[go: up one dir, main page]

JPH07261040A - Glass waveguide and manufacturing method thereof - Google Patents

Glass waveguide and manufacturing method thereof

Info

Publication number
JPH07261040A
JPH07261040A JP5176894A JP5176894A JPH07261040A JP H07261040 A JPH07261040 A JP H07261040A JP 5176894 A JP5176894 A JP 5176894A JP 5176894 A JP5176894 A JP 5176894A JP H07261040 A JPH07261040 A JP H07261040A
Authority
JP
Japan
Prior art keywords
glass
groove
light propagation
glass material
glass substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5176894A
Other languages
Japanese (ja)
Inventor
Masataka Nakazawa
正隆 中沢
Yasuro Kimura
康郎 木村
Akishi Hongo
晃史 本郷
Seiichi Kashimura
誠一 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP5176894A priority Critical patent/JPH07261040A/en
Publication of JPH07261040A publication Critical patent/JPH07261040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

(57)【要約】 【目的】 種々の元素を光の伝搬領域に容易に添加で
き、しかも光ファイバとの接続損失が小さいガラス導波
路及びその製造方法を提供する。 【構成】 2枚のガラス基板2a,2b の少なくとも一方の
ガラス基板2bの片面に光の伝搬領域となる溝3を形成し
た後、溝3が形成された面を内側にして両ガラス基板2
a,2b 間にガラス基板2a,2b よりも屈折率が高く且つ軟
化温度が低い別のガラス材料1を挟み込み、両側から加
圧しながらガラス材料1を加熱溶融させてガラス基板2
a,2b 同志を密着させることによりガラス材料1を溝3
内に充填して光の伝搬領域を形成する。溝3の両側に、
溝3の幅の少なくとも2倍以上の間隔を隔ててより幅の
広い別の溝4,5 を形成しておくことで、ガラス基板2a,2
b 同志の接触圧を高め、光の伝搬領域となる溝3に充填
される以外の余分なガラス材料を吸収することができ
る。
(57) [Summary] [Object] To provide a glass waveguide in which various elements can be easily added to a light propagation region and which has a small connection loss with an optical fiber, and a manufacturing method thereof. [Structure] After forming a groove 3 which becomes a light propagation region on at least one surface of at least one of the two glass substrates 2a and 2b, both glass substrates 2 are formed with the surface having the groove 3 inside.
Another glass material 1 having a higher refractive index and a lower softening temperature than the glass substrates 2a and 2b is sandwiched between a and 2b, and the glass material 1 is heated and melted while applying pressure from both sides to form the glass substrate 2
The glass material 1 is formed into the groove 3 by bringing the a and 2b into close contact with each other.
Fill the inside to form a light propagation region. On both sides of the groove 3,
By forming another groove 4,5 having a wider width at least at least twice the width of the groove 3, the glass substrates 2a, 2 can be formed.
b It is possible to increase the contact pressure of each other and absorb the excess glass material other than filling the groove 3 which becomes the light propagation region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の技術分野】本発明は、通信、計測、情報処理
の分野に適したガラス導波路、特に光増幅を伴う機能性
ガラス導波路の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a glass waveguide suitable for the fields of communication, measurement, and information processing, particularly a functional glass waveguide with optical amplification.

【0002】[0002]

