JPH0726450A - Activated carbon fiber sheet and method for producing the same - Google Patents
Activated carbon fiber sheet and method for producing the sameInfo
- Publication number
- JPH0726450A JPH0726450A JP5166633A JP16663393A JPH0726450A JP H0726450 A JPH0726450 A JP H0726450A JP 5166633 A JP5166633 A JP 5166633A JP 16663393 A JP16663393 A JP 16663393A JP H0726450 A JPH0726450 A JP H0726450A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- carbon fiber
- organic
- fiber layer
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Nonwoven Fabrics (AREA)
- Paper (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、流体中の悪臭や有機物
質あるいは溶解物質を吸着したり分離したりする浄化用
フィルタ−、マスクや生理用品、シ−ツ等の衛生用品、
そして、靴や冷蔵庫等の脱臭用品等に利用される活性炭
素繊維シ−トに関するものであり、特に、該活性炭素繊
維に有する各種特性を損なうことなく、シ−ト強度と破
断伸度に共に優れ、活性炭素繊維の脱落がなく、高度の
吸着能を有する均一な活性炭素繊維シ−ト、およびその
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purification filter for adsorbing or separating offensive odors, organic substances or dissolved substances in fluids, sanitary products such as masks, sanitary products and sheets,
The present invention relates to an activated carbon fiber sheet used for deodorizing articles such as shoes and refrigerators, and particularly to both sheet strength and elongation at break without impairing various properties of the activated carbon fiber. The present invention relates to a uniform activated carbon fiber sheet which is excellent and does not drop out of activated carbon fiber and has a high adsorption ability, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、悪臭や有機溶剤等の有毒ガスが環
境問題でクロ−ズアップされており、これらを防ぐ手段
として吸着性物質、特に従来から活性炭が利用されてい
る。最近では、中でも活性炭素繊維はその比表面積が極
めて大きく、高い吸着能及び大きな吸脱着のスピ−ドを
有しているため、その存在が特に注目されている。2. Description of the Related Art In recent years, toxic gases such as odors and organic solvents have been closed up due to environmental problems, and adsorptive substances, especially activated carbon, have been conventionally used as a means for preventing them. Recently, activated carbon fibers, in particular, have a very large specific surface area, and have a high adsorption capacity and a large speed of adsorption / desorption, so that their presence has been particularly noted.
【0003】活性炭素繊維をシ−ト化する場合、活性炭
素繊維には自着性がないため、何等かのバインダ−が必
要である。活性炭素繊維のバインダ−としては、種々の
溶液型やエマルジョン型の液状バインダ−及び繊維状バ
インダ−が一般的である。液状バインダ−の使用は、活
性炭素繊維の細孔を閉塞し、その各種特性を低下させる
ため好ましくない。また、有機系の樹脂を繊維状、ある
いはパルプ状にした繊維状バインダ−についても、シ−
トに十分な強度を持たせる為には多量の繊維を必要と
し、活性炭素繊維の含有量を低下させてしまうだけでな
く、溶融型のバインダ−を用いた場合、バインダ−溶融
時に活性炭素繊維の細孔を塞いでしまうといった欠点が
ある。バインダ−の使用量を減少させるためセルロ−ス
系のパルプ繊維がバインダ−としてよく用いられている
が、シ−ト密度が大きくなり、フィルタ−として必要な
通気性が悪くなることは避けられない。When the activated carbon fiber is made into a sheet, some kind of binder is required because the activated carbon fiber does not have self-adhesiveness. As the binder of the activated carbon fiber, various solution type or emulsion type liquid binders and fibrous binders are generally used. The use of a liquid binder is not preferable because it blocks the pores of the activated carbon fiber and deteriorates its various properties. Further, regarding a fibrous binder made of a fibrous or pulp-like organic resin,
A large amount of fiber is required to give the alloy sufficient strength, and not only does the content of the activated carbon fiber decrease, but when a molten binder is used, the activated carbon fiber is melted when the binder is melted. However, it has the drawback of blocking the pores of. Cellulosic pulp fibers are often used as a binder to reduce the amount of binder used, but it is inevitable that the sheet density increases and the air permeability required for the filter deteriorates. .
【0004】一方、特開平4−363107号公報で
は、活性炭素繊維層の上下を2枚の化学繊維あるいは羊
毛繊維で挟み、これらの積層した材料に複数の刺状の突
起の付いた針を貫通させて引き抜く加工を多数回繰り返
すことによって、上下の化学繊維あるいは羊毛繊維の一
部を活性炭素繊維層を貫通させて3次元に絡み合わせ、
シ−ト強度を発現させるという方法が開示されている。
しかしながら、この方法では、複数の刺状の突起の付い
た針を貫通させて引き抜く加工を多数回繰り返す間に、
針が活性炭素繊維を傷つけたり、細かく折ったり、シ−
ト表面上に針穴跡を無数残こすため、シ−トを使用する
際に、細かくなった活性炭素繊維の脱落が起きるという
問題がある。On the other hand, in Japanese Unexamined Patent Publication (Kokai) No. 4-363107, an activated carbon fiber layer is sandwiched between two chemical fibers or wool fibers, and a needle having a plurality of prickle protrusions is penetrated through these laminated materials. By repeating the process of pulling out and pulling out a large number of times, a part of the upper and lower chemical fibers or wool fibers are entangled three-dimensionally through the activated carbon fiber layer,
A method of expressing sheet strength is disclosed.
However, in this method, while repeating the process of penetrating and withdrawing the needle with a plurality of prickly protrusions many times,
The needle may damage the activated carbon fiber, break it finely, or
Since a large number of needle hole traces are left on the surface of the sheet, there is a problem that the finely divided activated carbon fibers may fall off when the sheet is used.
【0005】[0005]
【本発明が解決しようとする課題】本発明は上記の従来
技術の問題点を解決するものであり、活性炭素繊維の各
種特性を損なうことなく、シ−トの強度と破断伸度に優
れ、活性炭素繊維の脱落がなく、高度の吸着能を有する
均一な活性炭素繊維シ−ト、およびその製造方法を提供
することを目的とする。SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems of the prior art, and is excellent in sheet strength and elongation at break without impairing various characteristics of activated carbon fiber, It is an object of the present invention to provide a uniform activated carbon fiber sheet having a high adsorption ability without the activated carbon fibers falling off, and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】本発明者は、上記の目的
を達成するために鋭意研究した結果、活性炭素繊維シ−
トおよびその製造方法を発明するに至った。即ち、本発
明の活性炭素繊維シートは、活性炭素繊維10〜90重
量%とアスペクト比が1000〜2500である有機繊
維90〜10重量%から成る活性炭素繊維層と、該活性
炭素繊維層の片面あるいは両面に、アスペクト比が10
00〜2500である有機繊維から成る有機繊維層とを
有し、該有機繊維層と該活性炭素繊維層の両層内を構成
する有機繊維が、活性炭素繊維を介在して3次元的に絡
み合わされ、該活性炭素繊維層と該有機繊維層が一体化
されていることを特徴とする。The present inventor has conducted extensive studies to achieve the above object, and as a result, activated carbon fiber sheet
The present invention has led to the invention of a sheet and its manufacturing method. That is, the activated carbon fiber sheet of the present invention comprises an activated carbon fiber layer comprising 10 to 90% by weight of activated carbon fibers and 90 to 10% by weight of organic fibers having an aspect ratio of 1000 to 2500, and one side of the activated carbon fiber layer. Or both sides have an aspect ratio of 10
An organic fiber layer composed of an organic fiber of 0 to 2500, and the organic fibers constituting both layers of the organic fiber layer and the activated carbon fiber layer are three-dimensionally entangled with the activated carbon fiber interposed. It is characterized in that the activated carbon fiber layer and the organic fiber layer are integrated.
