JPH07272741A - Module structure for cylindrical solid electrolytic fuel cell - Google Patents
Module structure for cylindrical solid electrolytic fuel cellInfo
- Publication number
- JPH07272741A JPH07272741A JP6062373A JP6237394A JPH07272741A JP H07272741 A JPH07272741 A JP H07272741A JP 6062373 A JP6062373 A JP 6062373A JP 6237394 A JP6237394 A JP 6237394A JP H07272741 A JPH07272741 A JP H07272741A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- reforming
- chamber
- pipe
- reformed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 48
- 239000007787 solid Substances 0.000 title claims abstract description 11
- 238000002407 reforming Methods 0.000 claims abstract description 30
- 238000006057 reforming reaction Methods 0.000 claims abstract description 21
- 238000002347 injection Methods 0.000 claims abstract description 10
- 239000007924 injection Substances 0.000 claims abstract description 10
- 238000010248 power generation Methods 0.000 claims description 27
- 239000007789 gas Substances 0.000 abstract description 34
- 239000003054 catalyst Substances 0.000 abstract description 8
- 239000002737 fuel gas Substances 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000010000 carbonizing Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000005192 partition Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は円筒型固体電解質型燃料
電池のモジュール構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a module structure for a cylindrical solid oxide fuel cell.
【0002】[0002]
【従来の技術】図3に従来の固体電解質型燃料電池のう
ち電池構造が円筒管状で内部改質方式のモジュールの概
略を示す。ここで、同図中、符号1は燃料及び改質用蒸
気、2はプレリフォーマ、3はSOFC、4は空気注入
管、5は発電室、6は燃料室、7は燃焼ガス再循環ライ
ン、8は反応用空気、9は燃焼排ガスを各々図示する。2. Description of the Related Art FIG. 3 schematically shows a conventional solid oxide fuel cell module having a cylindrical tubular structure and an internal reforming system. In the figure, reference numeral 1 is fuel and reforming steam, 2 is a pre-reformer, 3 is SOFC, 4 is an air injection pipe, 5 is a power generation chamber, 6 is a fuel chamber, 7 is a combustion gas recirculation line, Reference numeral 8 shows reaction air, and 9 shows combustion exhaust gas.
【0003】同図に示すように、従来のモジュールにお
いては、燃料極でのカーボナイズを抑制するために、発
電室5の外部に設けたプレリフォーマ2により、予め燃
料ガス1の一部を改質した上で、SOFC3へ供給する
方式を採用している。As shown in the figure, in the conventional module, a part of the fuel gas 1 is reformed in advance by a pre-reformer 2 provided outside the power generation chamber 5 in order to suppress carbonization at the fuel electrode. In addition, the method of supplying to SOFC3 is adopted.
【0004】[0004]
【発明が解決しようとする課題】ところで、前述した従
来の内部改質方式のSOFCモジュールにおいては、上
記発電室5の外部に設けたプレリフォーマ2によって改
質するようにしているが、例えば燃料としてメタン(C
H4 )を用いた場合、下記「化1」に示す反応式(1)
の反応がが進行する。By the way, in the above-mentioned conventional internal reforming type SOFC module, the reformer 2 is reformed by the pre-reformer 2 provided outside the power generation chamber 5. Methane (C
When H 4 ) is used, the reaction formula (1) shown in “Chemical Formula 1” below is used.
The reaction proceeds.
【0005】[0005]
【化1】 CH4 +H2 O→CO+3H2 −2,410 Kcal/ Nm3 ・・・(1)Embedded image CH 4 + H 2 O → CO + 3H 2 −2,410 Kcal / Nm 3 (1)
【0006】上記反応において、改質反応に必要な熱量
の一部は外部のプレフォーマ2において供給されるた
め、発電室5の内部での吸熱量が減少し、発電時の温度
上昇を抑えるため、より過剰な空気を流す必要がある。
また、プレフォーマ2に改質用熱源として高温のガスを
供給するため、設備が大型化するという問題もある。In the above reaction, a part of the heat amount required for the reforming reaction is supplied to the external preformer 2, so that the heat absorption amount inside the power generation chamber 5 is reduced and the temperature rise during power generation is suppressed. , More air needs to be flushed.