【従来の技術】通信、制御、情報処理の分野において、
光をより高度に利用するため、いろいろな機能を持つ光
集積回路の研究が活発に行われている。このような光集
積回路を構成する基本要素のひとつとして光増幅器があ
る。これまでにNdを3wt%ドープしたリン酸塩ガラ
スを用いたガラス導波路で光増幅作用が確認されている
(H.Aoki,O.Maruyama,Y.Asahara:Topical meeting on gl
asses for optoelectronics.Extended abstracts,p69,
Dec.1,(1989))。この製作法は以下の通りである。まず
Ndを3wt%ドープしたリン酸塩ガラス基板の表面に
Tiを蒸着し、ホトリソグラフィ法を用いて光導波路マ
スクパターンを設け、さらに屈折率制御用拡散源である
Agを蒸着する。次に約400℃の電気炉内で電圧を数
時間印加し、AgイオンをTi膜の隙間を通してガラス
基板内に拡散させ、断面が半円状のチャンネル型光導波
路を形成する。この光導波路に波長802nmのレーザ
ダイオードを励起光源として用いることにより増幅作用
が確認されている。
In the fields of communication, control and information processing,
In order to use light in a higher degree, researches on optical integrated circuits having various functions are being actively conducted. An optical amplifier is one of the basic elements constituting such an optical integrated circuit. Up to now, the optical amplification effect has been confirmed in a glass waveguide using a phosphate glass doped with 3 wt% of Nd.
(H.Aoki, O.Maruyama, Y.Asahara: Topical meeting on gl
asses for optoelectronics.Extended abstracts, p69,
Dec. 1, (1989)). This manufacturing method is as follows. First, Ti is vapor-deposited on the surface of a phosphate glass substrate doped with 3 wt% of Nd, an optical waveguide mask pattern is provided by using a photolithography method, and Ag that is a diffusion source for controlling the refractive index is vapor-deposited. Next, a voltage is applied for several hours in an electric furnace at about 400 ° C. to diffuse Ag ions through the gap between the Ti films into the glass substrate to form a channel type optical waveguide having a semicircular cross section. The amplification effect has been confirmed by using a laser diode having a wavelength of 802 nm as an excitation light source in this optical waveguide.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記したリ
ン酸塩ガラスを用いたガラス導波路は、その光の伝搬領
域となるAgイオン拡散領域の断面が半円状の非対称構
造であるため、伝搬する光の強度分布が歪になり、光フ
ァイバと接続する場合大きな結合損失が生じる。また、
増幅作用を高めるためには光の伝搬領域に集中的に希土
類元素をドープする必要があるが、前記したガラス導波
路では希土類元素をドープしたリン酸塩ガラス基板の一
部を屈折率制御して光の伝搬領域とするため、光の伝搬
領域の希土類元素ドープ濃度を制御できず、さらにドー
プできる希土類元素の種類も制限されることになる。
By the way, in the above-mentioned glass waveguide using the phosphate glass, the Ag ion diffusion region, which is the light propagation region, has a semicircular asymmetrical structure, and therefore the propagation is The intensity distribution of the emitted light becomes distorted, and a large coupling loss occurs when connecting with an optical fiber. Also,
In order to enhance the amplification effect, it is necessary to dope the rare earth element in the light propagation region in a concentrated manner, but in the above-mentioned glass waveguide, the refractive index is controlled for a part of the rare earth element-doped phosphate glass substrate. Since the light propagation region is used, the rare earth element doping concentration in the light propagation region cannot be controlled, and the types of rare earth elements that can be doped are also limited.

【0004】また、光の伝搬領域をループ状のリングレ
ーザのように曲りをもたせて形成する場合、曲り部を設
けたことによる損失増加を抑えるためには光の伝搬領域
すなわちコアとその周辺の低屈折率領域すなわちクラッ
ドとの屈折率差(Δn)を大きくすることが重要とな
る。Δnを大きくすることによって、光がコア内に強く
閉じ込められて、大きな局率で光導波路を曲げても曲げ
損失は小さくなり、その結果、素子寸法を小さくするこ
とができる。しかし、Agイオンを拡散させることによ
りコアの屈折率を周辺部より大きくする製法では、本質
的にΔnを大きくすることはできない。
Further, in the case where the light propagation region is formed with a bend like a loop-shaped ring laser, in order to suppress an increase in loss due to the provision of the bent portion, the light propagation region, that is, the core and its periphery, is suppressed. It is important to increase the refractive index difference (Δn) from the low refractive index region, that is, the cladding. By increasing Δn, the light is strongly confined in the core, and the bending loss is small even if the optical waveguide is bent with a large locality, and as a result, the element size can be reduced. However, Δn cannot be essentially increased by the manufacturing method in which the refractive index of the core is made larger than that of the peripheral portion by diffusing Ag ions.

【0005】本発明の目的は、前記した問題点を解消
し、光の増幅作用をもたらす種々の元素及び屈折率制御
用の種々の元素を光の伝搬領域に容易に添加でき、しか
も光ファイバとの接続損失が小さいガラス導波路及びそ
の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to easily add various elements which bring about an amplifying action of light and various elements for controlling the refractive index to a light propagation region, and to provide an optical fiber. It is an object of the present invention to provide a glass waveguide having a small connection loss and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明のガラス導波路は、2枚のガラス基板と、少な
くとも一方のガラス基板の片面に形成された溝と、この
溝が形成された面を内側にして両ガラス基板間にガラス
基板よりも屈折率が高く且つ軟化温度が低い別のガラス
材料を挟み込み、これを両側から加圧しながら上記ガラ
ス材料を加熱溶融させてガラス基板同志を密着させるこ
とにより上記ガラス材料を上記溝内に充填してなる光の
伝搬領域とで構成されていることを特徴としている。
In order to achieve the above object, the glass waveguide of the present invention is provided with two glass substrates, a groove formed on one surface of at least one of the glass substrates, and this groove. Another glass material with a higher refractive index and a lower softening temperature than the glass substrate is sandwiched between the two glass substrates with the surface facing inside, and the glass materials are heated and melted while pressing the glass material from both sides, It is characterized in that it is constituted by a light propagation region formed by filling the groove with the glass material by closely contacting with each other.

【0007】また、本発明のガラス導波路において、上
記光の伝搬領域となる溝の両側に、この溝の幅の少なく
とも2倍以上の間隔を隔ててより幅の広い別の溝が形成
されていることが望ましい。また、上記ガラス基板の外
側の面は上記ガラス材料の軟化温度よりも軟化温度の高
い薄膜で被覆されていることが望ましい。また、上記ガ
ラス材料としてPr、Nd、Er、Yb、Ho、Tmの
うちの少なくとも一種類の希土類元素を含有したリン酸
塩ガラスを用いることが望ましい。
Further, in the glass waveguide of the present invention, another groove having a wider width is formed on both sides of the groove serving as the light propagation region at a distance of at least twice the width of the groove. Is desirable. Further, it is desirable that the outer surface of the glass substrate be covered with a thin film having a softening temperature higher than the softening temperature of the glass material. Further, it is desirable to use phosphate glass containing at least one kind of rare earth element selected from Pr, Nd, Er, Yb, Ho, and Tm as the glass material.

【0008】次に、本発明のガラス導波路の製造方法
は、2枚のガラス基板の少なくとも一方のガラス基板の
片面に光の伝搬領域となる溝を形成した後、この溝が形
成された面を内側にして両ガラス基板間にガラス基板よ
りも屈折率が高く且つ軟化温度が低い別のガラス材料を
挟み込み、これを両側から加圧しながら上記ガラス材料
を加熱溶融させてガラス基板同志を密着させることによ
り上記ガラス材料を上記溝内に充填して光の伝搬領域を
形成するようにしたことを特徴としている。
Next, according to the method for manufacturing a glass waveguide of the present invention, after forming a groove serving as a light propagation region on one surface of at least one of the two glass substrates, the surface on which the groove is formed is formed. Another glass material having a higher refractive index and a lower softening temperature than the glass substrate is sandwiched between both glass substrates, and the glass material is heated and melted while pressing it from both sides to bring the glass substrates into close contact with each other. As a result, the glass material is filled in the groove to form a light propagation region.