【0007】また、活性炭繊維層の有機繊維の繊維径
は、9μm以下で、活性炭繊維層と有機繊維層を構成す
る有機繊維の断面形状は、異型断面であることが好まし
い。The fiber diameter of the organic fibers of the activated carbon fiber layer is preferably 9 μm or less, and the cross-sectional shape of the organic fibers constituting the activated carbon fiber layer and the organic fiber layer is preferably an atypical cross section.
【0008】また、本発明の活性炭素繊維シートの製造
方法は、活性炭素繊維10〜90重量%と少なくとも1
種類以上のアスペクト比が1000〜2500である有
機繊維90〜10重量%を水に分散したスラリ−と、ア
スペクト比が1000〜2500である有機繊維を水に
分散したスラリ−を、湿式抄造法により2層あるいは3
層に抄き合わせして、活性炭素繊維層の片面あるいは両
面に有機繊維層を設けた複合ウェブを形成し、次いで、
該複合ウェブを水流交絡法を用いて、有機繊維層側から
高圧柱状水流を当て、該有機繊維層と該活性炭素繊維層
の両層内を構成する有機繊維を活性炭素繊維を介在し
て、3次元的に絡み合わせ、該有機繊維層と該活性炭素
繊維層を一体化させることを特徴とする。Further, the method for producing an activated carbon fiber sheet of the present invention comprises 10 to 90% by weight of activated carbon fiber and at least 1.
A slurry in which 90 to 10% by weight of organic fibers having an aspect ratio of 1000 to 2,500 or more in water is dispersed in water and a slurry in which organic fibers having an aspect ratio of 1000 to 2500 are dispersed in water are prepared by a wet papermaking method. 2 layers or 3
Combined into layers, to form a composite web with an organic fiber layer on one or both sides of the activated carbon fiber layer, then,
Using a hydroentangling method for the composite web, a high-pressure columnar water stream is applied from the organic fiber layer side, and the organic fibers constituting both layers of the organic fiber layer and the activated carbon fiber layer are interposed with the activated carbon fiber, It is characterized in that the organic fiber layer and the activated carbon fiber layer are integrated together by three-dimensionally intertwining.
【0009】以下、本発明の詳細な説明を行う。まず、
本発明で用いる成分の説明を行う。The present invention will be described in detail below. First,
The components used in the present invention will be described.
【0010】本発明で用いられる活性炭素繊維とは、吸
着能に特に優れた炭素繊維であり、一般に100m2/
g以上の比表面積を有するものである。好ましい比表面
積は700m2/g以上であるが、活性炭素繊維の比表
面積が極端に大きい場合には、その繊維強度が小さくな
る為、比表面積は2500m2/g以下であることが望
ましい。The activated carbon fiber used in the present invention is a carbon fiber having a particularly excellent adsorption ability, and generally 100 m 2 /
It has a specific surface area of g or more. The preferred specific surface area is 700 m 2 / g or more, but when the specific surface area of the activated carbon fiber is extremely large, the fiber strength becomes small, so the specific surface area is preferably 2500 m 2 / g or less.
【0011】このような活性炭素繊維としては、綿、
麻、セルロ−ス再生繊維、ポリビニルアルコ−ル繊維、
アクリル繊維、芳香族ポリアミド繊維、架橋ホルムアル
デヒド繊維、リグニン繊維、フェノ−ル繊維、石油ピッ
チ繊維、石炭ピッチ繊維等の原料繊維より、常法に従っ
て高温で炭化処理及び表面活性化処理を施し得られる。As such activated carbon fiber, cotton,
Hemp, recycled cellulose fiber, polyvinyl alcohol fiber,
A raw material fiber such as an acrylic fiber, an aromatic polyamide fiber, a crosslinked formaldehyde fiber, a lignin fiber, a phenol fiber, a petroleum pitch fiber, or a coal pitch fiber can be carbonized and surface-activated at a high temperature according to a conventional method.
【0012】活性炭素繊維の形状、繊維径、繊維長は特
に限定されるものではないが、繊維ウェブに高圧柱状水
流を当てた際の活性炭素繊維の脱落を防止し、しかも地
合の良好な活性炭素繊維シ−トを得るためには、平均繊
維径は5〜30μmのものが好ましく、さらに好ましく
は、10μm〜25μmのものが良い。また、平均繊維
長は3mm〜15mmのものが良く、さらに好ましく
は、5mm〜10mmのものが良い。The shape, fiber diameter, and fiber length of the activated carbon fibers are not particularly limited, but the activated carbon fibers are prevented from falling off when a high-pressure columnar water stream is applied to the fiber web, and the formation is good. In order to obtain the activated carbon fiber sheet, the average fiber diameter is preferably 5 to 30 μm, more preferably 10 μm to 25 μm. The average fiber length is preferably 3 mm to 15 mm, more preferably 5 mm to 10 mm.
【0013】本発明において、上記の活性炭素繊維を単
独で使用しても構わないし、あるいは用途に応じて複数
の活性炭素繊維を混合しても構わない。In the present invention, the above activated carbon fibers may be used alone, or a plurality of activated carbon fibers may be mixed depending on the use.
【0014】本発明で用いる有機繊維の種類としては、
特に限定されるものではなく、用途により、ポリエステ
ル系繊維、ポリオレフィン系繊維、ポリアクリロニトリ
ル系繊維、ポリビニルアルコ−ル系繊維、ナイロン繊
維、ウレタン繊維を単独、あるいはこれらの組み合せか
らなるあらゆる繊維を用いることができる。また、互い
に相溶性の小さい2種類以上の成分が接合された繊維
で、機械的作用や膨潤剤の作用により、容易に割繊し、
極細繊維を発生する剥離型分割複合繊維を用いることが
できる。The types of organic fibers used in the present invention include:
There is no particular limitation, and depending on the application, polyester fiber, polyolefin fiber, polyacrylonitrile fiber, polyvinyl alcohol fiber, nylon fiber, urethane fiber may be used alone or any combination of these fibers may be used. You can In addition, a fiber in which two or more kinds of components having a small compatibility with each other are joined, and easily split by a mechanical action or an action of a swelling agent,
Peelable split conjugate fibers that generate ultrafine fibers can be used.
【0015】本発明で用いる活性炭素繊維層及び有機繊
維層の有機繊維は、少なくとも1種類のアスペクト比が
1000〜2500であることを必須条件とする。ま
た、活性炭素繊維層の有機繊維の繊維径は、9μm以下
であることが好ましい。この繊維径以下では、活性炭素
繊維層での有機繊維の本数が多くなり、また、繊維自体
が屈曲しやすく、高圧柱状水流により、活性炭素繊維の
周りを取り囲みながら、繊維同士が絡み合うことができ
るため、活性炭素繊維の脱落が少なくなる。The organic fiber of the activated carbon fiber layer and the organic fiber layer used in the present invention must have an aspect ratio of at least one type of 1000 to 2500. Further, the fiber diameter of the organic fiber of the activated carbon fiber layer is preferably 9 μm or less. Below this fiber diameter, the number of organic fibers in the activated carbon fiber layer is increased, and the fibers themselves are easily bent, and the high pressure columnar water flow surrounds the activated carbon fibers, and the fibers can be entangled with each other. Therefore, the activated carbon fibers are less likely to fall off.
【0016】本発明で用いる有機繊維の繊維長は、5〜
25mmのものが好ましい。繊維長が25mmより長い
と、水中での分散工程が難しく、分散剤を選択し、適量
使用する必要があるばかりか、1度分散した後、再度凝
集して、よれ、もつれ、だま等が発生し易くなるという
問題が生じて来る。また、分散濃度を低くしなければな
らず生産性が劣る。The fiber length of the organic fiber used in the present invention is from 5 to 5.
It is preferably 25 mm. If the fiber length is longer than 25 mm, the dispersion process in water is difficult, and it is necessary to select an appropriate amount of dispersant and use it in an appropriate amount. Also, once disperse it, it will aggregate again to cause twisting, entanglement, and deception. The problem arises that it will be easier to do. Also, the dispersion concentration must be lowered, resulting in poor productivity.
【0017】一方、繊維長が5mmより短いと、分散工
程が容易であるが、高圧柱状水流により動き易いため、
繊維を曲げ、絡み合わせるのが困難で強度の大きいシ−
トを得ることが困難であるばかりか、活性炭素繊維を取
り囲み、十分に捕捉することができず、活性炭素繊維の
脱落を招く。また、繊維全体が動くために、繊維間のず
れが生じ、シ−ト内部で歪が生じ、高圧柱状水流を噴射
した後、シ−トに多くのしわが発生するという問題が生
じる。On the other hand, when the fiber length is shorter than 5 mm, the dispersion process is easy, but it is easy to move due to the high pressure columnar water flow.
It is difficult to bend and entangle fibers and it has a high strength.
In addition to being difficult to obtain, the active carbon fiber cannot be sufficiently captured because it surrounds the activated carbon fiber, which causes the activated carbon fiber to fall off. Further, since the fibers move as a whole, the fibers are displaced from each other, causing strain inside the sheet, and causing a lot of wrinkles in the sheet after the high-pressure columnar water stream is jetted.
【0018】本発明で用いる有機繊維の断面形状は、円
形のみならず、楕円形でも良く、更に好ましくは、三
角、Y型、T型、U型、星型、ドッグボ−ン型等いわゆ
る異型断面形状を持つものが良い。有機繊維の断面積
が、真円と異型断面とで同一の場合では、曲げに対する
挙動が異なり、異型断面を有する有機繊維の方が、曲げ
剛性に異方性を生じ、短軸方向での剛性が極端に小さく
なるために、短軸方向に屈曲し易く、容易に絡み合う。
そのため、異型断面を有する有機繊維は、水流交絡の際
に、活性炭素繊維を取り囲みながら、繊維同士が容易に
交絡する。また、異型断面の方が角があり、活性炭素繊
維への引っかかりが良いため、真円に比べると、活性炭
素繊維の脱落が少ないという効果がある。The cross-sectional shape of the organic fiber used in the present invention is not limited to a circular shape, but may be an elliptical shape, more preferably a so-called atypical cross section such as a triangular shape, a Y-shape, a T-shape, a U-shape, a star shape, and a dog-bone shape. It is better to have a shape. When the cross-sectional area of the organic fiber is the same between the perfect circle and the atypical cross section, the behavior against bending is different, and the organic fiber having the atypical cross section has anisotropy in bending rigidity, and the rigidity in the minor axis direction Is extremely small, so that it easily bends in the minor axis direction and is easily entangled.
Therefore, in the organic fiber having the atypical cross section, the fibers are easily entangled while surrounding the activated carbon fiber during the hydroentangling. Further, since the modified cross section has corners and is better caught on the activated carbon fiber, there is an effect that the activated carbon fiber is less likely to fall off than a perfect circle.
【0019】また、活性炭素繊維の脱落は、活性炭素繊
維層の活性炭素繊維の含有量、有機繊維層を活性炭素繊
維層の片面だけに設けるか、或は両面に設けるか、活性
炭素繊維層と有機繊維層に用いる有機繊維の繊維径の選
択、活性炭素繊維層と有機繊維層の坪量比率で異なる。
活性炭素繊維層の活性炭素繊維を繊維径の小さい有機繊
維で取り囲み、捕捉するか、活性炭素繊維の含有量が多
くても、有機繊維層の有機繊維の繊維径を小さくし、活
性炭素繊維層を両面から挟み込むようにすると、活性炭
素繊維の脱落は少なくなる。従って、活性炭素繊維の脱
落は、用途に応じて、上記の多くの方法の組み合せによ
り、無くすことが可能である。Further, the activated carbon fibers may be removed by deciding the content of the activated carbon fibers in the activated carbon fiber layer, providing the organic fiber layer only on one side of the activated carbon fiber layer, or on both sides of the activated carbon fiber layer. And the selection of the fiber diameter of the organic fiber used for the organic fiber layer and the basis weight ratio of the activated carbon fiber layer and the organic fiber layer.
The activated carbon fibers in the activated carbon fiber layer are surrounded by and trapped with organic fibers having a small fiber diameter, or even if the activated carbon fiber content is high, the fiber diameter of the organic fibers in the organic fiber layer is reduced to reduce the activated carbon fiber layer. By sandwiching between the both sides, the activated carbon fibers are less likely to fall off. Therefore, the fall of the activated carbon fiber can be eliminated by combining many of the above methods depending on the application.
【0020】次に、活性炭素繊維シ−トの製造方法につ
いて述べる。まず、活性炭素繊維のウェブを製造するに
は、乾式法と湿式法があるが、乾式法を用い得られたシ
−トは、通気性は良いものの、シ−トの地合が悪く、ま
た、活性炭素繊維を開繊する工程で繊維が折れて、活性
炭素繊維の歩留まりが悪くなり、不経済である。湿式法
を用いて抄紙したシ−トは、シ−トが均一で地合が良好
である。また、活性炭素繊維の歩留まりが良い。Next, a method for producing the activated carbon fiber sheet will be described. First, there are a dry method and a wet method for producing a web of activated carbon fiber. The sheet obtained by using the dry method has good breathability, but the texture of the sheet is poor, and The fiber breaks in the process of opening the activated carbon fiber, resulting in a poor yield of activated carbon fiber, which is uneconomical. The sheet produced by the wet method has a uniform sheet and good texture. In addition, the yield of activated carbon fibers is good.
【0021】本発明の活性炭素繊維シ−トの製造方法
は、活性炭素繊維と有機繊維、或は有機繊維だけをパル
パ−或はミキサ−等で界面活性剤を添加して離解し、ア
ジテ−タ−等の緩やかな撹拌のもと、水中に分散して、
均一なスラリ−を形成する。このスラリ−を円網、長
網、あるいは傾斜式等のワイヤ−を1つ以上有する抄紙
機を用いて抄紙して、地合良好な活性炭素繊維層と有機
繊維層を有する複合ウェブを製造する。In the method for producing an activated carbon fiber sheet of the present invention, the activated carbon fiber and the organic fiber, or only the organic fiber is disaggregated by adding a surfactant with a pulper or a mixer, and then agitated. Disperse in water under gentle agitation such as
Form a uniform slurry. This slurry is made into a paper by using a paper machine having one or more wires such as a cylinder, a Fourdrin, or a slanted wire to produce a composite web having an activated carbon fiber layer and an organic fiber layer which are well formed. .
【0022】抄紙した湿紙状の複合ウェブをプレス後、
開孔率40%以下、1つの開孔の大きさが0.07mm
2以下の多孔質支持体上に積載し、有機繊維層側の上方
から高圧柱状水流を噴射し、高圧柱状水流とウェブを相
対的に移動させ、活性炭素繊維層と有機繊維層の両層内
を構成する有機繊維を活性炭素繊維を介在して、3次元
的に絡み合わせ、活性炭素繊維層と有機繊維層を一体化
させる。高圧柱状水流とウェブを相対的に移動させる方
法としては、コンベア式の支持体、或はドラム式の支持
体を回転運動させる方法が簡便である。このとき支持体
の搬送速度は、3〜100m/min以下の速度で用いるこ
とができる。After pressing the paper-made wet paper web,
Opening rate 40% or less, the size of one opening is 0.07mm
It is loaded on a porous support of 2 or less, a high-pressure columnar water stream is jetted from above the organic fiber layer side, the high-pressure columnar water stream and the web are relatively moved, and both inside the activated carbon fiber layer and the organic fiber layer. The organic fibers constituting the above are three-dimensionally intertwined with the activated carbon fibers interposed therebetween to integrate the activated carbon fiber layer and the organic fiber layer. As a method for relatively moving the high-pressure columnar water flow and the web, a method of rotating a conveyor type support or a drum type support is convenient. At this time, the transport speed of the support can be 3 to 100 m / min or less.
【0023】ここで、支持体の開孔率が40%より大き
いと、得られるシ−トに開孔が生じる。逆に、開孔率が
小さいほど、得られたシ−トの面質が良くなるが、開孔
率が40%以下でも、1つの開孔の大きさが0.005
mm2以下の多孔質支持体上では、絡み合わせるために
要した水が支持体から下に抜けず、支持体に当たった
後、再びウェブに跳ね返り、跳ね返り水がウェブを突き
上げ、ウェブが破損する現象が生じ、好ましくない。こ
のような多孔質支持体としては、平織り、綾織り等の織
り方で、ステンレス、ブロンズ等の金属、或は強化ポリ
エステル、ポリアミド等のプラスチック等の材質のワイ
ヤ−等が挙げられる。If the porosity of the support is greater than 40%, the sheet obtained will have porosity. Conversely, the smaller the porosity, the better the surface quality of the obtained sheet, but even if the porosity is 40% or less, the size of one open hole is 0.005.
On a porous support of mm 2 or less, the water required for the entanglement does not escape from the support to the bottom, and after hitting the support, it bounces back to the web again, and the bounced water pushes up the web and breaks the web. A phenomenon occurs, which is not preferable. Examples of such a porous support include a wire such as a plain weave or a twill weave, a metal such as stainless steel or bronze, or a material such as plastic such as reinforced polyester or polyamide.
【0024】次に、こうして得られた活性炭素繊維シ−
トは、シリンダ−ドライヤ−やエア−ドライヤ−等を用
いて乾燥され、その後、熱カレンダ−ロ−ル処理等の熱
圧加工を行い、適当な厚さに調整することが可能であ
る。Next, the activated carbon fiber sheet thus obtained
The sheet can be dried by using a cylinder dryer, an air dryer, or the like, and then subjected to hot pressure processing such as thermal calendar roll treatment to adjust the thickness to an appropriate value.
【0025】[0025]
【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明は本実施例に限定されるものではな
い。なお、実施例中における、部、%はすべて重量によ
るものである。なお、実施例及び比較例に於ける引張強
度、破断伸度、比表面積、活性炭素繊維の脱落の評価
は、以下の試験方法で行った。EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, all parts and% are by weight. The following test methods were used to evaluate the tensile strength, the elongation at break, the specific surface area, and the loss of activated carbon fibers in the examples and comparative examples.
【0026】引張強度(kg/2cm幅):引張強度は
JIS−P8113に従い、活性炭素繊維シ−トを縦方
向及び横方向について幅2cm、長さ20cmに断裁
し、テンシロン測定機(オリエンテック社製、HTM−
100)を用いて破断時の荷重を各々10回測定し、そ
の平均値を引張強度とした。Tensile strength (kg / 2 cm width): According to JIS-P8113, the tensile strength was measured by cutting the activated carbon fiber sheet in the longitudinal and transverse directions into a width of 2 cm and a length of 20 cm. Made, HTM-
100) was used to measure the load at break 10 times, and the average value was taken as the tensile strength.
【0027】破断伸度(%):破断伸度はJIS−P8
132に従い、上記した引張強度試験で、試験片が破断
するまでに示した最大引張りひずみ率を各々10回測定
し、その平均値を百分率で表し、破断伸度とした。Elongation at break (%): Elongation at break is JIS-P8
According to No. 132, the maximum tensile strain rate shown until the test piece broke was measured 10 times in the above-mentioned tensile strength test, and the average value was expressed as a percentage, which was taken as the breaking elongation.
【0028】比表面積(m2/g):比表面積は、窒素
吸着法により比表面積細孔分布解析装置(島津製作所
製、アキュソ−ブ2100−02形)を用いて測定し
た。Specific surface area (m 2 / g): The specific surface area was measured by a nitrogen adsorption method using a specific surface area pore distribution analyzer (manufactured by Shimadzu Corporation, Accusorb 2100-02).
【0029】活性炭素繊維の脱落:活性炭素繊維の脱落
の評価は、活性炭素繊維シ−トを強く揺すったり、手で
強く触った時に、活性炭素繊維が全く落ちず、手に付か
なかった場合を◎とし、活性炭素繊維は落ちなかった
が、手にわずかに付いた場合を○、活性炭素繊維が落
ち、手にかなり付いた場合を△、活性炭素繊維の落ちが
ひどく、手が黒く汚れた場合を×とした。Loss of activated carbon fiber: The loss of activated carbon fiber was evaluated when the activated carbon fiber sheet was strongly shaken or touched with a hand, and the activated carbon fiber did not drop at all and could not be attached to the hand. ◎, the activated carbon fiber did not drop, but ○ when it was slightly attached to the hand, Δ when the activated carbon fiber dropped and was considerably attached to the hand, Δ, the activated carbon fiber was severely dropped, and the hand was stained black The case was marked as x.
