal pair is also updated. If the interference ratio is better than the reference signal-to-interference ratio, the pilot signal is adjusted according to the deviation between the measured signal-to-interference ratio and the reference signal-to-interference ratio. And a signal power control means for updating to reduce the and the base station requests the power-up power, and wherein the power control apparatus in a base station of a mobile communication system based on code division multiple access communication system.
JP06482294A 1994-04-01 1994-04-01 Power control device Expired - Fee Related JP3148071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06482294A JP3148071B2 (en) 1994-04-01 1994-04-01 Power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06482294A JP3148071B2 (en) 1994-04-01 1994-04-01 Power control device

Publications (2)

Publication Number Publication Date
JPH07273722A true JPH07273722A (en) 1995-10-20
JP3148071B2 JP3148071B2 (en) 2001-03-19

Family

ID=13269337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06482294A Expired - Fee Related JP3148071B2 (en) 1994-04-01 1994-04-01 Power control device

Country Status (1)

Country Link
JP (1) JP3148071B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200837A (en) * 1996-01-19 1997-07-31 Nec Corp Method for controlling transmission power
WO1997039545A1 (en) * 1996-04-12 1997-10-23 Ntt Mobile Communications Network Inc. Method and instrument for measuring receiving sir and transmission power controller
US6385183B1 (en) 1997-01-29 2002-05-07 Yrp Mobile Telecommunications Key Technology Research Laboratories Co., Ltd. CDMA power control system
US6414948B1 (en) 1997-06-20 2002-07-02 Nec Corporation Electric power controlling system for variable bit rate CDMA transmission and mobile telephone system
WO2002061975A1 (en) * 2001-01-31 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Communication system and communication method
JP2007514367A (en) * 2003-12-12 2007-05-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Mobile communication in hierarchical cell structure
US7263077B1 (en) 1997-01-24 2007-08-28 Nokia Corporation Power control method of discontinuous transmission
CN100393171C (en) * 2005-05-10 2008-06-04 上海贝尔三星移动通信有限公司 Method and equipment for raising call completing rate in code division multiple access mobile communication system
JP2010502136A (en) * 2006-08-26 2010-01-21 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and apparatus for adjusting pilot channel transmit power
KR101273082B1 (en) * 2009-12-15 2013-06-10 한국전자통신연구원 Method and system for generating feedback for uplink transmit power control

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200837A (en) * 1996-01-19 1997-07-31 Nec Corp Method for controlling transmission power
WO1997039545A1 (en) * 1996-04-12 1997-10-23 Ntt Mobile Communications Network Inc. Method and instrument for measuring receiving sir and transmission power controller
US6034952A (en) * 1996-04-12 2000-03-07 Ntt Mobile Communications Networks, Inc. Method and instrument for measuring receiving SIR and transmission power controller
US7801545B2 (en) 1997-01-24 2010-09-21 Nokia Corporation Power control method of discontinuous transmission
US7263077B1 (en) 1997-01-24 2007-08-28 Nokia Corporation Power control method of discontinuous transmission
US8543153B2 (en) 1997-01-24 2013-09-24 Nokia Corporation Power control method of discontinuous transmission
US6385183B1 (en) 1997-01-29 2002-05-07 Yrp Mobile Telecommunications Key Technology Research Laboratories Co., Ltd. CDMA power control system
US6414948B1 (en) 1997-06-20 2002-07-02 Nec Corporation Electric power controlling system for variable bit rate CDMA transmission and mobile telephone system
WO2002061975A1 (en) * 2001-01-31 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Communication system and communication method
JPWO2002061975A1 (en) * 2001-01-31 2004-06-03 三菱電機株式会社 Communication system and communication method
US7349712B2 (en) 2001-01-31 2008-03-25 Mitsubishi Denki Kabushiki Kaisha Communications system with transmitting power control and method for the same
JP2007514367A (en) * 2003-12-12 2007-05-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Mobile communication in hierarchical cell structure
CN100393171C (en) * 2005-05-10 2008-06-04 上海贝尔三星移动通信有限公司 Method and equipment for raising call completing rate in code division multiple access mobile communication system
JP2010502136A (en) * 2006-08-26 2010-01-21 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and apparatus for adjusting pilot channel transmit power
KR101273082B1 (en) * 2009-12-15 2013-06-10 한국전자통신연구원 Method and system for generating feedback for uplink transmit power control
US8593980B2 (en) 2009-12-15 2013-11-26 Electronics And Telecommunications Research Institute Feedback generation method and system for uplink transmit power control

Also Published As

Publication number Publication date
JP3148071B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
AU673576B2 (en) Access burst power control
US5455967A (en) Mobile communication system and transmission power control method for a base station therein
EP0650649B1 (en) A method and a device for the utilization of channels in a radio communications system
US6385183B1 (en) CDMA power control system
KR960006142B1 (en) Method for regulating power in a digital mobile telephone system
JP3737350B2 (en) Method for adjusting transmission power level during soft handoff in a wireless communication system
JP3011236B2 (en) Transmission power control method and system for code division multiplexed cellular mobile radio communication system
EP1142411A2 (en) Method and means for telecom
US20030086398A1 (en) Method and arrangement in a communication system
JP2001223636A (en) Cdma mobile communication system and outgoing channel transmission power control method in cdma mobile communication system
US7477912B2 (en) Method for improving performances of a mobile radiocommunication system using a power control algorithm
JPH07273722A (en) Power controller
US20030153315A1 (en) Method for communication traffic load balancing between cells of a communication system
EP1328131A1 (en) Method and system for planning and/or evaluating of cell capacity in CDMA radio networks
JP2921739B2 (en) Call admission control method and apparatus
JP2004072663A (en) Antenna control device
US7558231B2 (en) Power allocation method and apparatus for providing packet data service in mobile communication system
JP3003611B2 (en) Power control device
JP2001036463A (en) Transmission power controller
JPH06132872A (en) Mobile station transmission power controler
JP2000082992A (en) Power controller
JPH10108249A (en) System and method for controlling transmission power
JP3349684B2 (en) CDMA power control method
EP1239605A1 (en) Power calculation method and apparatus of a radio communication system
WO2003047127A1 (en) Controlling pilot power in a cdma system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees