JPH07262960A - Charged particle beam accelerator - Google Patents
Charged particle beam acceleratorInfo
- Publication number
- JPH07262960A JPH07262960A JP6048257A JP4825794A JPH07262960A JP H07262960 A JPH07262960 A JP H07262960A JP 6048257 A JP6048257 A JP 6048257A JP 4825794 A JP4825794 A JP 4825794A JP H07262960 A JPH07262960 A JP H07262960A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- hoop
- high voltage
- stages
- particle beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 14
- 230000005684 electric field Effects 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 230000006698 induction Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000012212 insulator Substances 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000002040 relaxant effect Effects 0.000 description 3
- 229910018503 SF6 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Landscapes
- Electron Sources, Ion Sources (AREA)
Abstract
(57)【要約】
【目的】本発明は、電子顕微鏡やイオン加速装置等の荷
電粒子線加速装置に関し、その目的は、高電圧発生回路
の複雑な構成を簡素化,高性能化、及び組立工数低減を
することにある。
【構成】超高圧電子顕微鏡等に供されるコッククロフト
・ウォルトン式高電圧発生回路で、回路を構成する電気
部品と電界緩和用フープ5を完全に独立に配置される如
く構成する。該フープ5は、複数段を一体構造とし、全
体の段数を数ブロックに分離可能な構造とした。
【効果】回路を駆動する高周波による部品間の電流結合
を軽減出来るので表皮電流が流れにくく、高周波電流に
よる磁場誘導が低減出来る。解体,再組立時の作業効率
の大幅向上が計れる。接続部品の低減によって故障発生
率の軽減が計れる。
(57) [Summary] [Object] The present invention relates to a charged particle beam accelerator such as an electron microscope and an ion accelerator, and its object is to simplify a complicated configuration of a high voltage generation circuit, improve performance, and assemble the same. It is to reduce man-hours. [Structure] A Cockcroft-Walton high-voltage generating circuit used in an ultra-high voltage electron microscope or the like, in which electric components constituting the circuit and the electric field relaxation hoop 5 are arranged completely independently. The hoop 5 has a structure in which a plurality of stages are integrated and the total number of stages can be divided into several blocks. [Effect] Since the current coupling between the components due to the high frequency driving the circuit can be reduced, the skin current hardly flows and the magnetic field induction by the high frequency current can be reduced. Greatly improves work efficiency during disassembly and reassembly. The failure rate can be reduced by reducing the number of connecting parts.
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子顕微鏡やイオン加
速装置等の荷電粒子を加速する高電圧発生回路に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high voltage generating circuit for accelerating charged particles such as an electron microscope and an ion accelerator.
【0002】[0002]
【従来の技術】上述した高電圧発生回路は荷電粒子を加
速する為の高電圧回路で、整流器とコンデンサーを複数
段積み重ねたもので、コッククロフト・ウォルトン式の
直流高電圧発生装置である。電子顕微鏡においては加速
電圧が500kV以上のいわゆる超高圧電子顕微鏡に良
く用いられている。コッククロフト・ウォルトン式の場
合、例えば1000kVの直流高電電圧を発生する場
合、回路は10数段用いて1000kVに昇圧する。回
路は1段ずつ絶縁碍子等によって固定され、組立,分解
時1段ずつ分解するのが従来の方法であった。しかし、
組立,分解時の労力は多大であった。コッククロフト・
ウォルトン回路の基本構成は、文献、大阪大学工学部電
子ビーム研究施設発行、電子ビーム研究第3巻“300
万ボルト超高電圧電子顕微鏡の加速系の改良”P1〜P
2,P48〜P49,昭和56年12月に記載されてい
るものとほぼ同一の方式が多く採用されている。この方
式において電界緩和用のフープには回路各段を仕切るア
ルミ製の板を設け、コッククロフト・ウォルトン回路の
整流器は各段の前記アルミ製板に固定されている。した
がって回路は1段毎積み重ね、各部品の接続を実施して
いた。このため組立解体時の工数増大、部品点数増大に
よる故障率の上昇等問題が多々あった。一方各段の仕切
り板は、コッククロフト・ウォルトン回路を駆動する5
〜10kHzの高周波による表皮電流を流し、これによ
って高周波磁場を誘起して、加速される電子線が磁場に
より偏向を起す電子線スポットのゆれが発生した。2. Description of the Related Art The above-mentioned high voltage generating circuit is a high voltage circuit for accelerating charged particles, and is a Cockcroft-Walton type DC high voltage generating device in which a plurality of rectifiers and capacitors are stacked. In electron microscopes, it is often used in so-called ultra-high voltage electron microscopes having an acceleration voltage of 500 kV or more. In the case of the Cockcroft-Walton method, for example, when a high DC voltage of 1000 kV is generated, the circuit is boosted to 1000 kV by using ten stages. The circuit is fixed one step at a time by an insulator or the like, and the conventional method is to disassemble one step at a time of assembling and disassembling. But,
The labor for assembling and disassembling was great. Cockcroft
The basic structure of the Walton circuit is published in the literature, Osaka University Faculty of Engineering, Electron Beam Research Facility, Electron Beam Research Vol.