【0030】実施例1、2 活性炭素繊維層として、活性炭素繊維(平均繊維径15
μm、繊維長8mm、比表面積1000m2/g)と有
機繊維(繊度0.15デニ−ル、繊維長7.5mmのポ
リエチレンテレフタレ−ト繊維)の配合比率を40/6
0(実施例1)、60/40(実施例2)に調製したス
ラリ−と、有機繊維層として、繊度1.5デニ−ル、繊
維長20mmのポリエチレンテレフタレ−ト繊維で調製
したスラリ−とを、湿式抄造法により2台の円網抄紙機
で抄き合わせして、乾燥重量が35g/m2の活性炭素
繊維層と乾燥重量が15g/m2の有機繊維層から成る
全体乾燥重量が50g/m2、幅50cmの湿紙複合ウ
ェブを製造した。この湿紙複合ウェブを100メッシュ
のステンレスワイヤ−である多孔質支持体上に載置し、
搬送速度7m/minで、水流交絡法により有機繊維層
側から先に高圧柱状水を当て、活性炭素繊維層と有機繊
維層の両層内を構成する有機繊維を活性炭素繊維を介在
して、3次元的に絡み合わせ、活性炭素繊維層と有機繊
維層を一体化させた。ノズルヘッドは、2ヘッド用い、
第1ヘッドのノズルはノズル径120μm、ノズル間隔
0.6mm、2列で水圧100kg/cm2、第2ヘッ
ドのノズルは、ノズル径100μm、ノズル間隔0.3
mm、1列で水圧125kg/cm2である。水流交絡
は、まず片面で行い、次に、同じ条件で裏面の交絡を行
った。こうして得られた交絡シ−トを100度のエア−
ドライヤ−で乾燥し、活性炭素繊維シ−トを得た。この
活性炭素繊維シ−トについて、各種試験を行った。その
結果を表1に示す。Examples 1 and 2 As the activated carbon fiber layer, activated carbon fibers (average fiber diameter 15
μm, fiber length 8 mm, specific surface area 1000 m 2 / g) and organic fiber (polyethylene terephthalate fiber having a fineness of 0.15 denier and fiber length of 7.5 mm) of 40/6
0 (Example 1), 60/40 (Example 2), and a slurry prepared from polyethylene terephthalate fibers having a fineness of 1.5 denier and a fiber length of 20 mm as the organic fiber layer. total dry weight preparative, and the combined paper making with two cylinder paper machine by a wet sheeting method, dry weight dry weight and the activated carbon fiber layer of 35 g / m 2 is composed of an organic fiber layer of 15 g / m 2 A wet paper web having a width of 50 g / m 2 and a width of 50 cm was produced. The wet paper web was placed on a 100 mesh stainless wire porous support,
At a conveying speed of 7 m / min, high-pressure columnar water was first applied from the organic fiber layer side by a hydroentangling method, and the organic fibers constituting both layers of the activated carbon fiber layer and the organic fiber layer were intercalated with the activated carbon fiber, The activated carbon fiber layer and the organic fiber layer were integrated by three-dimensionally intertwining. Two nozzle heads are used,
The nozzle of the first head has a nozzle diameter of 120 μm, the nozzle spacing is 0.6 mm, the water pressure is 100 kg / cm 2 in two rows, and the nozzle of the second head has a nozzle diameter of 100 μm and a nozzle spacing of 0.3.
mm, water pressure is 125 kg / cm 2 in one row. The hydroentanglement was performed on one side first, and then on the back side under the same conditions. The confounding sheet obtained in this way is aired at 100 degrees.
It was dried with a dryer to obtain an activated carbon fiber sheet. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 1.
【0031】実施例3 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を60部、繊度0.5デニ−ル(繊維径7.2μ
m)、繊維長10mmのポリエチレンテレフタレ−ト繊
維を40部に配合し、有機繊維層として、繊度0.15
デニ−ル(繊維径3.9μm)、繊維長7.5mmのポ
リエチレンテレフタレ−ト繊維を使用した以外は、実施
例1と同様の方法で活性炭素繊維シ−トを得た。この活
性炭素繊維シ−トについて、各種試験を行った。その結
果を表1に示す。Example 3 As the activated carbon fiber layer, 60 parts of the activated carbon fiber used in Example 1 and a fineness of 0.5 denier (fiber diameter 7.2 μm) were used.
m), 40 parts of polyethylene terephthalate fiber having a fiber length of 10 mm is blended to form an organic fiber layer having a fineness of 0.15.
An activated carbon fiber sheet was obtained in the same manner as in Example 1 except that polyethylene terephthalate fiber having a denier (fiber diameter of 3.9 μm) and a fiber length of 7.5 mm was used. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 1.
【0032】実施例4 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を80部、繊度0.15デニ−ル(繊維径3.9μ
m)、繊維長7.5mmのポリエチレンテレフタレ−ト
繊維を20部に配合し、有機繊維層として、繊度0.1
5デニ−ル(繊維径3.9μm)、繊維長7.5mmの
ポリエチレンテレフタレ−ト繊維を使用した以外は、実
施例1と同様の方法で活性炭素繊維シ−トを得た。この
活性炭素繊維シ−トについて、各種試験を行った。その
結果を表1に示す。Example 4 As an activated carbon fiber layer, 80 parts of the activated carbon fiber used in Example 1 and a fineness of 0.15 denier (fiber diameter 3.9 μm) were used.
m), polyethylene terephthalate fibers having a fiber length of 7.5 mm were mixed in 20 parts, and the fineness of 0.1 was obtained as an organic fiber layer.
An activated carbon fiber sheet was obtained in the same manner as in Example 1 except that polyethylene terephthalate fiber having 5 denier (fiber diameter of 3.9 μm) and fiber length of 7.5 mm was used. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 1.
【0033】実施例5 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を80部、繊度3デニ−ル、繊維長10mmのポリエ
チレンテレフタレ−トとポリプロピレンを成分とし、1
6分割されると、平均0.2デニ−ルの極細繊維を発生
する剥離型分割複合繊維を20部に配合し、有機繊維層
として、前述の剥離型分割複合繊維を使用した以外は、
実施例1と同様の方法で活性炭素繊維シ−トを得た。こ
の活性炭素繊維シ−トについて、各種試験を行った。そ
の結果を表1に示す。Example 5 As an activated carbon fiber layer, 80 parts of the activated carbon fiber used in Example 1, polyethylene terephthalate having a fineness of 3 denier and a fiber length of 10 mm and polypropylene were used as components.
When 6 parts are divided, 20 parts of the peelable split conjugate fiber that generates an ultrafine fiber on average of 0.2 denier is blended, and the above-mentioned peelable split conjugate fiber is used as the organic fiber layer.
An activated carbon fiber sheet was obtained in the same manner as in Example 1. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 1.
【0034】実施例6 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を90部、実施例5で使用した剥離型分割複合繊維を
10部配合し、有機繊維層として、実施例5で使用した
剥離型分割複合繊維を使用し、活性炭素繊維層の両面に
有機繊維層を設けられるように3台の円網抄紙機を使用
した以外は、実施例1と同様の方法で活性炭素繊維シ−
トを得た。この活性炭素繊維シ−トについて、各種試験
を行った。その結果を表1に示す。Example 6 As an activated carbon fiber layer, 90 parts of the activated carbon fiber used in Example 1 and 10 parts of the peelable split conjugate fiber used in Example 5 were blended, and as an organic fiber layer, Example 5 was used. The activated carbon was prepared in the same manner as in Example 1 except that the release-type split conjugate fiber used in Example 3 was used, and three cylinder paper machines were used so that organic fiber layers could be provided on both sides of the activated carbon fiber layer. Fiber sheet
Got Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 1.
【0035】比較例1 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を95部、実施例5で使用した剥離型分割複合繊維を
5部に配合した以外は、実施例6と同様の方法で活性炭
素繊維層の両面に有機繊維層を設けた活性炭素繊維シ−
トを得た。この活性炭素繊維シ−トについて、各種試験
を行った。その結果を表2に示す。Comparative Example 1 The same as Example 6 except that 95 parts of the activated carbon fiber used in Example 1 and 5 parts of the peelable split conjugate fiber used in Example 5 were blended as the activated carbon fiber layer. The activated carbon fiber sheet having organic fiber layers provided on both sides of the activated carbon fiber layer by the method of
Got Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 2.