Moreover, since a high-temperature gas is supplied to the preformer 2 as a heat source for reforming, there is a problem that the equipment becomes large.
【0007】本発明は上記問題に鑑み、空気量の低減を
図るとともに、設備の小型化を図った円筒型固体電解質
型燃料電池のモジュール構造を提供することを目的とす
る。In view of the above problems, it is an object of the present invention to provide a module structure of a cylindrical solid oxide fuel cell in which the amount of air is reduced and the equipment is downsized.
【0008】[0008]
【課題を解決するための手段】前記目的を達成する本発
明に係る円筒型固体電解質型燃料電池のモジュール構造
は、円筒型固体電解質型燃料電池のモジュール構造にお
いて、内部改質用反応管を発電室内に設置して成り、燃
料及び改質用蒸気を該改質用反応管に供給し、次いで電
池内の燃料注入管を通して供給することを特徴とする。A module structure of a cylindrical solid oxide fuel cell according to the present invention which achieves the above object, is a module structure of a cylindrical solid oxide fuel cell, in which an internal reforming reaction tube is used to generate electricity. It is characterized in that it is installed in a room, and fuel and reforming vapor are supplied to the reforming reaction tube and then supplied through a fuel injection tube in the cell.
【0009】[0009]
(1)発電室の内部に設けた燃料改質用反応管は、該発
電室内の熱を吸収することで、燃料の改質を行いSOF
C(Solid Oxide Fuel Cell:固
体電界質燃料電池)の燃料極でのカーボナイズを抑制す
ると同時に、冷却作用により発電室内の内部温度を一定
に保つために必要な空気量の低減が図られる。 (2)プレリフォーマを発電室の内部に組み込むことに
より、該プレリフォーマに高温のガスを供給する配管等
が不要となり、設備の小型化及び簡素化が図られると共
に、これによりコストの低減を図ることが出来る。(1) The fuel reforming reaction tube provided inside the power generation chamber absorbs heat in the power generation chamber to reform the fuel and perform SOF.
Carbonization at the fuel electrode of C (Solid Oxide Fuel Cell) is suppressed, and at the same time, the amount of air required to keep the internal temperature inside the power generation chamber constant by the cooling action is reduced. (2) By incorporating the pre-reformer inside the power generation chamber, a pipe or the like for supplying high-temperature gas to the pre-reformer is not required, and the equipment can be downsized and simplified, and the cost can be reduced. You can
【0010】[0010]
【実施例】以下、本発明の好適な実施例を図面を参照し
て具体的に説明する。図1は本実施例に係る円筒型固体
電解質型燃料電池のモジュール構造の概略図であり、図
2はその要部のガスの流れ図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic diagram of a module structure of a cylindrical solid oxide fuel cell according to the present embodiment, and FIG. 2 is a gas flow diagram of a main part thereof.
【0011】これらの図面に示すように、モジュール本
体11の上部開口部を閉塞する閉塞板12には、燃料及
び改質用蒸気Aを供給する燃料供給管13が貫通して設
けられており、その下端部は上部仕切り板14と下部仕
切り板15とで囲まれた改質用原料ガス供給室16に貫
通して設けられている。この改質用原料ガス供給室16
の下部仕切り板15には、該ガス供給室16に上部が開
口する改質用反応管17がその下方が発電室18内に達
するように設けられている。As shown in these drawings, a fuel supply pipe 13 for supplying fuel and reforming steam A is provided through a closing plate 12 which closes an upper opening of a module body 11. The lower end portion thereof is provided so as to penetrate a reforming source gas supply chamber 16 surrounded by an upper partition plate 14 and a lower partition plate 15. This reforming source gas supply chamber 16
The lower partition plate 15 is provided with a reforming reaction tube 17 having an upper opening to the gas supply chamber 16 so that the lower part thereof reaches the power generation chamber 18.
