[go: up one dir, main page]

JPH07267617A - Production of tetracalcium phosphate, tetracalcium phosphate obtained by the same method and composition for cement containing the same tetracalcium phosphate - Google Patents

Production of tetracalcium phosphate, tetracalcium phosphate obtained by the same method and composition for cement containing the same tetracalcium phosphate

Info

Publication number
JPH07267617A
JPH07267617A JP8388894A JP8388894A JPH07267617A JP H07267617 A JPH07267617 A JP H07267617A JP 8388894 A JP8388894 A JP 8388894A JP 8388894 A JP8388894 A JP 8388894A JP H07267617 A JPH07267617 A JP H07267617A
Authority
JP
Japan
Prior art keywords
tetracalcium phosphate
raw material
powder
weight
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8388894A
Other languages
Japanese (ja)
Other versions
JP3558680B2 (en
Inventor
Koichiro Tanimoto
幸一郎 谷本
Junichiro Taji
順一郎 田路
Mitsuharu Tominaga
充治 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Raito Kogyo Kk
Original Assignee
Fuji Raito Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Raito Kogyo Kk filed Critical Fuji Raito Kogyo Kk
Priority to JP8388894A priority Critical patent/JP3558680B2/en
Publication of JPH07267617A publication Critical patent/JPH07267617A/en
Application granted granted Critical
Publication of JP3558680B2 publication Critical patent/JP3558680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)

Abstract

PURPOSE:To provide a method for producing tetracalcium phosphate by which the high-purity tetracalcium phosphate can simply be produced by using a well- known calcium raw material and a phosphoric acid raw material, obtain the tetracalcium phosphate prepared by this method and produce a composition for a cement consisting essentially of the tetracalcium phosphate. CONSTITUTION:This method for producing tetracalcium phosphate from calcium raw material powder and phosphoric acid raw material is to blend both the raw materials so as to provide 2 molar ratio of Ca/P, then add and mix a titanium compound in an amount of 0.1-10 pts.wt. based on 100 pts.wt. theoretically produced amount of the tetracalcium phosphate expressed in terms of TiO2 therewith, then, as necessary, press form the prepared mixture and bake the resultant mixture in an atmosphere at >=1350 deg.C for >=1hr. Thereby, the produced massive tetracalcium phosphate has 2.5-3.5g/cm<3> bulk density or tetracalcium phosphate powder has <=30mum grain diameter and 1.0-2.0g/cm<3> bulk density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リン酸四カルシウムの
製造方法及びこの方法によって得られたリン酸四カルシ
ウム、並びにこのリン酸四カルシウムを含有するセメン
ト用組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and a cement composition containing this tetracalcium phosphate.

【0002】[0002]

【従来の技術】リン酸四カルシウム(以下、4CPと略
す)は、我々の生体における骨や歯の主成分であるリン
酸カルシウム系の化合物であるが、化学的な活性が高
く、常温で各種無機酸、不飽和有機酸の単独重合体及び
共重合体などの水溶液、生理食塩水などに容易に反応し
て硬化する性質が知られており、医科用分野や歯科用分
野への用途が期待されている。
2. Description of the Related Art Tetracalcium phosphate (hereinafter, abbreviated as 4CP) is a calcium phosphate-based compound that is a main component of bones and teeth in our living body, but it has high chemical activity and various inorganic acids at room temperature. It is known that it easily reacts with an aqueous solution such as a homopolymer or copolymer of an unsaturated organic acid or a physiological saline solution and hardens, and is expected to be used in the fields of medicine and dentistry. There is.

【0003】たとえば、医科用としては、外科・整形外
科領域において、交通事故、骨腫瘍切除などによる骨欠
損部あるいは空隙部に生じた修復材又は骨補填材として
の利用が考えられており、歯科用としては、インレー、
クラウンなどの接着に用いられる合着材、窩洞修復など
に用いられるコンポジットレジンのフィラー材、歯髄保
護あるいは象牙質代替層の役割などに用いられる裏装用
及び覆卓材、根管治療に用いられる根管充填材、幼児の
初期う蝕予防に用いられる小窩裂溝填塞材、治療中の仮
充填材として用いられる仮封材、歯周病治療に用いられ
る歯周ポケット充填材、辺縁歯槽骨の欠損修復用として
の骨移植材としての利用が考えられている。
For example, in the field of surgery and orthopedics, for medical use, it is considered to be used as a repairing material or a bone filling material generated in a bone defect or a void due to a traffic accident, excision of a bone tumor, etc. For inlays,
Adhesive used for adhesion of crowns, filler material of composite resin used for cavity repair, etc., lining and table covering used for pulp protection or role of dentin replacement layer, root used for root canal treatment Tube filling material, pit and fissure filling material used to prevent early caries in infants, temporary sealing material used as temporary filling material during treatment, periodontal pocket filling material used for periodontal disease treatment, marginal alveolar bone It has been considered to be used as a bone graft material for repairing defects of bone.

【0004】ところで従来、医科用分野における骨補填
材としては、ハイドロキシアパタイト(以下、HAPと
いう)、リン酸三カルシウム(以下、TCPという)等
が用いられているが、しかしながら、HAPは生体親和
性が高いが、それ自身が安定な物質であるため、酸と反
応せず従って自己硬化型セメント用組成物に用いること
はできないという欠点がある。一方、TCPはHAPよ
り生体親和性は低いが、酸と反応し自己硬化型セメント
用組成物として用いられるが、新生骨形成能力の点では
4CPの方が優れているといわれている。
By the way, hitherto, hydroxyapatite (hereinafter referred to as HAP), tricalcium phosphate (hereinafter referred to as TCP) and the like have been used as bone filling materials in the medical field, however, HAP has biocompatibility. However, since it is a stable substance by itself, it does not react with an acid and therefore cannot be used in a self-curing cement composition. On the other hand, TCP has lower biocompatibility than HAP, but it is used as a composition for self-hardening cement by reacting with acid, but 4CP is said to be superior in terms of new bone formation ability.

【0005】また歯科用分野においては、従来よりZn
O、SiO2とリン酸、ポリアクリル酸とを合わせた修復
材が用いられてきたが、これらの組成物からなる硬化体
ではいずれも歯や骨の成分と異なるため、生体親和性が
ないという問題点がある。
In the field of dentistry, Zn has been conventionally used.
Restorative materials that combine O, SiO 2 , phosphoric acid, and polyacrylic acid have been used, but hardened bodies made of these compositions are not biocompatible because they are different from tooth and bone components. There is a problem.

【0006】そこで近年では、HAPやTCPと同等以
上に生体親和性が高く、かつHAPやTCPより新生骨
形成能力の優れているといわれている4CPが注目され
ている。この4CPは人体を構成している骨や歯の主成
分であるHAPの前駆体といわれており、生体内におい
て徐々に吸収されHAPに置換される性質があることが
知られている。
Therefore, in recent years, 4CP, which is said to have a biocompatibility equal to or higher than that of HAP or TCP and has a new bone formation ability superior to that of HAP or TCP, has been attracting attention. This 4CP is said to be a precursor of HAP, which is the main component of the bones and teeth that make up the human body, and is known to have the property of being gradually absorbed in the living body and being replaced with HAP.