【0036】比較例2 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を60部、繊度0.15デニ−ル(繊維径3.9μ
m)、繊維長3mmのポリエチレンテレフタレ−ト繊維
を40部に配合し、有機繊維層として、繊度0.15デ
ニ−ル(繊維径3.9μm)、繊維長3mmのポリエチ
レンテレフタレ−ト繊維を使用した以外は、実施例1と
同様の方法で活性炭素繊維シ−トを得た。この活性炭素
繊維シ−トについて、各種試験を行った。その結果を表
2に示す。Comparative Example 2 As the activated carbon fiber layer, 60 parts of the activated carbon fiber used in Example 1 and a fineness of 0.15 denier (fiber diameter 3.9 μm) were used.
m) and 40 parts of polyethylene terephthalate fiber having a fiber length of 3 mm, and as an organic fiber layer, a polyethylene terephthalate fiber having a fineness of 0.15 denier (fiber diameter of 3.9 μm) and a fiber length of 3 mm. An activated carbon fiber sheet was obtained in the same manner as in Example 1 except that was used. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 2.
【0037】比較例3 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を60部、繊度0.15デニ−ル(繊維径3.9μ
m)、繊維長3mmのポリエチレンテレフタレ−ト繊維
を40部に配合し、有機繊維層として、繊度0.15デ
ニ−ル(繊維径3.9μm)、繊維長7.5mmのポリ
エチレンテレフタレ−ト繊維を使用した以外は、実施例
1と同様の方法で活性炭素繊維シ−トを得た。この活性
炭素繊維シ−トについて、各種試験を行った。その結果
を表2に示す。Comparative Example 3 As the activated carbon fiber layer, 60 parts of the activated carbon fiber used in Example 1 and a fineness of 0.15 denier (fiber diameter 3.9 μm) were used.
m), and 40 parts of polyethylene terephthalate fiber having a fiber length of 3 mm, and as an organic fiber layer, a polyethylene terephthalate having a fineness of 0.15 denier (fiber diameter of 3.9 μm) and a fiber length of 7.5 mm. An activated carbon fiber sheet was obtained in the same manner as in Example 1 except that the tow fiber was used. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 2.
【0038】比較例4 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を60部、有機繊維として、繊度0.15デニ−ル
(繊維径3.9μm)、繊維長10mmのポリエチレン
テレフタレ−ト繊維を40部に配合し、有機繊維層とし
て、繊度0.15デニ−ル(繊維径3.9μm)、繊維
長10mmのポリエチレンテレフタレ−ト繊維を使用
し、実施例1と同様の方法で活性炭素繊維シ−トを得
た。この活性炭素繊維シ−トについて、各種試験を行っ
た。その結果を表2に示す。Comparative Example 4 As an activated carbon fiber layer, 60 parts of the activated carbon fiber used in Example 1 was used, and as an organic fiber, a polyethylene terefin having a fineness of 0.15 denier (fiber diameter 3.9 μm) and a fiber length of 10 mm. The same as in Example 1, except that 40 parts of the tareta fiber was blended and polyethylene terephthalate fiber having a fineness of 0.15 denier (fiber diameter of 3.9 μm) and a fiber length of 10 mm was used as the organic fiber layer. An activated carbon fiber sheet was obtained by the method of. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 2.
【0039】比較例5 活性炭素繊維層として、実施例1で使用した活性炭素繊
維を60部、繊維状バインダ−として、融着温度110
度の芯鞘タイプのポリエステルバインダ−繊維(メルテ
ィ−4080、2デニ−ル×5mm、ユニチカ社製)を
40部に配合し、有機繊維層として、芯がポリプロピレ
ンで、鞘がエチレンビニルアルコ−ル共重合体である熱
融着性複合繊維(NBF繊維、Eタイプ、2デニ−ル×
5mm、大和紡積社製)を使用し、湿式抄造法により2
台の円網抄紙機で抄き合わせして、乾燥重量が35g/
m2の活性炭素繊維層と乾燥重量が15g/m2の有機繊
維層から成る幅50cmの湿紙複合ウェブを製造した。
この湿紙複合ウェブをプレス後、120度のシリンダ−
ドライヤ−を用いて乾燥し、活性炭素繊維シ−トを得
た。この活性炭素繊維シ−トについて、各種試験を行っ
た。その結果を表2に示す。Comparative Example 5 As the activated carbon fiber layer, 60 parts of the activated carbon fiber used in Example 1 was used as the fibrous binder, and the fusion temperature was 110.
40 parts of a core-sheath type polyester binder fiber (Melty-4080, 2 denier x 5 mm, manufactured by Unitika Ltd.) is blended, and as a organic fiber layer, the core is polypropylene and the sheath is ethylene vinyl alcohol. Heat-fusible composite fiber (NBF fiber, E type, 2 denier x) which is a copolymer
5 mm, manufactured by Daiwa Boshoku Co., Ltd.
Drying weight is 35g /
dry weight and the activated carbon fiber layer of m 2 was produced the wet paper composite web width 50cm consisting of organic fiber layer of 15 g / m 2.
After pressing the composite web of wet paper, a cylinder of 120 degrees
It was dried using a dryer to obtain an activated carbon fiber sheet. Various tests were conducted on this activated carbon fiber sheet. The results are shown in Table 2.
【0040】[0040]
【表1】 [Table 1]
【0041】[0041]
【表2】 [Table 2]
【0042】表1に示したように、本発明の活性炭素繊
維シ−トは、表2の比較例5に示した繊維状バインダ−
繊維でシ−ト化したものに比較して、活性炭素繊維の配
合量が90重量%まで、有機繊維層と活性炭素繊維層の
両層内を構成する有機繊維が活性炭素繊維の周りを取り
囲み、介在して、3次元的に絡み合わされているので、
活性炭素繊維の脱落がほとんど起きず、引張強度や破断
伸度が非常に大きい。また、シ−トの比表面積は、活性
炭素繊維の比表面積から理論的に求まる値にほぼ近い値
を示しており、活性炭素繊維の特性が損なわれていない
ことが判る。As shown in Table 1, the activated carbon fiber sheet of the present invention has the fibrous binder shown in Comparative Example 5 of Table 2.
Compared to the sheet made of sheet, the activated carbon fiber is contained up to 90% by weight, and the organic fibers constituting both the organic fiber layer and the activated carbon fiber layer surround the activated carbon fiber. , Intervening, three-dimensionally intertwined,
Almost no drop of activated carbon fiber occurs, and tensile strength and elongation at break are very large. Further, the specific surface area of the sheet shows a value almost close to a value theoretically obtained from the specific surface area of the activated carbon fiber, which shows that the characteristics of the activated carbon fiber are not impaired.
【0043】表1の実施例4と5を比較すると、有機繊
維の断面形状が、円形であるよりも扇型の異型断面形状
である方が、繊維に角があるため活性炭素繊維への引っ
かかりが良く、また、屈曲しやすいため、活性炭素繊維
の脱落が少なかった。Comparing Examples 4 and 5 in Table 1, when the cross-sectional shape of the organic fiber is a fan-shaped modified cross-sectional shape rather than a circular shape, the fiber has corners, so that the activated carbon fiber is caught. And the activated carbon fiber did not drop off easily.