【0012】また、図2に示すように、該改質用反応管
17は、その内部中央部に改質ガス供給管19を備えた
二重管となっており、これら改質用反応管17と改質ガ
ス供給管19との間の環状部内には改質用触媒20が充
填されている。さらに、改質ガス供給管19の上端部は
上部仕切り板14に取りつけられており、モジュール本
体11の閉塞板12と上部仕切り板14とにより囲まれ
た改質ガス供給室21内へ開口している。また、この上
部仕切り板14には、燃料を注入するための燃料注入管
22が取りつけられている。Further, as shown in FIG. 2, the reforming reaction tube 17 is a double tube having a reformed gas supply tube 19 in the inner central portion thereof. A reforming catalyst 20 is filled in an annular portion between the reforming gas supply pipe 19 and the reforming gas supply pipe 19. Further, the upper end of the reformed gas supply pipe 19 is attached to the upper partition plate 14, and opens into the reformed gas supply chamber 21 surrounded by the closing plate 12 and the upper partition plate 14 of the module body 11. There is. A fuel injection pipe 22 for injecting fuel is attached to the upper partition plate 14.
【0013】一方、発電室18の上部側には、SOFC
23を取りつけた管板24が設けられており、その中央
には燃料注入管22が連通されており、SOFC23の
下方に改質用ガスを供給している。また、下部仕切り板
15と管板24とで囲まれた燃料排出室25が発電室2
2の上部に形成されており、未反応の燃料ガスを排出す
る排出管26が接続されている。On the other hand, on the upper side of the power generation chamber 18, the SOFC
A tube plate 24 to which 23 is attached is provided, a fuel injection tube 22 is connected to the center thereof, and a reforming gas is supplied below the SOFC 23. In addition, the fuel discharge chamber 25 surrounded by the lower partition plate 15 and the tube plate 24 is the power generation chamber 2
A discharge pipe 26, which is formed on the upper part of 2, discharges unreacted fuel gas.
【0014】また、モジュール本体11の下部側には、
反応用空気Bを注入するための反応用空気供給管27が
備えられており、上記発電室22に接続されると共に、
未反応の空気を排出するための空気排出管28が上記反
応用空気供給管27内部に配設されている。On the lower side of the module body 11,
A reaction air supply pipe 27 for injecting the reaction air B is provided, and is connected to the power generation chamber 22 and
An air discharge pipe 28 for discharging unreacted air is arranged inside the reaction air supply pipe 27.
【0015】上記構成において、燃料及び改質用蒸気A
は、モジュール本体11の中央部に設けた燃料供給管1
3より改質用ガス供給室16へ導入された後、発電室1
8内に設けられた改質用触媒20を充填した改質用反応
管17内へ供給される。ここで、必要量改質されたのち
改質ガス供給管19により、改質ガス供給室21内へ導
入される。さらに、この改質ガスは燃料注入管22を介
して各SOFC23へ供給され、発電用燃料に供され
る。該SOFC23において未反応の燃料ガス及び発電
によって生じた水蒸気・二酸化酸素等の排ガスaは、燃
料排出室25内に導入されたのち、排出管26を介して
モジュール本体11の外へ排出される。In the above structure, the fuel and the reforming steam A
Is a fuel supply pipe 1 provided at the center of the module body 11.
3 is introduced into the reforming gas supply chamber 16 and then the power generation chamber 1
It is supplied into the reforming reaction tube 17 filled with the reforming catalyst 20 provided in the inside 8. Here, after being reformed by a necessary amount, it is introduced into the reformed gas supply chamber 21 through the reformed gas supply pipe 19. Further, this reformed gas is supplied to each SOFC 23 via the fuel injection pipe 22 and is used as a fuel for power generation. The unreacted fuel gas in the SOFC 23 and the exhaust gas a such as water vapor and oxygen dioxide generated by power generation are introduced into the fuel discharge chamber 25 and then discharged to the outside of the module main body 11 through the discharge pipe 26.