【0007】この4CPの製造に際しては、カルシウム
原料としてCaCO3、CaO、Ca(OH)2、リン原料と
してP25、H3PO4、(NH4)H2PO4、(NH4)2
PO4、Ca源とP源の両方を含有する物質として、Ca
HPO4・2H2O、CaHPO4、Ca227などが用い
られている。これらの原料を用いた4CPの製造方法と
しては、例えば、 1) CaHPO4・2H2O(以下、ブルッシャイトとい
う)を 500℃で2時間加熱して得たγ-Ca227(以
下、ピロリン酸カルシウムという)に、CaCO3を2倍
モル配合し、1680℃で1時間焼成する方法(特開昭61-2
70249号参照)、 2) CaCO3とCaHPO4あるいはCaHPO4・2H2
とを等モル比混合し、1500℃以上で1時間以上焼成する
乾式製造法(例えば特開昭64-61408号公報、特開平1-96
006号公報等)等 が知られている。上記前者の方法では、一度ブルッシャ
イトを 500℃付近で焼成して得たピロリン酸カルシウム
を粉末化し、さらにCaCO3とモル比にて焼成するとい
う2段階反応を経るため、効率的ではない。上記後者の
方法は、このような2段階反応を回避するためのもので
あるが、この方法では焼成後 500℃までは10℃/分以上
の速度で急冷しなければ4CP単体とはならず、しかも
多量のHAPを含有するもので、高純度な4CPを安定
して得られない等の問題がある。
In the production of 4CP, CaCO 3 , CaO, Ca (OH) 2 as a calcium raw material and P 2 O 5 , H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) as a phosphorus raw material. 2 H
As a substance containing both PO 4 , Ca and P sources, Ca
HPO 4 .2H 2 O, CaHPO 4 , Ca 2 P 2 O 7, etc. are used. As a method of producing 4CP using these raw materials, for example, 1) CaHPO 4 .2H 2 O (hereinafter referred to as brushite) is heated at 500 ° C. for 2 hours to obtain γ-Ca 2 P 2 O 7 ( Hereinafter, a method in which CaCO 3 is mixed in an amount of 2 times the molar amount of calcium pyrophosphate) and calcined at 1680 ° C. for 1 hour (JP-A-61-2)
70249), 2) CaCO 3 and CaHPO 4 or CaHPO 4 .2H 2 O
Are mixed in an equimolar ratio and baked at 1500 ° C. or higher for 1 hour or longer (for example, JP-A-64-61408 and JP-A-1-96).
No. 006, etc.) are known. The former method is not efficient because it undergoes a two-step reaction of powdering calcium pyrophosphate obtained by once firing brushite at around 500 ° C. and further firing it with CaCO 3 in a molar ratio. The latter method described above is for avoiding such a two-step reaction, but in this method, 4CP alone is not obtained unless it is rapidly cooled at a rate of 10 ° C / min or more up to 500 ° C after firing. Moreover, since it contains a large amount of HAP, there is a problem that high-purity 4CP cannot be stably obtained.

【0008】また、最近においては、4CP製造時に少
量のアルミニウム化合物を添加し、HAP含有割合を減
少させる知見がみられる(特開平2-18705号公報、特開
平3-159946号公報等)が、これにより得られる4CPに
おいても結晶性が低く、保存性が悪いという欠点があ
る。このようにして製造された4CPにおいても嵩密度
が低く成型体の圧縮強度という点においても歯科材料と
しては十分とは言えず、また、その焼成体の色は歯科材
料として用いるには青白く、歯質の色調とは異なってお
り問題であった。
Recently, it has been found that a small amount of an aluminum compound is added during the production of 4CP to reduce the HAP content (Japanese Patent Laid-Open Nos. 2-18705 and 3-159946). The 4CP thus obtained also has the drawback of low crystallinity and poor storage stability. The 4CP produced in this manner is also not sufficient as a dental material in terms of low bulk density and compressive strength of the molded body, and the color of the fired body is pale for use as a dental material. It was a problem because it was different from the color tone of quality.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明の解決し
ようとする課題は、公知のカルシウム原料及びリン原料
を用いて高純度でかつ高硬度のリン酸四カルシウムを簡
単に製造できる方法、及びこのリン酸四カルシウムを主
成分とするセメント用組成物を提供することにある。
The problem to be solved by the present invention is to provide a method for easily producing high-purity and high-hardness tetracalcium phosphate using known calcium raw materials and phosphorus raw materials, and It is intended to provide a composition for cement containing tetracalcium phosphate as a main component.

【0010】[0010]

【課題を解決するための手段】かくして本願『請求項
1』にかかる発明によれば、『カルシウム原料粉末及び
リン原料粉末からリン酸四カルシウムを製造する方法か
らなり、これらの両原料をCa/P=2モル比となるよう
に配合すると共に、リン酸四カルシウムの理論生成量 1
00重量部に対してチタン化合物をTiO2換算で0.1〜10
重量部添加・混合し、この混合物を1350℃以上の雰囲気
下で1時間以上焼成することにより、粒径30μm以下で
嵩密度1.0〜2.0g/cm3の粉末状のリン酸四カルシウムを
得ることを特徴とするリン酸四カルシウムの製造方法』
が提供される。
Thus, according to the invention of "Claim 1" of the present application, "a calcium raw material powder and a method for producing tetracalcium phosphate from a phosphorus raw material powder are used. Incorporate so that P = 2 molar ratio, and theoretically produce tetracalcium phosphate 1
0.1 to 10 of titanium compound in terms of TiO 2 with respect to 00 parts by weight
By adding and mixing parts by weight, and calcining this mixture in an atmosphere of 1350 ° C or higher for 1 hour or longer, a powdery tetracalcium phosphate having a particle size of 30 µm or less and a bulk density of 1.0 to 2.0 g / cm 3 is obtained. For producing tetracalcium phosphate characterized by
Will be provided.

【0011】本発明はまた塊状のリン酸四カルシウムを
製造する方法、すなわち本願『請求項2』に示すよう
に、『カルシウム原料粉末及びリン原料粉末からリン酸
四カルシウムを製造する方法からなり、これらの両原料
をCa/P=2モル比となるように配合すると共に、リン
酸四カルシウムの理論生成量 100重量部に対してチタン
化合物をTiO2換算で0.1〜10重量部添加・混合し、こ
の混合物をプレス成型した後、1350℃以上の雰囲気下で
1時間以上焼成することにより、嵩密度2.5〜3.5g/cm3
の塊状のリン酸四カルシウムを得ることを特徴とするリ
ン酸四カルシウムの製造方法』をも提供することができ
る。
The present invention also comprises a method for producing massive tetracalcium phosphate, that is, a "calcium raw material powder and a method for producing tetracalcium phosphate from phosphorus raw material powder, as shown in claim 2 of the present application, Both of these raw materials were blended so that the Ca / P = 2 molar ratio was obtained, and 0.1 to 10 parts by weight of a titanium compound in terms of TiO 2 was added and mixed with respect to 100 parts by weight of the theoretical production amount of tetracalcium phosphate. After this mixture is press-molded, it is baked in an atmosphere of 1350 ° C. or higher for 1 hour or longer to obtain a bulk density of 2.5 to 3.5 g / cm 3.
The method for producing tetracalcium phosphate, characterized in that the block-shaped tetracalcium phosphate is obtained.

【0012】本発明の上記いずれの製造方法において
も、カルシウム原料粉末及びリン原料粉末としては、例
えばCaCO3、CaO、Ca(OH)2、P25、H3
4、(NH4)H2PO4、(NH4)2HPO4、CaHPO4
2H2O、CaHPO4、Ca227等の当該分野におけ
る公知のものがそのまま用いられる。このうち、CaH
PO4・2H2O及びCaCO3の組合わせが安全性及び原
料費の点で好ましい。
In any of the above production methods of the present invention, examples of the calcium raw material powder and the phosphorus raw material powder include CaCO 3 , CaO, Ca (OH) 2 , P 2 O 5 , and H 3 P.
O 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , CaHPO 4 ·
2H 2 O, CaHPO 4 , Ca 2 P 2 O 7 and the like known in the art can be used as they are. Of these, CaH
A combination of PO 4 .2H 2 O and CaCO 3 is preferable in terms of safety and raw material cost.

【0013】上記カルシウム原料粉末及びリン原料粉末
の粒径については、本願『請求項4』に示すように、カ
ルシウム原料粉末については平均粒径 1〜30μmのもの
が、また上記リン原料粉末については平均粒径 1〜40μ
mのものが、最終的に得られるリン酸四カルシウム(以
下、4CPと略す)の結晶性、純度及び硬度の点で好ま
しい。
Regarding the particle diameters of the calcium raw material powder and the phosphorus raw material powder, as shown in claim 4 of the present application, the calcium raw material powder has an average particle diameter of 1 to 30 μm, and the phosphorus raw material powder mentioned above. Average particle size 1-40μ
The thing of m is preferable from the viewpoint of crystallinity, purity and hardness of the finally obtained tetracalcium phosphate (hereinafter, abbreviated as 4CP).

【0014】本発明の製造方法において、上記カルシウ
ム原料粉末とリン原料粉末との配合物にはチタン化合物
が添加される。このチタン化合物の添加は、本発明の特
徴の1つであり、従来4CPの製造の際必須とされてい
た急冷操作(すなわち焼成後 500℃までの範囲で10℃/
分程度の速度で冷却する操作)を必要としなくなる上、
比較的低温で4CPが生成でき、HAPの多量含有等も
押さえられ、高純度の4CPを製造できる。本発明に用
いられるチタン化合物としては、TiO2、Mg2TiO4
PbTiO3、CaTiO3、FeTiO3、TiN、TiC、Ti
B、TiB2、TiSi等が挙げられる。これらは1種又は
2種以上で用いられる。上記チタン化合物のうち、Ti
2が日本薬局方基準を満たしており、得られる4CP
を医科用分野や歯科用分野でのいわゆる生体用修復材料
として用いる場合の安全性の点から好ましい。本発明の
製造方法において、上記チタン化合物は、1μm以下の
粉末で用いられることが望ましく、さらに平均粒径0.2
μm程度のものが好ましい。チタン化合物が酸化チタン
である場合、本願『請求項4』に示すように、粒径0.1
〜1.0μmのものが好ましい。0.1μmよりも小さい場合は
経済的ではなく、1.0μm以上の場合は多量に用いなけれ
ばならずこれにより多量の不純物混入を許すこととな
り、これらの点で好ましくない。
In the manufacturing method of the present invention, a titanium compound is added to the mixture of the calcium raw material powder and the phosphorus raw material powder. The addition of this titanium compound is one of the features of the present invention, and is a quenching operation that was conventionally required in the production of 4CP (that is, 10 ° C / ° C in the range up to 500 ° C after firing).
In addition to not requiring the operation of cooling at a speed of about a minute,
It is possible to produce 4CP at a relatively low temperature, suppress a large amount of HAP content, etc., and produce high-purity 4CP. Examples of the titanium compound used in the present invention include TiO 2 , Mg 2 TiO 4 ,
PbTiO 3 , CaTiO 3 , FeTiO 3 , TiN, TiC, Ti
B, TiB 2 , TiSi and the like. These are used alone or in combination of two or more. Of the above titanium compounds, Ti
O 2 meets Japanese Pharmacopoeia standards and obtains 4 CP
Is preferable from the viewpoint of safety when it is used as a so-called biomedical restorative material in the fields of medicine and dentistry. In the production method of the present invention, the titanium compound is preferably used in the form of powder having a particle size of 1 μm or less, and the average particle size is 0.2
It is preferably about μm. When the titanium compound is titanium oxide, as shown in the claim 4 of the present application, the particle size is 0.1
It is preferably about 1.0 μm. If it is smaller than 0.1 μm, it is not economical, and if it is 1.0 μm or more, a large amount must be used, which allows a large amount of impurities to be mixed in, which is not preferable in these respects.

【0015】本発明の製造方法において、上記カルシウ
ム原料とリン原料とは、Ca/P=2モル比となるように
配合される。2モル比よりも小さい場合はHAPが生成
し、2モル比よりも多い場合はCaOが生成し、それぞれ
好ましくない。
In the production method of the present invention, the calcium raw material and the phosphorus raw material are blended so as to have a Ca / P = 2 molar ratio. When it is less than 2 mole ratio, HAP is produced, and when it is more than 2 mole ratio, CaO is produced, which are not preferable.

【0016】上記チタン化合物は、4CPの理論生成量
100重量部に対してTiO2に換算して0.1〜10重量部の
割合で用いられる。チタン化合物の添加量が上記 0.1重
量部よりも少なくい場合は、焼成後炉内にて室温まで自
然放冷したときに得られる焼成体が4CP単独とはなら
ず、多量のHAPを含有することになる。またチタン化
合物の添加量が、上記10重量部よりも多い場合は、得ら
れる焼成体中のチタン化合物の影響が大きくなって生体
親和性が減少することが考えられるばかりか、焼成が促
進され過ぎて溶融を起こすこともあり得る。
The above titanium compound is the theoretical production amount of 4CP.
It is used in a proportion of 0.1 to 10 parts by weight converted to TiO 2 with respect to 100 parts by weight. When the addition amount of the titanium compound is less than the above 0.1 parts by weight, the fired body obtained by spontaneously cooling to room temperature in the furnace after firing does not become 4CP alone and contains a large amount of HAP. become. When the amount of the titanium compound added is more than 10 parts by weight, not only is the effect of the titanium compound in the obtained fired product increased and the biocompatibility is decreased, but the firing is too accelerated. There is also a possibility that melting will occur.

【0017】本願『請求項1』及び『請求項2』の製造
方法において、上記カルシウム原料及びリン原料並びに
チタン化合物は、例えばボールミル等で均一に混合され
た後焼成処理に付される。本願『請求項2』にかかる製
造方法の場合、上記混合物は、焼成処理に付す前に、プ
レス成型に付される。このプレス成型の圧力としては10
〜500kgf/cm2が挙げられる。なお、プレス圧は高ければ
高いほど密度は高くなるが、プレス成型後の焼成体を粉
砕して得られる粉末の嵩密度からみれば、通常使用され
る圧力範囲で十分である。上記プレス成型する場合は、
上記混合物に少量の精製水やCMC溶液、MC溶液等の
生体に無害な物質が一般的にバインダーとして用いられ
る。本発明の製造方法において、焼成処理は、温度が13
50℃以上で処理時間が1時間以上とされる。温度が1350
℃より低く又は処理時間が1時間より短い場合はいずり
れも未反応部分が残存する可能性があり好ましくない。
また1600℃以上では、溶融してしまうので好ましくな
い。上記焼成処理の後は、炉内にて室温まで自然放冷さ
れるが、この冷却操作を従来のように10℃/分程度の速
度で急冷するものとしてもよい。
In the manufacturing method of the "claim 1" and "claim 2" of the present application, the calcium raw material, the phosphorus raw material and the titanium compound are uniformly mixed in, for example, a ball mill or the like and then subjected to a firing treatment. In the case of the manufacturing method according to the "claim 2" of the present application, the mixture is subjected to press molding before being subjected to the firing treatment. The pressure of this press molding is 10
~ 500 kgf / cm 2 can be mentioned. The higher the pressing pressure is, the higher the density is. However, in view of the bulk density of the powder obtained by crushing the fired body after press molding, the pressure range normally used is sufficient. When performing the above press molding,
A small amount of purified water, a CMC solution, an MC solution, or other non-biologically harmful substance is generally used as a binder in the above mixture. In the manufacturing method of the present invention, the firing treatment has a temperature of 13
The treatment time is set to 1 hour or longer at 50 ° C or higher. Temperature is 1350
If the temperature is lower than 0 ° C. or the treatment time is shorter than 1 hour, unreacted portions may remain, which is not preferable.
Further, if it is 1600 ° C. or higher, it is not preferable because it melts. After the above-mentioned firing treatment, it is naturally cooled in the furnace to room temperature, but this cooling operation may be rapidly cooled at a rate of about 10 ° C / minute as in the conventional case.

【0018】以上のようにして得られる4CPは、HA
Pの含有が非常に少なく、高純度であり、気孔が少な
く、結晶性に優れており、粉末状や顆粒状や塊状等のい
ずれの形態とすることもできる。しかも塊状(すなわち
焼成成型体)では嵩密度が2.5〜3.5g/cm3、平均粒径30
μm以下の粉体の場合では嵩密度が1.0〜2.0g/cm3であ
り、従来の製法により得られる4CPと比べて高く、非
常に固く焼き締まっており、圧縮強度に優れており、さ
らに審美性の高い淡黄色のものである。
4CP obtained as described above is HA
The P content is very low, the purity is high, the porosity is low, the crystallinity is excellent, and it may be in any form such as powder, granules, and lumps. Moreover, the bulk density (that is, the fired body) is 2.5 to 3.5 g / cm 3 , and the average particle size is 30.
In the case of powder of μm or less, the bulk density is 1.0 to 2.0 g / cm 3, which is higher than that of 4CP obtained by the conventional production method, it is extremely hard and toughened, and it has excellent compressive strength. It is a highly yellowish yellow one.

【0019】上記方法にて得られた4CPは、純度、硬
度、色調等から医科用分野や歯科用分野等で使用される
生体修復材料の原料として提供できる。従って、本願
『請求項6』にかかる発明によれば、上記の方法にて得
られた4CPを必要に応じて平均粒径30μm以下に粉砕
して得られる粉末と、無機酸、カルボキシル基を2個以
上含む有機酸、ポリアクリル酸の単独重合体及びその共
重合体からなる群から選択される1種以上の酸成分とを
主成分とし、上記酸成分が上記リン酸四カルシウム粉末
に対して20〜40重量%の割合で用いられてなるセメント
用組成物が提供される。
The 4CP obtained by the above method can be provided as a raw material for a bio-restorative material used in the fields of medicine, dentistry and the like due to its purity, hardness and color tone. Therefore, according to the invention of "Claim 6" of the present application, the powder obtained by pulverizing 4CP obtained by the above method to have an average particle size of 30 µm or less, inorganic acid and carboxyl group Containing at least one organic acid, one or more acid components selected from the group consisting of homopolymers of polyacrylic acid and copolymers thereof, the main component being the acid component with respect to the tetracalcium phosphate powder. Provided is a composition for cement, which is used in a proportion of 20 to 40% by weight.

【0020】本発明のセメント用組成物において、4C
Pは平均粒径30μm以下の粉末で用いられる。上記無機
酸としては当該分野で公知のものが用いられ、例えばリ
ン酸等が挙げられるがこれに限定されず生体に無害なも
のであれば任意に用いられる。上記リン酸は、圧縮強度
を高める点で好ましいものである。上記カルボキシル基
を2個以上含む有機酸には、例えばリンゴ酸、クエン
酸、酒石酸、マロン酸、イタコン酸、乳酸、タンニン
酸、コハク酸等が挙げられ、リンゴ酸、クエン酸等が好
ましい。上記ポリアクリル酸の単独重合体又はその共重
合体は、平均分子量5,000〜80,000のものが適してお
り、さらには10,000〜50,000のものが好ましい。
In the cement composition of the present invention, 4C
P is used as a powder having an average particle size of 30 μm or less. As the above-mentioned inorganic acid, those known in the art are used, and examples thereof include phosphoric acid and the like, but the inorganic acid is not limited thereto, and any one can be used as long as it is harmless to the living body. The above-mentioned phosphoric acid is preferable because it enhances the compressive strength. Examples of the organic acid containing two or more carboxyl groups include malic acid, citric acid, tartaric acid, malonic acid, itaconic acid, lactic acid, tannic acid and succinic acid, with malic acid and citric acid being preferred. The polyacrylic acid homopolymer or copolymer thereof preferably has an average molecular weight of 5,000 to 80,000, more preferably 10,000 to 50,000.

【0021】上記酸成分は固体のままで用いられてもよ
く、また当該分野で公知の水溶液として用いられてもよ
い。いずれにしても酸成分(固体換算)が上記4CP粉
末に対して20〜40重量%の割合となるように調製され
る。本発明のセメント用組成物は、粉剤や顆粒剤として
調製されるものであってもよく、また水性組成物やペー
スト状組成物に調製されてもよい。
The above-mentioned acid component may be used as a solid as it is, or may be used as an aqueous solution known in the art. In any case, it is prepared so that the acid component (as solid) is 20 to 40% by weight based on the 4CP powder. The composition for cement of the present invention may be prepared as a powder or granule, or may be prepared as an aqueous composition or a paste composition.

【0022】水性組成物に調製する場合、本発明の4C
Pは粉/液比が1.0〜2.0(グラム比)となる範囲に調製
されることが好ましい。水性組成物に調製するときは、
上記酸成分を水溶液として用いればよく、この場合当該
分野で公知の溶液濃度に調製される。この濃度としては
例えば30〜60重量%が挙げられる。この場合、60重量%
を越える場合は、得られるセメント用組成物を歯科用セ
メントとして用いたとき硬化時間の短縮が見られ、30重
量%よりも少ない場合は得られるセメント用組成物の硬
化体の圧縮強度が低下し、崩壊率も高くなり、好ましく
ない。なお、上記水性組成物に調製する場合、比較的機
械的強度が要求されないときには、酸成分は上記配合割
合よりも十分に少ない割合で用いられるものであっても
よく、このときさらに生理食塩水もしくは0.8〜1.0重量
%塩化ナトリウム溶液を添加配合するものであってもよ
い。また、水性組成物において pHを調整したり反応速
度を調整する目的でブルッシャイト等が任意に添加され
てもよい。
When prepared into an aqueous composition, the 4C of the present invention
It is preferable that P is adjusted to a powder / liquid ratio of 1.0 to 2.0 (gram ratio). When preparing an aqueous composition,
The above-mentioned acid component may be used as an aqueous solution, and in this case, it is adjusted to a solution concentration known in the art. This concentration is, for example, 30 to 60% by weight. In this case, 60% by weight
If the content is more than 30% by weight, the curing time is shortened when the obtained cement composition is used as a dental cement, and if it is less than 30% by weight, the compressive strength of the cured product of the obtained cement composition decreases. However, the disintegration rate becomes high, which is not preferable. In the case of preparing the above-mentioned aqueous composition, when relatively mechanical strength is not required, the acid component may be used in a ratio sufficiently smaller than the above-mentioned mixing ratio. You may add and mix 0.8-1.0 weight% sodium chloride solution. Further, brushite or the like may be optionally added to the aqueous composition for the purpose of adjusting pH or adjusting the reaction rate.

【0023】また、本発明のセメント用組成物をペース
ト状の組成物として用いる場合、とくに一液型硬化性の
ペースト状の組成物に調製されることが好ましい。この
場合の配合例としては、上記4CP粉末を30〜50重量
%、有機酸 5〜15重量%、多価アルコール25〜35重量%
等が挙げられる。
When the composition for cement of the present invention is used as a paste-like composition, it is particularly preferably prepared as a one-component curable paste-like composition. In this case, as an example of blending, the above 4CP powder is 30 to 50% by weight, organic acid is 5 to 15% by weight, polyhydric alcohol is 25 to 35% by weight.
Etc.

【0024】なお、本発明のセメント用組成物には、必
要に応じてX線造影性、抗菌性を付与する目的で、Ba
SO4、BaCO3、(BiO)2CO3、CHI3等が添加さ
れていてもよい。また、本発明のセメント用組成物に
は、必要に応じてMgO、SiO2、ZiO2、ZrO2等の
生体に無害な成分を調製剤として添加されていてもよ
い。
The composition for cement of the present invention may contain Ba for the purpose of imparting X-ray contrast property and antibacterial property, if necessary.
SO 4 , BaCO 3 , (BiO) 2 CO 3 , CHI 3 and the like may be added. In addition, the composition for cement of the present invention may optionally contain a non-harmful component such as MgO, SiO 2 , ZO 2 and ZrO 2 as a preparation agent.

【0025】[0025]

【実施例】以下、本発明を図示実施例に従って詳述する
が、これによって本発明が限定されるものではない。 実施例1 CaHPO4・2H2OとCaCO3とを2モル比で配合
し、さらにリン酸四カルシウム理論生成量 100重量部に
対してTiO2 1.5重量部を添加したものをボールミルに
て均一に混合した後、この混合物をプレス成型(30〜60
kgf/cm2)し、次いで焼成炉内で大気圧下、1500℃にて
2時間焼成処理に付した後、炉内で室温まで自然放冷し
た。得られた焼成成型体の嵩密度を表1に示す。次に、
上記焼成成型体を自動乳鉢にて粉砕を7時間行い、粒径
27μm以下の粉末に分級した。この分級粉末の嵩密度を
表1に示す。またこの分級粉末のX線回折を行ったとこ
ろ、図1に示すX線回折チャートを得た。同チャートに
よれば、4CPピークの内最も高い第1ピーク(A)が非
常にシャープに得られている。上記X線回折チャートか
ら、4CPの第1ピークとHAP(以下、HAPと略
す)のピーク(B)とのそれぞれの強度を求め、これらか
ら相対割合を算出し、これを4CPの生成割合として表
1に示した。なお、X線回折チャートにおけるHAPの
ピーク(B)は、その第1,2,3の各ピークが4CPの
ピークと重なっているため、第4ピークの回折角(2θ)
を用いてその強度を測定した。以上の生成割合の結果か
ら、この製造法によれば高純度の4CPが生成されてい
ることが分かる。
The present invention will be described in detail below with reference to the illustrated embodiments, but the present invention is not limited thereto. Example 1 A mixture of CaHPO 4 .2H 2 O and CaCO 3 in a molar ratio of 2 and 1.5 parts by weight of TiO 2 added to 100 parts by weight of theoretically produced tetracalcium phosphate was homogenized in a ball mill. After mixing, press mix (30-60
kgf / cm 2 ) and then subjected to firing treatment at 1500 ° C. for 2 hours under atmospheric pressure in a firing furnace, and then naturally cooled to room temperature in the furnace. Table 1 shows the bulk density of the obtained fired molded body. next,
Grind the above-mentioned baked molded product in an automatic mortar for 7 hours, and
The powder was classified to 27 μm or less. Table 1 shows the bulk density of this classified powder. When this classified powder was subjected to X-ray diffraction, the X-ray diffraction chart shown in FIG. 1 was obtained. According to the chart, the highest first peak (A) among the 4CP peaks is obtained very sharply. From the above X-ray diffraction chart, the intensities of the first peak of 4CP and the peak (B) of HAP (hereinafter abbreviated as HAP) were obtained, and the relative ratio was calculated from these, and this was expressed as the ratio of 4CP generation. Shown in 1. The HAP peak (B) in the X-ray diffraction chart has the diffraction angles (2θ) of the fourth peak because the first, second, and third peaks overlap with the 4CP peak.
Was used to measure its strength. From the above production rate results, it can be seen that high-purity 4CP is produced by this production method.