Improvement of acceleration system for 10,000 volt ultra high voltage electron microscope "P1-P
2, P48 to P49, almost the same system as that described in December 1981 is often adopted. In this system, the hoop for alleviating the electric field is provided with an aluminum plate that partitions each stage of the circuit, and the rectifier of the Cockcroft-Walton circuit is fixed to the aluminum plate of each stage. Therefore, the circuits are stacked one by one to connect the respective parts. For this reason, there have been many problems such as an increase in man-hours at the time of disassembling and an increase in failure rate due to an increase in the number of parts. On the other hand, the partition boards at each stage drive the Cockcroft-Walton circuit.
A skin current due to a high frequency of -10 kHz was passed, and a high frequency magnetic field was induced by this, and an electron beam spot wobble was generated in which the accelerated electron beam was deflected by the magnetic field.
【0003】[0003]
【発明が解決しようとする課題】本発明は、高電圧発生
回路の簡素化,高性能化および組立,解体の高効率化を
可能とするもので、部品の一体化を計ろうとするための
ものである。SUMMARY OF THE INVENTION The present invention enables simplification, high performance, and high efficiency of assembly and disassembly of a high voltage generation circuit, and is intended to measure the integration of parts. Is.
【0004】[0004]
【課題を解決するための手段】コッククロフト・ウォル
トン回路を構成する電気部品と電界緩和用コロナシール
ドを完全に独立させて配置した。[Means for Solving the Problems] The electric components constituting the Cockcroft-Walton circuit and the corona shield for electric field relaxation are arranged completely independently.
【0005】該コロナシールドは多数段で構成している
が、複数段を一体化し、全段を数ブロックに分けて組
立,解体可能な構造とした。Although the corona shield is composed of a large number of stages, it has a structure in which a plurality of stages are integrated and all the stages are divided into several blocks so that they can be assembled and disassembled.
【0006】[0006]
【作用】コッククロフト・ウォルトン回路を構成する整
流器,直流コンデンサー,荷電粒子を加速する多段加速
管,高電圧を検出する基準抵抗器,多段加速管に高電圧
を均等に分割して印加する分割抵抗器,高電圧のリップ
ルを減衰するフィルター・コンデンサー等はそれぞれベ
ース盤上に垂直に積重ねる。これら回路部品の周囲は電
界緩和用のフープによって囲まれている。フープと回路
部品は完全に独立して構成されているので、高周波にて
駆動される回路からの高周波表皮電流による高周波磁場
の発生は無くなる。又フープは複数段を一体で固定され
ているので、全体を分解,再組立する際の作業工数の大
幅低減が計れると共に、部品点数の軽減により故障発生
率の低減に対しても効果は大である。[Function] Rectifiers forming a Cockcroft-Walton circuit, DC capacitors, multistage accelerating tubes for accelerating charged particles, reference resistors for detecting high voltage, and dividing resistors for uniformly dividing and applying high voltage to the multistage accelerating tubes. , Filters and capacitors that attenuate high-voltage ripple are vertically stacked on the base board. The periphery of these circuit components is surrounded by a hoop for relaxing an electric field. Since the hoop and the circuit component are completely independent from each other, generation of a high frequency magnetic field due to a high frequency skin current from a circuit driven at a high frequency is eliminated. Also, since the hoops are integrally fixed in multiple stages, the number of man-hours required for disassembling and reassembling the entire hoop can be greatly reduced, and the reduction in the number of parts can also greatly reduce the failure rate. is there.