【0044】表1の実施例6から、活性炭素繊維層の活
性炭素繊維を90重量%配合しても、活性炭素繊維層の
両面に剥離型分割繊維を用いた有機繊維層を設けること
で、活性炭素繊維の脱落を防ぐことができた。From Example 6 in Table 1, even if 90% by weight of the activated carbon fiber of the activated carbon fiber layer is blended, by providing the organic fiber layer using the peelable split fibers on both sides of the activated carbon fiber layer, It was possible to prevent the activated carbon fibers from falling off.
【0045】一方、表2の比較例1に示したように、活
性炭素繊維層の活性炭素繊維の配合量が90重量%を越
える場合、活性炭素繊維層の両面に剥離型分割繊維を用
いた有機繊維層を設けても、1回目の水流交絡の際に、
両層の有機繊維が十分に活性炭素繊維を取り囲み捕捉す
ることができず、高圧注状水流により活性炭素繊維が流
されて、坪量が減少し、活性炭素繊維が減少した分だけ
活性炭素繊維シ−トの比表面積が小さくなった。On the other hand, as shown in Comparative Example 1 in Table 2, when the blending amount of the activated carbon fibers in the activated carbon fiber layer exceeds 90% by weight, the peelable split fibers are used on both sides of the activated carbon fiber layer. Even if an organic fiber layer is provided, during the first hydroentanglement,
The organic fibers in both layers cannot fully surround and capture the activated carbon fibers, and the activated carbon fibers are washed away by the high-pressure pouring water flow, the basis weight is reduced, and the activated carbon fibers are reduced by the reduced amount of the activated carbon fibers. The specific surface area of the sheet became smaller.
【0046】表2の比較例2に示したように、活性炭素
繊維の含有量が90重量%以下でも、有機繊維のアスペ
クト比が1000より小さい場合では、活性炭素繊維層
と有機繊維層の有機繊維は活性炭素繊維を取り囲み、捕
捉することがほとんどできないため、活性炭素繊維の脱
落が激しくなり、また、両層の有機繊維同士の絡み合い
もほとんどないため、引張強度と破断伸度が著しく弱く
なった。同様に、表2の比較例3に示したように、活性
炭素繊維層を構成する有機繊維のアスペクト比が100
0より小さい場合、有機繊維層のアスペクト比が100
0〜2500で、繊維径の小さい有機繊維を使用して
も、1回目の水流交絡の際に、有機繊維層の有機繊維が
十分に活性炭素繊維を取り囲み捕捉することができず、
活性炭素繊維が流れ落ちてしまう。また、活性炭素繊維
シ−トは、活性炭素繊維層と有機繊維層を構成する有機
繊維がうまく絡み合わないため、引張強度及び破断伸度
が小さく、シ−ト内部で歪が生じるため、シ−トに波打
ちが生じた。As shown in Comparative Example 2 in Table 2, even when the content of the activated carbon fiber is 90% by weight or less, when the aspect ratio of the organic fiber is smaller than 1000, the organic matter of the activated carbon fiber layer and the organic fiber layer is Since the fiber surrounds the activated carbon fiber and can hardly be trapped, the activated carbon fiber is more likely to fall off, and since the organic fibers in both layers are hardly entangled with each other, the tensile strength and the breaking elongation are significantly weakened. It was Similarly, as shown in Comparative Example 3 in Table 2, the aspect ratio of the organic fibers constituting the activated carbon fiber layer is 100.
When it is less than 0, the aspect ratio of the organic fiber layer is 100.
Even if an organic fiber having a small fiber diameter of 0 to 2500 is used, the organic fiber of the organic fiber layer cannot sufficiently surround and capture the activated carbon fiber during the first hydroentanglement,
Activated carbon fibers run off. Further, in the activated carbon fiber sheet, since the activated carbon fiber layer and the organic fibers constituting the organic fiber layer are not well entangled with each other, the tensile strength and the elongation at break are small, and strain occurs inside the sheet, -There was waviness on the toe.
【0047】表2の比較例4に示したように、活性炭素
繊維層と有機繊維層を構成する有機繊維のアスペクト比
が2500を越える場合、両層の有機繊維の分散が非常
に難しくなり、よれ、だま等の地合むらが生じるため、
活性炭素繊維の脱落はあまり生じないものの、シ−トの
地合が非常に悪く、また、引張強度は実施例2に比べる
と弱くなった。As shown in Comparative Example 4 of Table 2, when the aspect ratio of the organic fibers constituting the activated carbon fiber layer and the organic fiber layer exceeds 2500, it becomes very difficult to disperse the organic fibers in both layers. Since unevenness such as twisting and lumps occurs,
Although the activated carbon fibers did not drop off much, the formation of the sheet was very poor, and the tensile strength was weaker than that of Example 2.
【0048】[0048]
【発明の作用及び効果】本発明の活性炭素繊維シ−ト
は、活性炭素繊維10〜90重量%とアスペクト比が1
000〜2500である有機繊維90〜10重量%から
成る活性炭素繊維層と、アスペクト比が1000〜25
00である有機繊維から成る有機繊維層とを有し、活性
炭素繊維層と有機繊維層の両層内を構成する有機繊維
が、活性炭素繊維を介在して3次元的に絡み合わされ、
活性炭素繊維層と有機繊維層が一体化されているため、
引張強度と破断伸度に優れる。その結果、各種用途への
加工性に優れ、特に、大きな応力のかかる部分に使用す
ることができ、極めて応用範囲の広いシ−トである。The activated carbon fiber sheet of the present invention has an aspect ratio of 1 to 10 to 90% by weight of activated carbon fiber.
An activated carbon fiber layer composed of 90 to 10% by weight of an organic fiber of 000 to 2500 and an aspect ratio of 1000 to 25
And an organic fiber layer made of an organic fiber of 00, the organic fibers constituting both layers of the activated carbon fiber layer and the organic fiber layer are entwined three-dimensionally with the activated carbon fiber interposed therebetween,
Since the activated carbon fiber layer and the organic fiber layer are integrated,
Excellent tensile strength and elongation at break. As a result, the sheet has excellent workability for various uses, and can be used particularly in a portion to which a large stress is applied, and the sheet has an extremely wide range of applications.
【0049】さらに、本発明の活性炭素繊維シ−トの製
造方法は、活性炭素繊維10〜90重量%とアスペクト
比が1000〜2500である有機繊維90〜10重量
%から成る活性炭素繊維層と、アスペクト比が1000
〜2500である有機繊維から成る有機繊維層とを有す
る複合ウェブを湿式抄造法によりを抄造し、水流交絡法
により、活性炭素繊維層と有機繊維層の両層内を構成す
る有機繊維を活性炭素繊維を介在して3次元的に絡み合
せて、両層を一体化させているため、シ−トが均一で、
活性炭素繊維の各種性能を損なうことなく、活性炭素繊
維の脱落が非常に少ない高度の吸着能を有する活性炭素
繊維シ−トを得ることができる。Further, the method for producing an activated carbon fiber sheet of the present invention comprises an activated carbon fiber layer comprising 10 to 90% by weight of activated carbon fibers and 90 to 10% by weight of organic fibers having an aspect ratio of 1000 to 2500. , Aspect ratio is 1000
A composite web having an organic fiber layer composed of organic fibers of about 2,500 is formed by a wet papermaking method, and the organic fibers constituting both the activated carbon fiber layer and the organic fiber layer are activated carbon by a hydroentangling method. The sheets are three-dimensionally intertwined with fibers interposing them to integrate both layers, so the sheet is uniform,
It is possible to obtain an activated carbon fiber sheet having a high degree of adsorption capacity with very little loss of the activated carbon fiber, without impairing various performances of the activated carbon fiber.