【0026】実施例2 焼成後炉外に取り出し、室温まで10℃/分の速度で急冷
する以外は実施例1と同様に行って焼成成型体を得た。
この焼成成型体の嵩密度を表1に示す。またこの焼成成
型体を実施例1と同様に粒径27μm以下に分級して粉末
を得た。この分級粉末の嵩密度も表1に示す。上記分級
粉末についてX線回折を行い、図2に示すX線回折チャ
ートを得た。同チャートから実施例1と同様に4CPの
生成割合を求め、表1に示す結果を得た。この生成割合
の結果から、この製造法によれば高純度の4CPが生成
されていることが分かる。
Example 2 A fired molded body was obtained in the same manner as in Example 1 except that after firing, it was taken out of the furnace and rapidly cooled to room temperature at a rate of 10 ° C./min.
Table 1 shows the bulk density of this fired molded product. Further, this fired molded body was classified into particles having a particle size of 27 μm or less in the same manner as in Example 1 to obtain powder. The bulk density of this classified powder is also shown in Table 1. The classified powder was subjected to X-ray diffraction to obtain an X-ray diffraction chart shown in FIG. The production ratio of 4CP was determined from the chart in the same manner as in Example 1, and the results shown in Table 1 were obtained. From the result of the production ratio, it is found that high-purity 4CP is produced by this production method.

【0027】実施例3 TiO2の添加量を3.0重量部とする以外は実施例1と同
様に処理し、焼成成型体及びその分級粉末を得た。これ
らの嵩密度を表1に示す。またこの分級粉末についての
X線回折チャートは図3に示すものであり、これから求
めた4CPの生成割合を表1に示す。この結果から、こ
の製造法によれば高純度の4CPが生成されていること
がわかる。
Example 3 The same process as in Example 1 was carried out except that the addition amount of TiO 2 was 3.0 parts by weight to obtain a fired molded product and its classified powder. These bulk densities are shown in Table 1. The X-ray diffraction chart of this classified powder is shown in FIG. 3, and the production ratio of 4CP obtained therefrom is shown in Table 1. From this result, it is understood that high-purity 4CP is produced by this production method.

【0028】比較例1 チタン化合物(TiO2)を加えない以外は実施例1と同
様に処理し、焼成成型体及びその分級粉末を得た。これ
らの嵩密度を表1に示す。またこの分級粉末についての
X線回折チャートは図4に示すものであり、HAPの第
4ピークの成長が著しく、実質的にHAPと4CPとの
複合体であることが分かる。このチャートから求めた4
CPの生成割合を表1に示す。
Comparative Example 1 A fired compact and its classified powder were obtained by the same procedure as in Example 1 except that the titanium compound (TiO 2 ) was not added. These bulk densities are shown in Table 1. The X-ray diffraction chart of this classified powder is shown in FIG. 4, and it can be seen that the growth of the fourth peak of HAP is remarkable and that it is substantially a complex of HAP and 4CP. 4 obtained from this chart
Table 1 shows the production rate of CP.

【0029】比較例2 TiO2をAl23に変更する以外は実施例1と同様に処
理し、焼成成型体及びその分級粉末を得た。これらの嵩
密度を表1に示す。またこの分級粉末についてのX線回
折チャートは図5に示すものであり、4CPの第1ピー
ク(A)は実施例と比べて低く、結晶性が悪いことが分か
る。またHAPの第4ピークは比較的低く抑えられてい
るもののその生成が認められ、このチャートから算出し
た4CPの生成割合は表1に示すものであった。
Comparative Example 2 A fired molded product and its classified powder were obtained by the same process as in Example 1 except that TiO 2 was changed to Al 2 O 3 . These bulk densities are shown in Table 1. Further, the X-ray diffraction chart of this classified powder is shown in FIG. 5, and it can be seen that the first peak (A) of 4CP is lower than that of the example and the crystallinity is poor. Further, although the fourth peak of HAP was suppressed to a relatively low level, its production was recognized, and the production rate of 4CP calculated from this chart is shown in Table 1.

【0030】比較例3 Al23の添加量を3.0重量部とする以外は実施例1と同
様に処理し、焼成成型体及びその分級粉末を得た。これ
らの嵩密度を表1に示す。またこの分級粉末についての
X線回折チャートは図6に示すものであり、4CPの第
1ピーク(A)は実施例と比べて低く、結晶性が悪いこと
が分かる。またHAPのメインピークは比較的低く抑え
られているもののその生成が認められ、このチャートか
ら算出した4CPの生成割合は表1に示すものであっ
た。
Comparative Example 3 The same procedure as in Example 1 was carried out except that the amount of Al 2 O 3 added was 3.0 parts by weight to obtain a fired molded product and its classified powder. These bulk densities are shown in Table 1. Further, the X-ray diffraction chart of this classified powder is shown in FIG. 6, and it can be seen that the first peak (A) of 4CP is lower than that of the example and the crystallinity is poor. Further, although the main peak of HAP was suppressed to a relatively low level, its production was recognized, and the production rate of 4CP calculated from this chart is shown in Table 1.

【0031】 上記結果から、本発明により得られる焼成成型体及び分
級粉末は嵩密度が高いので、気孔が少なく、機械的強度
が大きいものが得られていることが分かる。また、従来
の粉末であれば嵩が高く液剤と混ぜ合わせにくいのに比
べ、本発明の分級粉末を液剤と練和する際、嵩が低くて
混ぜ合わせ易く、所望の物性特性の再現性に優れている
ことが分かる。さらに本発明では、焼成物に占める不純
物(HAP)の割合が従来の製造方法により得られる焼
成物に比してより低いものが得られるばかりか、図1〜
3と図4〜6とを比較すると、本発明により得られる焼
成成型体及び分級粉末はピークが高く結晶性に優れてい
ることが分かる。
[0031] From the above results, it can be seen that the fired molded product and classified powder obtained by the present invention have high bulk density, and thus have low porosity and high mechanical strength. In addition, conventional powders have high bulk and are difficult to mix with liquid agents, whereas when the classified powder of the present invention is kneaded with liquid agents, they are low in volume and easy to mix, and have excellent reproducibility of desired physical properties. I understand that. Further, according to the present invention, not only is the ratio of impurities (HAP) in the fired product lower than that of the fired product obtained by the conventional manufacturing method,
3 is compared with FIGS. 4 to 6, it can be seen that the fired molded body and classified powder obtained by the present invention have high peaks and excellent crystallinity.

【0032】実施例4 前記実施例1〜3及び比較例1〜3でそれぞれ得られた
各分級粉末と、下記の2種の水溶液: a)45重量%リンゴ酸水溶液 b)20重量%リンゴ酸+20重量%クエン酸+6重量%ポリ
アクリル酸共重 合体(共重合比=アクリル酸6:イタ
コン酸4)水溶液 とを、下記表2に示す〔粉/液〕比(グラム比)にてそ
れぞれ練和して、JIS T6602歯科用リン酸亜鉛セメント
の標準稠度の試験方法を準用し、標準稠度を求めて各セ
メント用組成物を調製し、これらを硬化させてその硬化
時間及び圧縮強度を測定して、下記表2に示す結果を得
た。
Example 4 Each classified powder obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the following two aqueous solutions: a) 45 wt% malic acid aqueous solution b) 20 wt% malic acid + 20% by weight citric acid + 6% by weight polyacrylic acid copolymer (copolymerization ratio = acrylic acid 6: itaconic acid 4) aqueous solution was mixed at a [powder / liquid] ratio (gram ratio) shown in Table 2 below. In accordance with JIS T6602 Dental Zinc Phosphate Cement Standard Consistency Testing Method, the standard consistency is determined to prepare each cement composition, and these are cured to measure their curing time and compressive strength. The results shown in Table 2 below were obtained.