【0007】[0007]
【実施例】本発明は超高圧電子顕微鏡等に使用される荷
電粒子線加速装置に関する。以下、本発明の詳細を図面
を参照して詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a charged particle beam accelerator used in an ultra-high voltage electron microscope or the like. Hereinafter, details of the present invention will be described in detail with reference to the drawings.
【0008】図1は、本発明の1実施例を示す構成図
で、縦断面で示す。図2は横断面で構成を示す。電子線
を加速する多段加速管1、および多段加速管1の最上部
に電子銃2が搭載されている。多段加速管1は絶縁パイ
プから成るインナータンク12で最上部が固定されてい
る。高電圧を発生する対線形のコッククロフト・ウォル
トン回路は、高電圧コンデンサー3が3列垂直に積み重
ねられている。また整流器17は2列で構成し、高電圧
コンデンサー3にリード線によって接続されている。超
高圧電子顕微鏡においては、加速電圧が1000kVの
場合の回路昇圧段数は10数段用いられ、加速電圧が3
500kVもの高電圧の場合は、35段もの超大型な装
置となる。対称形コッククロフト・ウォルトン回路を駆
動する周波数5kHzの交流は、ウィーンブリッジ発振
器で発生し、電子管を用いた電力増幅器で駆動する。出
力は15kW,5kHz,11kVの交流電圧で、更に
変圧器で約10倍に昇圧し、高電圧ブッシング11から
圧力タンク6内部のコッククロフト・ウォルトン回路の
初段に導入する。電子銃2のフィラメント加熱用の電力
は、直流高電圧のリップル低減用のR−Cフィルター回
路として作用するフィルターコンデンサー4を通じて約
100kHzの高周波電力が伝送される。高電圧側で高
周波電力を整流し直流に変換して供される。FIG. 1 is a constitutional view showing one embodiment of the present invention and is shown in a vertical section. FIG. 2 shows the configuration in cross section. A multi-stage accelerating tube 1 for accelerating an electron beam, and an electron gun 2 mounted on the top of the multi-stage accelerating tube 1. The uppermost part of the multistage accelerating pipe 1 is fixed by an inner tank 12 made of an insulating pipe. In the anti-linear Cockcroft-Walton circuit that generates a high voltage, three high voltage capacitors 3 are vertically stacked. The rectifier 17 is composed of two rows and is connected to the high voltage capacitor 3 by a lead wire. In an ultra-high voltage electron microscope, when the accelerating voltage is 1000 kV, the number of circuit boosting steps is 10 and the accelerating voltage is 3
If the voltage is as high as 500 kV, it will be an extremely large device with 35 stages. An alternating current having a frequency of 5 kHz for driving the symmetrical Cockcroft-Walton circuit is generated by a Wien bridge oscillator and driven by a power amplifier using an electron tube. The output is an alternating voltage of 15 kW, 5 kHz and 11 kV, which is further boosted about 10 times by a transformer and introduced from the high voltage bushing 11 to the first stage of the Cockcroft-Walton circuit inside the pressure tank 6. As the power for heating the filament of the electron gun 2, a high frequency power of about 100 kHz is transmitted through the filter capacitor 4 which functions as an R-C filter circuit for reducing the ripple of the DC high voltage. High-frequency power is rectified on the high voltage side and converted into direct current for use.
【0009】多段加速管1は、コッククロフト・ウォル
トン回路とは磁気シールド板16で遮へいされ、圧力タ
ンク6のほぼ中心部に設置されている。磁気シールド板
16はコッククロフト・ウォルトン回路を駆動する5k
Hzの高周圧コンデンサー3に流れる高周波電流による
磁気誘導によって電子線の偏向を防ぐことにある。多段
加速管1への電圧印加は分割抵抗14によって均等に印
加される。高電圧は、抵抗値が例えば3.5×1010Ω
の基準抵抗15を通して検出され、基準電圧と比較さ
れ、誤差を差動増幅器で増幅して振幅変調器に帰還され
駆動電圧を制御する。このように高電圧の安定度は帰還
回路によって高安定化され、その安定度は1×10-6/
分程度が確保されている。The multi-stage accelerating tube 1 is shielded from the Cockcroft-Walton circuit by a magnetic shield plate 16, and is installed at the substantially central portion of the pressure tank 6. The magnetic shield 16 is 5k that drives the Cockcroft-Walton circuit
The purpose is to prevent deflection of the electron beam by magnetic induction by the high-frequency current flowing in the high-frequency capacitor 3 of Hz. The voltage application to the multistage accelerating tube 1 is evenly applied by the dividing resistors 14. The high voltage has a resistance value of, for example, 3.5 × 10 10 Ω
Is detected through the reference resistor 15 and compared with the reference voltage, and the error is amplified by the differential amplifier and fed back to the amplitude modulator to control the drive voltage. In this way, the stability of high voltage is highly stabilized by the feedback circuit, and the stability is 1 × 10 -6 /
Minutes are secured.