Claims (4)
Lと繊維径Dの比(L/D、アスペクト比)が1000
〜2500である有機繊維90〜10重量%とから成る
活性炭素繊維層と、該活性炭素繊維層の片面あるいは両
面に、アスペクト比が1000〜2500である有機繊
維から成る有機繊維層とを有し、該有機繊維層と該活性
炭素繊維層の両層内を構成する有機繊維が、水流交絡法
により、活性炭素繊維を介在して、3次元的に絡み合わ
され、該活性炭素繊維層と該有機繊維層が一体化されて
いることを特徴とする活性炭素繊維シ−ト。1. The ratio (L / D, aspect ratio) of 10 to 90% by weight of activated carbon fiber, fiber length L and fiber diameter D is 1000.
An activated carbon fiber layer composed of 90 to 10% by weight of an organic fiber having an aspect ratio of 1000 to 2500 and an organic fiber layer having an aspect ratio of 1000 to 2500 on one or both sides of the activated carbon fiber layer. The organic fibers constituting the both layers of the organic fiber layer and the activated carbon fiber layer are three-dimensionally entangled by the hydroentanglement method with the activated carbon fibers interposed therebetween, and the activated carbon fiber layer and the organic fiber An activated carbon fiber sheet characterized in that a fiber layer is integrated.
m以下である請求項1記載の活性炭繊維シ−ト。2. The activated carbon fiber layer has an organic fiber diameter of 9 μm.
The activated carbon fiber sheet according to claim 1, which has a m or less.
請求項1及び2記載の活性炭素繊維シ−ト。3. The activated carbon fiber sheet according to claim 1, wherein the organic fiber has a modified cross-section.
クト比が1000〜2500である有機繊維90〜10
重量%を水に分散したスラリ−と、アスペクト比が10
00〜2500である有機繊維を水に分散したスラリ−
を、湿式抄造法により2層あるいは3層に抄き合わせし
て、活性炭素繊維層の片面あるいは両面に有機繊維層を
設けた複合ウェブを形成し、次いで、該複合ウェブを水
流交絡法を用いて、有機繊維層側から高圧柱状水流を当
て、該有機繊維層と該活性炭素繊維層の両層内を構成す
る有機繊維を、活性炭素繊維を介在して3次元的に絡み
合わせ、該有機繊維層と該活性炭素繊維層を一体化させ
ることを特徴とする活性炭素繊維シ−トの製造方法。4. Organic fibers 90 to 10 having 10 to 90% by weight of activated carbon fibers and an aspect ratio of 1000 to 2500.
A slurry having a weight% of water dispersed therein and an aspect ratio of 10
Slurry in which organic fiber of 0 to 2500 is dispersed in water
By a wet papermaking method to form a composite web in which an organic fiber layer is provided on one or both sides of an activated carbon fiber layer, and then the composite web is subjected to a hydroentangling method. Then, a high-pressure columnar water stream is applied from the organic fiber layer side, and the organic fibers constituting both layers of the organic fiber layer and the activated carbon fiber layer are three-dimensionally entangled with the activated carbon fiber interposed therebetween, A method for producing an activated carbon fiber sheet, characterized by integrating a fiber layer and the activated carbon fiber layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5166633A JPH0726450A (en) | 1993-07-06 | 1993-07-06 | Activated carbon fiber sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5166633A JPH0726450A (en) | 1993-07-06 | 1993-07-06 | Activated carbon fiber sheet and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0726450A true JPH0726450A (en) | 1995-01-27 |
Family
ID=15834903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5166633A Pending JPH0726450A (en) | 1993-07-06 | 1993-07-06 | Activated carbon fiber sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726450A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955087A1 (en) * | 1998-05-08 | 1999-11-10 | Toyobo Co., Ltd. | Gas adsorption sheet and air-purifying filter |
JP2000318108A (en) * | 1999-05-14 | 2000-11-21 | Kao Corp | Laminated sheet and highly absorbent article |
KR101304335B1 (en) * | 2012-11-30 | 2013-09-11 | 한국건설기술연구원 | Precast concrete slab having variable horizontal shear connecting member, and method for the same |
CN111748905A (en) * | 2020-06-15 | 2020-10-09 | 上海交通大学 | A kind of reprocessing method of recycled carbon fiber |
-
1993
- 1993-07-06 JP JP5166633A patent/JPH0726450A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955087A1 (en) * | 1998-05-08 | 1999-11-10 | Toyobo Co., Ltd. | Gas adsorption sheet and air-purifying filter |
US6746760B2 (en) | 1998-05-08 | 2004-06-08 | Toyobo Co., Ltd | Gas adsorption sheet and air-purifying filter |
JP2000318108A (en) * | 1999-05-14 | 2000-11-21 | Kao Corp | Laminated sheet and highly absorbent article |
KR101304335B1 (en) * | 2012-11-30 | 2013-09-11 | 한국건설기술연구원 | Precast concrete slab having variable horizontal shear connecting member, and method for the same |
CN111748905A (en) * | 2020-06-15 | 2020-10-09 | 上海交通大学 | A kind of reprocessing method of recycled carbon fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2817006B2 (en) | Method for producing fiber entangled nonwoven web material | |
RU2596099C2 (en) | Method for production of hydraulically bound non-woven material | |
EP0491383B1 (en) | Nonwoven fabric and production method thereof | |
JP2004519565A (en) | Composite nonwoven | |
JP2004522004A (en) | Hydraulically entangled composite nonwoven structures containing recycled synthetic fiber materials | |
AU2017270497B2 (en) | Method of producing a fibrous web | |
EP1874991B1 (en) | Hydroentangled integrated composite nonwoven material | |
NO169669B (en) | ABSORBING, NON-WOVEN TEXTILE | |
JPH0731677A (en) | Blood filter material | |
WO1996012849A1 (en) | Nonwoven material containing a mixture of pulp fibres and long hydrophilic plant fibres and a method of producing the nonwoven material | |
WO1993020272A1 (en) | Patterned spunlaced fabrics containing woodpulp and/or woodpulp-like fibers | |
CN101617076A (en) | Microfiber splits film filter felt and manufacture method thereof | |
JP2004513256A (en) | Hydraulic entangled nonwoven web containing recycled synthetic fiber material | |
JP6976767B2 (en) | Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition | |
WO2003083197A1 (en) | Hydraulically entangled nonwoven material and method for making it | |
JPH0726450A (en) | Activated carbon fiber sheet and method for producing the same | |
JPH0711555A (en) | Activated carbon fiber sheet and method for producing the same | |
JP2020158912A (en) | Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin | |
JP2010196220A (en) | Low density nonwoven fabric | |
US20030171056A1 (en) | Hydroentangled nonwoven web containing recycled synthetic fibrous materials | |
JPH0729566A (en) | Electrode material using activated carbon fiber and method for producing the same | |
EP4139512B1 (en) | Method of forming biodegradable nonwoven fabric, and nonwoven fabric | |
JP2871864B2 (en) | Spunlace nonwoven fabric with good formation and method for producing the same | |
JPS6075657A (en) | Nonwoven fabric comprising ultra-fine filament and its production | |
AU2002230632B2 (en) | Hydroentangled nonwoven composite structures containing recycled synthetic fibrous materials |