【0033】 [0033]

【0034】表2の結果より、本発明の実施例により得
られるセメント硬化体は、圧縮強度に優れていることが
分かる。従って、本発明のセメント用組成物は、歯科用
材料に代表される生体修復材料として用いた場合にも十
分な機械的強度を発揮するものであることが分かる。そ
れ故、本発明のセメント用組成物は、従来機械的強度が
不十分であるとして適用範囲が制限されていた4CPの
医科用分野及び歯科用分野への使用を可能とするもので
ある。その上、従来のセメント用組成物に比して硬化時
間が若干延長されているということは、その分、術者に
よる操作時間が長く取れることを意味し、セメント用組
成物の混練物をより正確に充填対象部位に充填すること
ができる。
From the results shown in Table 2, it is understood that the cement hardened products obtained in the examples of the present invention have excellent compressive strength. Therefore, it is understood that the composition for cement of the present invention exhibits sufficient mechanical strength even when used as a bio-restorative material represented by a dental material. Therefore, the cementitious composition of the present invention enables use of 4CP in the medical and dental fields where the application range has been limited due to insufficient mechanical strength. Moreover, the fact that the curing time is slightly longer than that of the conventional cement composition means that the operation time by the operator can be taken longer, and the kneaded product of the cement composition can be more effectively used. It is possible to accurately fill the filling target site.

【0035】実施例5 実施例1で得られた分級粉末と下記水溶液とを、下記表
3に示す〔粉/液〕比(グラム比)にて練和してセメン
ト用組成物を調製し、稠度を求めると共にこれを硬化さ
せてその硬化時間を測定して、下記表3に示す結果を得
た。 水溶液: 4重量%クエン酸+ 2重量%リンゴ酸+0.2重
量%リン酸+0.85重量%塩化ナトリウム この結果、比較的機械的強度が要求されない用途に適用
されるセント用組成物であれば、以上のように本発明の
4CPを用いこの4CPに対する酸成分の配合割合を少
なくし、かつ無機塩水溶液を混合することにより、硬化
時間を長く稼いだセメント用組成物として提供すること
ができる。
Example 5 The classified powder obtained in Example 1 and the following aqueous solution were kneaded at a [powder / liquid] ratio (gram ratio) shown in Table 3 below to prepare a cement composition, The consistency was determined, this was cured and the curing time was measured, and the results shown in Table 3 below were obtained. Aqueous solution: 4% by weight citric acid + 2% by weight malic acid + 0.2% by weight phosphoric acid + 0.85% by weight sodium chloride As a result, in the case of a composition for cents which is applied to applications where relatively high mechanical strength is not required, 4CP of the present invention is used as described above, and the mixing ratio of the acid component to this 4CP is reduced, and the inorganic salt aqueous solution is used. It is possible to provide a cement composition which has a long curing time by being mixed with.

【0036】[0036]

【発明の効果】本発明によれば、チタン化合物を添加す
ることにより、焼成温度を下げることができ、焼成時間
が短縮できるので省電力で製造することができる。従来
行われていた4CP製造時に伴う急冷操作、焼成炉内の
除湿乾燥などを行う必要はなくなり、従って、特殊な構
成の焼成炉を必要としなく通常の焼成炉にて製造できる
上、焼成炉内で自然放冷して取り出せるので、製造が簡
単かつ安全に行うことができる。
According to the present invention, by adding the titanium compound, the firing temperature can be lowered and the firing time can be shortened, so that the production can be performed with low power consumption. It is no longer necessary to perform the quenching operation and dehumidifying / drying in the firing furnace that were conventionally performed during the production of 4CP. Therefore, it is possible to manufacture in a normal firing furnace without the need for a firing furnace with a special configuration, and in the firing furnace. Since it can be naturally cooled and taken out, it can be manufactured easily and safely.

【0037】本発明の製造方法は、冷却速度が遅くても
大気中の水分を殆ど吸収しないので、HAPの生成を押
さえ高純度でかつ安定した品質の4CPを製造すること
ができる。その上、チタン化合物として酸化チタンを用
いた場合には、さらに結晶性が高く保存性に優れた商品
価値の高い4CPを得ることができる。本発明の製造方
法により得られる4CPは、嵩密度が高くかつ高純度で
ある上淡黄色であり、歯科用材料としては勿論のこと生
体修復材料としても好適に用いられる。歯科用材料に用
いた場合特に歯質に近く審美性が高いものを得ることが
できる。
Since the production method of the present invention hardly absorbs moisture in the atmosphere even if the cooling rate is slow, it is possible to suppress the production of HAP and produce 4CP of high purity and stable quality. Moreover, when titanium oxide is used as the titanium compound, 4CP having high crystallinity and excellent storage stability and high commercial value can be obtained. 4CP obtained by the production method of the present invention has a high bulk density and a high purity and is also pale yellow, and is suitably used not only as a dental material but also as a bioremediation material. When it is used as a dental material, it is possible to obtain a material that is close to the tooth structure and has high aesthetics.

【0038】さらに本発明の製造方法により得られる4
CPを用いたセメント用組成物は、各種液剤と練和した
場合、従来のものに比して硬化時間が若干延長されると
共に硬化体の圧縮強度も高いものとなり、この点からも
歯科用材料としては勿論のこと生体修復材料一般として
も好適なものを提供できる。
Furthermore, 4 obtained by the production method of the present invention
The cement composition using CP, when kneaded with various liquid agents, has a slightly longer curing time and higher compressive strength of the cured product than conventional ones. From this point as well, it is a dental material. As a matter of course, it is possible to provide a material suitable as a general bioremediation material.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において製造された本発明の4CPの
X線回折チャート
1 is an X-ray diffraction chart of 4CP of the present invention manufactured in Example 1. FIG.

【図2】実施例2において製造された本発明の4CPの
X線回折チャート
2 is an X-ray diffraction chart of 4CP of the present invention manufactured in Example 2. FIG.

【図3】実施例3において製造された本発明の4CPの
X線回折チャート
FIG. 3 is an X-ray diffraction chart of 4CP of the present invention manufactured in Example 3.

【図4】比較例1において製造された4CPのX線回折
チャート
4 is an X-ray diffraction chart of 4CP manufactured in Comparative Example 1. FIG.

【図5】比較例2において製造された4CPのX線回折
チャート
5 is an X-ray diffraction chart of 4CP manufactured in Comparative Example 2. FIG.