【0010】コッククロフト・ウォルトン回路および多
段加速管1等はそれぞれ独立して垂直に積重ねて構成さ
れ、周囲は電界緩和用のフープ5によって囲まれてい
る。超高圧電子顕微鏡の場合、最高加速電圧は1000
kVもの高電圧のため、高圧タンク6とフープ5の間の
電界強度は最大100kV/cm以下に押え、圧力タンク
内は絶縁用の六弗化イオウ(SF6)ガス8が、2.9×
105Pa の圧力で充満され、高電圧が安定に動作する
よう絶縁が保たれている。装置全体は鉄筋入りコンクリ
ート基礎10の上に除振ダンパー9を介して設置され、
地盤からの振動を減衰させ超高圧電子顕微鏡の性能に影
響を及ぼさないさない構造としている。The Cockcroft-Walton circuit, the multistage accelerating tube 1 and the like are independently stacked vertically and surrounded by a hoop 5 for relaxing an electric field. In case of ultra high voltage electron microscope, the maximum acceleration voltage is 1000
Since the voltage is as high as kV, the electric field strength between the high-pressure tank 6 and the hoop 5 can be kept below 100 kV / cm at the maximum, and the sulfur hexafluoride (SF 6 ) gas 8 for insulation is 2.9 × in the pressure tank.
It is filled with a pressure of 10 5 Pa, and insulation is maintained so that a high voltage operates stably. The whole device is installed on the concrete foundation 10 with the reinforcing bar via the vibration damping damper 9,
It has a structure that damps vibrations from the ground and does not affect the performance of the ultra-high voltage electron microscope.
【0011】上記の如くコッククロフト・ウォルトン回
路を構成する高電圧部品は垂直に独立して配置され、回
路の各段はフープ5によってのみ絶縁碍子19によって
分割されていてそれぞれのフープ5には仕切り板は使用
されていない。したがって電流結合が少なくなり仕切り
板を流れる高周波電流は少なくなり、これに起因する高
周波磁場による電子ビームの偏向の心配は無い。As described above, the high voltage components constituting the Cockcroft-Walton circuit are vertically and independently arranged, and each stage of the circuit is divided only by the hoop 5 by the insulator 19, and each hoop 5 has a partition plate. Is not used. Therefore, the current coupling is reduced and the high frequency current flowing through the partition plate is reduced, so that there is no fear of deflection of the electron beam due to the high frequency magnetic field.
【0012】図3にコッククロフト・ウォルトン回路、
多段加速1等の各部品の周囲に設けられた電界緩和用フ
ープ5と絶縁碍子19との接続の詳細を示す構成図を示
す。フープ5の複数段はエポキシモールド製の絶縁碍子
19でフープの取付け板20,21に固定されている。
フープの切り離しを必要とする箇所には、隣合わせに絶
縁碍子19を別に設ける。ナット18,22を外すこと
により他の段とは完全に切り離すことが可能となる。コ
ッククロフト・ウォルトン回路が10段の場合は2分
割、35段の場合は7分割程度に所定の段での切り離し
を決めて、それぞれのブロック毎に組立準備を終らせて
おけば絶縁碍子19をナット18で固定するのみで全体
の組立が完了する。又解体する場合も作業は同様に行え
る。FIG. 3 shows a Cockcroft-Walton circuit,
The block diagram which shows the detail of the connection of the hoop 5 for electric field relaxation provided in the circumference | surroundings of each component, such as the multistage acceleration 1, and the insulator 19 is shown. A plurality of stages of the hoop 5 are fixed to the hoop mounting plates 20 and 21 with an insulator 19 made of epoxy mold.