【0016】一方、反応用空気Bは、発電室の下部に設
けた反応用空気管27から供給され、また未反応の空気
は空気排出管28から外部へ排出される。On the other hand, the reaction air B is supplied from the reaction air pipe 27 provided in the lower portion of the power generation chamber, and the unreacted air is discharged to the outside from the air discharge pipe 28.
【0017】この内部改質方式のSOFCモジュールに
おけるガスの流れについて、図2を参照してさらに説明
する。The gas flow in this internal reforming type SOFC module will be further described with reference to FIG.
【0018】図2に示すように、燃料及び改質用蒸気A
は、まず、改質用原料供給室16へ導入される。改質用
反応管17は、中央部に改質ガス供給管19を配設した
二重管となっており、その環状部内には改質用触媒20
が充填されている。このため、改質用原料供給室16へ
導入された原料は、改質用反応管17の触媒20の充填
部(環状部)を下向きに流れながら、外部より熱を受け
て改質される。As shown in FIG. 2, fuel and reforming steam A
Is first introduced into the reforming raw material supply chamber 16. The reforming reaction pipe 17 is a double pipe having a reformed gas supply pipe 19 arranged in the center thereof, and the reforming catalyst 20 is provided in the annular portion thereof.
Is filled. Therefore, the raw material introduced into the reforming raw material supply chamber 16 receives heat from the outside and is reformed while flowing downward in the filling portion (annular portion) of the catalyst 20 of the reforming reaction tube 17.
【0019】この際、改質ガスの改質の割合(プレリフ
ォーム率)は、触媒充填量(s/v値)や、改質用反応
管17の本数により調整される。At this time, the reforming rate of the reformed gas (pre-reform rate) is adjusted by the catalyst filling amount (s / v value) and the number of the reforming reaction tubes 17.
【0020】また、改質された燃料ガスは、改質ガス供
給管19を下から上へと流れ、改質ガス供給室21へ導
入され、さらに改質ガス供給室21と連通する燃料注入
管22により、各SOFC23の先端部へ供給される。
そして、改質ガスは各SOFC23を下から上へと流れ
て発電に利用され、未反応の燃料ガ等の排ガスaは燃料
排出室25から排出管26を介して、モジュール本体1
1の外へ排出される。The reformed fuel gas flows through the reformed gas supply pipe 19 from the bottom to the top, is introduced into the reformed gas supply chamber 21, and is further connected to the reformed gas supply chamber 21. It is supplied by 22 to the tip of each SOFC 23.
Then, the reformed gas flows through each SOFC 23 from the bottom to the top to be used for power generation, and the exhaust gas a such as unreacted fuel gas is passed from the fuel discharge chamber 25 through the discharge pipe 26 to the module main body 1
It is discharged to the outside of 1.
【0021】上記本実施例の構成によれば、発電室18
の内部に設けた燃料改質用反応管17は、該発電室18
内の熱を吸収することで、触媒20の活性化を図り燃料
の改質を行い、その後燃料注入管22を介してSOFC
23の燃料極に供給され、ここでのカーボナイズを抑制
すると同時に、冷却作用により、発電室18内の内部温
度を一定に保つために必要な空気量の導入を従来に比べ
て大幅な低減が図られる。According to the structure of this embodiment, the power generation chamber 18
The fuel reforming reaction tube 17 provided inside the
By absorbing the heat inside, the catalyst 20 is activated and the fuel is reformed, and then the SOFC is passed through the fuel injection pipe 22.
It is supplied to the fuel electrode of No. 23 and suppresses the carbonization here, and at the same time, by the cooling action, the introduction of the amount of air necessary for keeping the internal temperature in the power generation chamber 18 constant can be greatly reduced compared to the conventional case. To be
【0022】また、従来では図3に示すように改質用の
プレリフォーマ2を発電室5の外部に設置していたが、
本実施例のように発電室18の内部に改質用反応管17
を組み込むことにより、従来のプレリフォーマ2に高温
のガスを供給する配管等が不要となり、設備の小型化及
び簡素化が図られる。Conventionally, as shown in FIG. 3, the reforming pre-reformer 2 was installed outside the power generation chamber 5, but
As in this embodiment, the reforming reaction tube 17 is provided inside the power generation chamber 18.