【図6】比較例3において製造された4CPのX線回折
チャート
6 is an X-ray diffraction chart of 4CP manufactured in Comparative Example 3. FIG.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 カルシウム原料粉末及びリン原料
粉末からリン酸四カルシウムを製造する方法からなり、
これらの両原料をCa/P=2モル比となるように配合す
ると共に、リン酸四カルシウムの理論生成量 100重量部
に対してチタン化合物をTiO2換算で0.1〜10重量部添
加・混合し、この混合物を1350℃以上の雰囲気下で1時
間以上焼成することにより、粒径30μm以下で嵩密度1.0
〜2.0g/cm3の粉末状のリン酸四カルシウムを得ることを
特徴とするリン酸四カルシウムの製造方法。
1. A method for producing tetracalcium phosphate from a calcium raw material powder and a phosphorus raw material powder,
Both of these raw materials were blended so that the Ca / P = 2 molar ratio was obtained, and 0.1 to 10 parts by weight of a titanium compound in terms of TiO 2 was added and mixed with respect to 100 parts by weight of the theoretical production amount of tetracalcium phosphate. By firing this mixture in an atmosphere of 1350 ° C or higher for 1 hour or longer, a particle size of 30 μm or less and a bulk density of 1.0
A method for producing tetracalcium phosphate, which comprises obtaining powdery tetracalcium phosphate at about 2.0 g / cm 3 .
【請求項2】 カルシウム原料粉末及びリン原料
粉末からリン酸四カルシウムを製造する方法からなり、
これらの両原料をCa/P=2モル比となるように配合す
ると共に、リン酸四カルシウムの理論生成量 100重量部
に対してチタン化合物をTiO2換算で0.1〜10重量部添
加・混合し、この混合物をプレス成型した後、1350℃以
上の雰囲気下で1時間以上焼成することにより、嵩密度
2.5〜3.5g/cm3の塊状のリン酸四カルシウムを得ること
を特徴とするリン酸四カルシウムの製造方法。
2. A method for producing tetracalcium phosphate from a calcium raw material powder and a phosphorus raw material powder,
Both of these raw materials were blended so that the Ca / P = 2 molar ratio was obtained, and 0.1 to 10 parts by weight of a titanium compound in terms of TiO 2 was added and mixed with respect to 100 parts by weight of the theoretical production amount of tetracalcium phosphate. The bulk density can be obtained by press-molding this mixture and then firing it in an atmosphere of 1350 ° C or higher for 1 hour or longer.
A method for producing tetracalcium phosphate, which comprises obtaining a mass of tetracalcium phosphate of 2.5 to 3.5 g / cm 3 .
【請求項3】 チタン化合物が酸化チタンである
請求項1又は2に記載のリン酸四カルシウムの製造方
法。
3. The method for producing tetracalcium phosphate according to claim 1, wherein the titanium compound is titanium oxide.
【請求項4】 カルシウム原料粉末の平均粒径が
1〜30μmであり、リン原料粉末の平均粒径が1〜40μm
であり、酸化チタンの粒径が0.1〜1.0μmである請求項
3記載のリン酸四カルシウムの製造方法。
4. The calcium raw material powder has an average particle diameter of 1 to 30 μm, and the phosphorus raw material powder has an average particle diameter of 1 to 40 μm.
4. The method for producing tetracalcium phosphate according to claim 3, wherein the particle size of titanium oxide is 0.1 to 1.0 μm.
【請求項5】 請求項1〜4のいずれかに記載の
製造方法により得られるリン酸四カルシウム。
5. Tetracalcium phosphate obtained by the production method according to claim 1.
【請求項6】 請求項5のリン酸四カルシウムを
必要に応じて平均粒径30μm以下に粉砕した粉末と、無
機酸、カルボキシル基を2個以上含む有機酸、ポリアク
リル酸の単独重合体及びその共重合体からなる群から選
択される1種以上の酸成分とを主成分とし、上記酸成分
が上記リン酸四カルシウム粉末に対して20〜40重量%の
割合で用いられてなるセメント用組成物。
6. A powder obtained by pulverizing the tetracalcium phosphate according to claim 5 to have an average particle size of 30 μm or less, an inorganic acid, an organic acid containing two or more carboxyl groups, a homopolymer of polyacrylic acid, and For cement, which comprises, as a main component, at least one acid component selected from the group consisting of the copolymers, and the acid component is used in a ratio of 20 to 40% by weight based on the tetracalcium phosphate powder. Composition.
JP8388894A 1994-03-29 1994-03-29 Method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and cement composition containing this tetracalcium phosphate Expired - Lifetime JP3558680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8388894A JP3558680B2 (en) 1994-03-29 1994-03-29 Method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and cement composition containing this tetracalcium phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8388894A JP3558680B2 (en) 1994-03-29 1994-03-29 Method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and cement composition containing this tetracalcium phosphate

Publications (2)

Publication Number Publication Date
JPH07267617A true JPH07267617A (en) 1995-10-17
JP3558680B2 JP3558680B2 (en) 2004-08-25

Family

ID=13815199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8388894A Expired - Lifetime JP3558680B2 (en) 1994-03-29 1994-03-29 Method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and cement composition containing this tetracalcium phosphate

Country Status (1)

Country Link
JP (1) JP3558680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083601A1 (en) * 2006-01-16 2007-07-26 Kuraray Medical Inc. Calcium phosphate composition and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083601A1 (en) * 2006-01-16 2007-07-26 Kuraray Medical Inc. Calcium phosphate composition and process for producing the same
US8906151B2 (en) 2006-01-16 2014-12-09 Kuraray Noritake Dental Inc. Calcium phosphate composition and process for producing the same

Also Published As

Publication number Publication date
JP3558680B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP2773752B2 (en) Storage stable formulations for calcium phosphate minerals prepared in situ
US4684673A (en) Surgical cement from amorphous tricalcium phosphate, poly(carboxylic acid) and water
US5047031A (en) In situ calcium phosphate minerals method
US4677140A (en) Surgical cement containing α-tricalcium phosphate, poly(carboxylic acid) and water
JPH0222113A (en) Production of calcium phosphate mineral
GB2156824A (en) Surgical cements
EP2902006B1 (en) Curable composition for dentistry, and method for producing same
JPH0734816B2 (en) Medical and dental curable materials
MX2007003352A (en) Dental material forming hydroxylapatite with bioactive effect.
JPS6283348A (en) Curable composition for medical use
JP2563187B2 (en) Method for producing calcium phosphate-based cured product
JPH078550A (en) Medical calcium phosphate
JP2505545B2 (en) Method for curing curable composition
US20040250729A1 (en) Fast-setting carbonated hydroxyapatite compositions and uses
JP3558680B2 (en) Method for producing tetracalcium phosphate, tetracalcium phosphate obtained by this method, and cement composition containing this tetracalcium phosphate
JP2563186B2 (en) Method for producing calcium phosphate-based cured product
JP6501189B2 (en) Dental curable composition and method for producing the same
JPH01301543A (en) Curable composition
JP2807819B2 (en) Hardening glue for root canal filling
JPH0699181B2 (en) Tetracalcium phosphate curable composition
JPH0588623B2 (en)
JPS62270164A (en) Substitute material for repairing living body hard tissue
JPS61236644A (en) Calcium phosphate hardenable composition
JPH07114804B2 (en) Medical curable composition
JPH04307067A (en) Composite composition for manufacture of calcium phosphate based hardening body and manufacture of hardening body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term