Insulators 19 are separately provided adjacent to each other where the hoop needs to be cut off. By removing the nuts 18 and 22, it is possible to completely disconnect from the other stages. If the Cockcroft-Walton circuit has 10 stages, it will be divided into 2 stages, and if it is 35 stages, it will be divided into 7 stages, and if the assembly preparation is completed for each block, the insulator 19 will be nutd. The whole assembly is completed only by fixing at 18. Also, when dismantling, the same work can be performed.
【0013】以上述べた如くコッククロフト・ウォルト
ン回路部品,多段加速管1,フィルターコンデンサー4
等とは完全に分離して、フープ5の組立,解体が可能で
ある。尚各部品間の電気的接続はスプリング状のリード
線を用い部品等の横ゆれによる接続故障が起きない工夫
がなされている。As described above, Cockcroft-Walton circuit parts, multistage accelerating tube 1, filter condenser 4
The hoop 5 can be assembled and disassembled by completely separating it from the like. It should be noted that the electrical connection between the respective parts is made by using a spring-shaped lead wire so as not to cause a connection failure due to lateral wobbling of the parts or the like.
【0014】[0014]
【発明の効果】以上の様に、本発明においては、超高圧
電子顕微鏡等の荷電粒子線加速装置のコッククロフト・
ウォルトン式高電圧発生回路を構成する、直流高電圧コ
ンデンサー,整流器等の回路部品,荷電粒子を加速する
多段加速管等の部品と電界を緩和するためのフープは完
全に独立して配置,構成されている。このためコックク
ロフト・ウォルトン回路を駆動する高周波による表皮電
流が流れる通路が無くなり、これによる高周波磁場の発
生が無くなって、電子線への偏向現象の心配がない。該
フープは複数段を絶縁碍子にて一体構造とし、全体を数
ブロックに分けられる様な工夫がなされている。これに
よって装置の組立工数は従来方式と比較して約1/5に
低減出来た。又接続箇所の大幅低減により、作業ミス、
部品の損傷等による故障発生率が大幅に低くなり、高安
定化が可能となった。As described above, according to the present invention, the Cockcroft of a charged particle beam accelerator such as an ultra-high voltage electron microscope is used.
Circuit components such as a DC high-voltage capacitor, a rectifier, and other components that compose the Walton-type high-voltage generation circuit, components such as a multistage accelerating tube that accelerates charged particles, and a hoop for relaxing the electric field are arranged and configured completely independently. ing. Therefore, the passage of the skin current due to the high frequency that drives the Cockcroft-Walton circuit is eliminated, the generation of the high frequency magnetic field is eliminated, and there is no concern about the deflection phenomenon to the electron beam. The hoop has a structure in which a plurality of stages are integrated with an insulator, and the whole is divided into several blocks. As a result, the number of man-hours for assembling the device can be reduced to about 1/5 as compared with the conventional method. Also, due to the significant reduction of connection points,
The failure rate due to damage to parts has been greatly reduced, and high stability has become possible.
【図1】本発明における荷電粒子線加速装置の縦断面図
である。FIG. 1 is a vertical sectional view of a charged particle beam accelerator according to the present invention.
【図2】本発明による荷電粒子線加速装置の横断面図で
ある。FIG. 2 is a cross-sectional view of a charged particle beam accelerator according to the present invention.
【図3】電界緩和用フープを固定する絶縁碍子との接続
状態を示す構成図である。FIG. 3 is a configuration diagram showing a connection state with an insulator for fixing an electric field relaxation hoop.
1…多段加速管、2…電子銃、3…高電圧コンデンサ
ー、4…フィルターコンデンサー、5…フープ、6…圧
力タンク、7…コロナシールド、8…六弗化イオウガ
ス、9…除振ダンパー、10…鉄筋入りコンクリート基
礎、11…高電圧ブッシング、12…インナータンク、
13…フィルターコンデンサー、14…分割抵抗、15
…基準抵抗、16…磁気シールド板、17…整流器、1
8,22…ナット、19…絶縁碍子、20,21…取付
板。DESCRIPTION OF SYMBOLS 1 ... Multistage accelerating tube, 2 ... Electron gun, 3 ... High voltage condenser, 4 ... Filter condenser, 5 ... Hoop, 6 ... Pressure tank, 7 ... Corona shield, 8 ... Sulfur hexafluoride gas, 9 ... Vibration isolation damper, 10 … Reinforced concrete foundation, 11… High voltage bushing, 12… Inner tank,
13 ... Filter condenser, 14 ... Dividing resistor, 15
… Reference resistance, 16… Magnetic shield plate, 17… Rectifier, 1
8, 22 ... Nut, 19 ... Insulator, 20, 21 ... Mounting plate.