Incorporation of the above eliminates the need for a pipe or the like for supplying a high-temperature gas to the conventional pre-reformer 2, thus achieving downsizing and simplification of equipment.
【0023】[0023]
【発明の効果】以上説明したように、本発明によれば、
発電室内におけるSOFCの発熱を直接内部改質用反応
管の吸熱として回収することで、発電室の温度を一定に
保つための空気量の低減を図ることが可能となり、この
結果、SOFCモジュールの発電効率が向上する。As described above, according to the present invention,
By directly recovering the heat generation of the SOFC in the power generation chamber as the heat absorption of the internal reforming reaction tube, it is possible to reduce the amount of air for keeping the temperature of the power generation chamber constant, and as a result, the power generation of the SOFC module can be reduced. Efficiency is improved.
【0024】また、プレリフォーマをモジュールと一体
管とすることで、プレリフォーマ用の高温ガスの排出管
が不要となり、設備の小型化及びコストの低減化を図る
ことが可能となる。Further, since the pre-reformer is integrated with the module, a high-temperature gas exhaust pipe for the pre-reformer is not required, so that the equipment can be downsized and the cost can be reduced.
【図1】本発明に係る内部改質方式SOFCモジュール
の概略構成図である。FIG. 1 is a schematic configuration diagram of an internal reforming type SOFC module according to the present invention.
【図2】その要部拡大概略図である。FIG. 2 is an enlarged schematic view of a main part thereof.
【図3】従来の内部改質方式SOFCモジュールの概略
構成図である。FIG. 3 is a schematic configuration diagram of a conventional internal reforming SOFC module.
11 モジュール本体 12 閉塞板 13 燃料供給管 14,15 仕切り板 16 ガス供給室 17 改質用反応管 18 発電室 19 改質ガス供給管 20 改質用触媒 21 改質ガス供給室 22 燃料注入管 23 SOFC(固体電界質燃料電池) 24 管板 25 燃料排出室 26 排出管 27 反応用空気供給管 28 空気排出管 11 Module Main Body 12 Closure Plate 13 Fuel Supply Pipes 14 and 15 Partition Plate 16 Gas Supply Chamber 17 Reforming Reaction Pipe 18 Power Generation Chamber 19 Reformed Gas Supply Pipe 20 Reforming Catalyst 21 Reformed Gas Supply Chamber 22 Fuel Injection Pipe 23 SOFC (solid electrolyte fuel cell) 24 tube plate 25 fuel discharge chamber 26 discharge pipe 27 reaction air supply pipe 28 air discharge pipe
Claims (1)
ル構造において、内部改質用反応管を発電室内に設置し
て成り、燃料及び改質用蒸気を該改質用反応管に供給
し、次いで電池内の燃料注入管を通して供給することを
特徴とする円筒型固体電解質型燃料電池のモジュール構
造。1. A module structure of a cylindrical solid oxide fuel cell, comprising an internal reforming reaction tube installed in a power generation chamber, supplying fuel and reforming vapor to the reforming reaction tube, and then supplying the reforming reaction tube to the reforming reaction tube. A module structure of a cylindrical solid oxide fuel cell, characterized in that the fuel is supplied through a fuel injection pipe in the cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6062373A JPH07272741A (en) | 1994-03-31 | 1994-03-31 | Module structure for cylindrical solid electrolytic fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6062373A JPH07272741A (en) | 1994-03-31 | 1994-03-31 | Module structure for cylindrical solid electrolytic fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07272741A true JPH07272741A (en) | 1995-10-20 |
Family
ID=13198258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6062373A Withdrawn JPH07272741A (en) | 1994-03-31 | 1994-03-31 | Module structure for cylindrical solid electrolytic fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07272741A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998012764A1 (en) * | 1995-08-23 | 1998-03-26 | Siemens Westinghouse Power Corporation | An electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer |
JP2003086226A (en) * | 2001-09-12 | 2003-03-20 | Mitsubishi Heavy Ind Ltd | Fuel cell system |
JP2006500758A (en) * | 2002-09-27 | 2006-01-05 | クエストエアー テクノロジーズ インコーポレイテッド | Improved solid oxide fuel cell system |
CN1311572C (en) * | 2003-09-25 | 2007-04-18 | 京瓷株式会社 | Container for fuel cell and fuel cell and electronic machine |
WO2007052704A1 (en) * | 2005-11-02 | 2007-05-10 | Mitsubishi Materials Corporation | Fuel cell |
CN1321467C (en) * | 2003-09-25 | 2007-06-13 | 京瓷株式会社 | Fuel cell container, fuel cell, and electronic equipment |
WO2007066618A1 (en) * | 2005-12-05 | 2007-06-14 | Mitsubishi Materials Corporation | Fuel cell |
WO2007066619A1 (en) * | 2005-12-05 | 2007-06-14 | Mitsubishi Materials Corporation | Fuel cell |
JP2007179885A (en) * | 2005-12-28 | 2007-07-12 | Nippon Oil Corp | Indirect internal reforming type solid oxide fuel cell |
WO2007114110A1 (en) * | 2006-03-31 | 2007-10-11 | Nippon Oil Corporation | Solid oxide fuel cell and reformer |
JP2008218277A (en) * | 2007-03-06 | 2008-09-18 | Mitsubishi Materials Corp | Fuel cell |
JP2008226705A (en) * | 2007-03-14 | 2008-09-25 | Mitsubishi Materials Corp | Fuel reformer and fuel cell |
WO2008140116A1 (en) * | 2007-05-16 | 2008-11-20 | Nippon Oil Corporation | Reformer and indirect internal reforming-type high-temperature fuel cell |
US7521139B2 (en) | 2002-01-31 | 2009-04-21 | Ceramic Fuel Cells Limited | Thermal management of fuel cells |
JP2009207956A (en) * | 2008-02-29 | 2009-09-17 | Kyocera Corp | Reaction apparatus |
JP2012148972A (en) * | 2005-12-22 | 2012-08-09 | Kyocera Corp | Reforming apparatus |
JP2015018751A (en) * | 2013-07-12 | 2015-01-29 | Toto株式会社 | Solid oxide fuel cell device |
JP2016192391A (en) * | 2015-03-31 | 2016-11-10 | 三菱日立パワーシステムズ株式会社 | Fuel cell device and fuel cell system |
-
1994
- 1994-03-31 JP JP6062373A patent/JPH07272741A/en not_active Withdrawn
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998012764A1 (en) * | 1995-08-23 | 1998-03-26 | Siemens Westinghouse Power Corporation | An electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer |
JP2003086226A (en) * | 2001-09-12 | 2003-03-20 | Mitsubishi Heavy Ind Ltd | Fuel cell system |
US7521139B2 (en) | 2002-01-31 | 2009-04-21 | Ceramic Fuel Cells Limited | Thermal management of fuel cells |
JP2006500758A (en) * | 2002-09-27 | 2006-01-05 | クエストエアー テクノロジーズ インコーポレイテッド | Improved solid oxide fuel cell system |
CN1321467C (en) * | 2003-09-25 | 2007-06-13 | 京瓷株式会社 | Fuel cell container, fuel cell, and electronic equipment |
CN1311572C (en) * | 2003-09-25 | 2007-04-18 | 京瓷株式会社 | Container for fuel cell and fuel cell and electronic machine |
JP2007128716A (en) * | 2005-11-02 | 2007-05-24 | Mitsubishi Materials Corp | Fuel cell |
WO2007052704A1 (en) * | 2005-11-02 | 2007-05-10 | Mitsubishi Materials Corporation | Fuel cell |
US8034496B2 (en) | 2005-11-02 | 2011-10-11 | Mitsubishi Materials Corporation | Fuel cell |
WO2007066618A1 (en) * | 2005-12-05 | 2007-06-14 | Mitsubishi Materials Corporation | Fuel cell |
WO2007066619A1 (en) * | 2005-12-05 | 2007-06-14 | Mitsubishi Materials Corporation | Fuel cell |
JP2007157479A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Materials Corp | Fuel cell |