Claims (2)
と荷電粒子を加速する多段加速管を圧力容器内に配置
し、周囲を電界緩和用フープに囲まれた荷電粒子線加速
装置において、該フープと高電圧電気部品と分離独立し
て構成することを特徴とする荷電粒子線加速装置。1. A charged particle beam accelerating device in which a high voltage electric component constituting a high voltage generating circuit and a multistage accelerating tube for accelerating charged particles are arranged in a pressure vessel, and the periphery is surrounded by an electric field relaxation hoop. A charged particle beam accelerating device, characterized in that the hoop and the high-voltage electrical component are configured separately.
複数個で組み合わされるように構成されたことを特徴と
する請求項1記載の荷電粒子線加速装置。2. The charged particle beam accelerating apparatus according to claim 1, wherein the hoop has a multi-stage integrated structure, and all the stages are combined in plural.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6048257A JPH07262960A (en) | 1994-03-18 | 1994-03-18 | Charged particle beam accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6048257A JPH07262960A (en) | 1994-03-18 | 1994-03-18 | Charged particle beam accelerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07262960A true JPH07262960A (en) | 1995-10-13 |
Family
ID=12798399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6048257A Pending JPH07262960A (en) | 1994-03-18 | 1994-03-18 | Charged particle beam accelerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07262960A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002518808A (en) * | 1998-06-18 | 2002-06-25 | ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア | CCD camera for transmission electron microscope |
KR100679593B1 (en) * | 2003-11-28 | 2007-02-07 | 가부시키가이샤 고베 세이코쇼 | High-voltage generator and accelerator using same |
-
1994
- 1994-03-18 JP JP6048257A patent/JPH07262960A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002518808A (en) * | 1998-06-18 | 2002-06-25 | ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア | CCD camera for transmission electron microscope |
JP4757383B2 (en) * | 1998-06-18 | 2011-08-24 | ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア | CCD camera for transmission electron microscope |
KR100679593B1 (en) * | 2003-11-28 | 2007-02-07 | 가부시키가이샤 고베 세이코쇼 | High-voltage generator and accelerator using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101870790B1 (en) | A.d.c. charged particle accelerator, a method of accelerating charged particles using d.c. voltages and a high voltage power supply apparatus for use therewith | |
US20190280606A1 (en) | Ac-ac power converter | |
US4596946A (en) | Linear charged particle accelerator | |
CA2030582A1 (en) | High voltage high power dc power supply | |
CN102823332B (en) | DC voltage-high-voltage power supply and particle accelerator | |
JPH10144499A (en) | Particle accelerator | |
Son et al. | Development of 80-kW high-voltage power supply for X-ray generator | |
JPH07262960A (en) | Charged particle beam accelerator | |
JPH11355909A (en) | Power converting device | |
FI74559B (en) | HOEGSPAENNINGSGENERATOR FOER LIKSTROEM. | |
Pan et al. | Circulating current resonant oscillation in modular multilevel converters for variable frequency operation and its suppression method | |
JP3837842B2 (en) | Pulse power supply | |
Green et al. | The proton synchrotron | |
JP3377606B2 (en) | DC high voltage generator | |
US3631282A (en) | Accelerating tube with heating means | |
KR20180130990A (en) | High voltage generation device using multiple convincing circuits and method for manufacturing the same | |
JP2013520774A (en) | DC high voltage source and particle accelerator | |
US4860187A (en) | Magnetic flux coupled voltage multiplication apparatus | |
Baan et al. | The SIN Injector Cyclotron | |
JP5091096B2 (en) | Charged particle generator | |
Ballard et al. | Design status of heavy ion injector program | |
JPH089643A (en) | Schenkel type high voltage dc power source | |
JPH02278642A (en) | Magnetism shielding device and charged particle beam accelerating device using same | |
Blewett | Characteristics of typical accelerators | |
JP3999140B2 (en) | Betatron accelerator and acceleration core device for betatron |