US8021794B2 (en) | 2005-12-05 | 2011-09-20 | Mitsubishi Materials Corporation | Fuel cell with cross-shaped reformer |
JP2012148972A (en) * | 2005-12-22 | 2012-08-09 | Kyocera Corp | Reforming apparatus |
JP2007179885A (en) * | 2005-12-28 | 2007-07-12 | Nippon Oil Corp | Indirect internal reforming type solid oxide fuel cell |
JP2007273317A (en) * | 2006-03-31 | 2007-10-18 | Nippon Oil Corp | Solid oxide fuel cell and reformer |
WO2007114110A1 (en) * | 2006-03-31 | 2007-10-11 | Nippon Oil Corporation | Solid oxide fuel cell and reformer |
KR101350127B1 (en) * | 2006-03-31 | 2014-01-09 | 제이엑스 닛코닛세키에너지주식회사 | Solid oxide fuel cell and reformer |
JP2008218277A (en) * | 2007-03-06 | 2008-09-18 | Mitsubishi Materials Corp | Fuel cell |
JP2008226705A (en) * | 2007-03-14 | 2008-09-25 | Mitsubishi Materials Corp | Fuel reformer and fuel cell |
JP2008285355A (en) * | 2007-05-16 | 2008-11-27 | Nippon Oil Corp | Reformer and indirect internal reforming type high temperature fuel cell |
WO2008140116A1 (en) * | 2007-05-16 | 2008-11-20 | Nippon Oil Corporation | Reformer and indirect internal reforming-type high-temperature fuel cell |
US8338041B2 (en) | 2007-05-16 | 2012-12-25 | Nippon Oil Corporation | Reformer and indirect internal reforming high temperature fuel cell |
JP2009207956A (en) * | 2008-02-29 | 2009-09-17 | Kyocera Corp | Reaction apparatus |
JP2015018751A (en) * | 2013-07-12 | 2015-01-29 | Toto株式会社 | Solid oxide fuel cell device |
JP2016192391A (en) * | 2015-03-31 | 2016-11-10 | 三菱日立パワーシステムズ株式会社 | Fuel cell device and fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07272741A (en) | Module structure for cylindrical solid electrolytic fuel cell | |
JP2965273B2 (en) | Electrochemical cell device with a valve for controlling the composition of the reformable fuel gas | |
TW299345B (en) | ||
EP2244327B1 (en) | Solid oxide fuel cell system | |
US5147735A (en) | Method of operating a solid electrolyte fuel cell | |
US7537623B2 (en) | Method and device for the producing of a gas rich in hydrogen by thermal pyrolysis of hydrocarbons | |
JP2003327405A (en) | Fuel reformer and method of starting fuel reformer | |
JPH04253166A (en) | Electrochemical cell apparatus for which fuel mixing nozzle is provided at outside | |
JP4555961B2 (en) | FUEL CELL AND METHOD OF OPERATING FUEL CELL | |
JP4492882B2 (en) | Hydrogen generating apparatus with double burner and driving method | |
US20080227626A1 (en) | Method of regenerating absorbent | |
JP2001080904A (en) | Fuel reformer | |
JPH07230816A (en) | Internal reforming type solid oxide fuel cell system | |
JPS6188461A (en) | How to start and stop a fuel cell power generator | |
CN1716675A (en) | Reformer and fuel cell system having same | |
JP2003321206A (en) | Single tubular cylinder type reforming apparatus | |
JPH09129256A (en) | Solid electrolyte fuel cell module | |
JPH09237635A (en) | Solid electrolyte fuel cell | |
JPS63207054A (en) | Solid electrolyte fuel cell power generator | |
JPS6282660A (en) | How to stop a phosphoric acid fuel cell | |
JPH0794321B2 (en) | Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer | |
JP2998217B2 (en) | Fuel reformer | |
JP2003112904A (en) | Single tube cylindrical reformer | |
JPS6065472A (en) | Fuel cell device | |
JPH05301701A (en) | Device for reforming fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010605 |