【0009】また、本発明のガラス導波路の製造方法に
おいて、上記光の伝搬領域となる溝の両側に、この溝の
幅の少なくとも2倍以上の間隔を隔ててより幅の広い別
の溝を形成した後、上記のように両ガラス基板間に上記
ガラス材料を挟み込むようにすることが望ましい。ま
た、上記ガラス基板の外側の面を上記ガラス材料の軟化
温度よりも高い軟化温度を有する薄膜で被覆しておき、
この薄膜の軟化温度よりも高い温度で上記ガラス材料を
加熱溶融させてガラス基板同志を密着させることが望ま
しい。
In the method for manufacturing a glass waveguide according to the present invention, another groove having a wider width is provided on both sides of the groove serving as the light propagation region with a distance of at least twice the width of the groove. After forming, it is desirable to sandwich the glass material between both glass substrates as described above. Further, the outer surface of the glass substrate is coated with a thin film having a softening temperature higher than the softening temperature of the glass material,
It is desirable to heat and melt the glass material at a temperature higher than the softening temperature of the thin film to bring the glass substrates into close contact with each other.

【0010】[0010]

【作用】本発明のガラス導波路によれば、従来のように
拡散によらず、2枚のガラス基板間に上記ガラス材料を
挟み込み、これを両側から加圧しながら上記ガラス材料
を加熱溶融させてガラス基板同志を密着させることによ
って上記ガラス材料を上記溝内に充填して光の伝搬領域
が形成されるので、断面が対称構造の光の伝搬領域を容
易に形成でき、また所望の元素を上記ガラス材料に添加
できるので、光の増幅作用をもたらす種々の元素を光の
伝搬領域に添加できる。また、上記ガラス材料に添加す
る屈折率制御用ド−パントの濃度を調節することで光の
伝搬領域の屈折率を容易に調節できるので、光の伝搬領
域とその周辺の低屈折率領域との屈折率差(Δn)を所
望の値に容易に調節できる。
According to the glass waveguide of the present invention, the glass material is sandwiched between two glass substrates, and the glass material is heated and melted while being pressed from both sides without depending on diffusion as in the conventional case. By adhering the glass substrates together, the glass material is filled in the groove to form a light propagation region, so that a light propagation region having a symmetrical structure in cross section can be easily formed, and a desired element Since it can be added to the glass material, various elements that bring about a light amplification effect can be added to the light propagation region. Further, since the refractive index of the light propagation region can be easily adjusted by adjusting the concentration of the dopant for controlling the refractive index to be added to the glass material, the light propagation region and its surrounding low refractive index region The refractive index difference (Δn) can be easily adjusted to a desired value.

【0011】次に、本発明のガラス導波路の製造方法に
よれば、従来のように拡散によらず、2枚のガラス基板
間に上記ガラス材料を挟み込み、これを両側から加圧し
ながら上記ガラス材料を加熱溶融させてガラス基板同志
を密着させることによって上記ガラス材料を上記溝内に
充填して光の伝搬領域を形成するようにしたので、断面
が対称構造の光の伝搬領域を容易に形成できる。また、
所望の元素を上記ガラス材料に添加できるので、光の増
幅作用をもたらす種々の元素を光の伝搬領域に添加でき
る。また、上記ガラス材料に添加する屈折率制御用ド−
パントの濃度を調節することで光の伝搬領域の屈折率を
容易に調節できるので、光の伝搬領域とその周辺の低屈
折率領域との屈折率差(Δn)を所望の値に容易に調節
できる。
Next, according to the method for manufacturing a glass waveguide of the present invention, the glass material is sandwiched between two glass substrates, and the glass is pressed from both sides without depending on diffusion as in the conventional case. Since the glass material is filled in the groove to form the light propagation region by heating and melting the material and bringing the glass substrates into close contact with each other, the light propagation region having a symmetrical structure in cross section can be easily formed. it can. Also,
Since a desired element can be added to the above glass material, various elements that bring about a light amplification effect can be added to the light propagation region. Further, a refractive index control dopant added to the above glass material.
Since the refractive index of the light propagation region can be easily adjusted by adjusting the concentration of the punt, the refractive index difference (Δn) between the light propagation region and the surrounding low refractive index region can be easily adjusted to a desired value. it can.

【0012】また、上記光の伝搬領域となる溝の両側
に、この溝の幅の少なくとも2倍以上の間隔を隔てて光
の伝搬に関与しない幅の広い溝を形成した後、上記のよ
うに両ガラス基板間に上記ガラス材料を挟み込むように
すれば、ガラス基板同志の接触圧を高め、光の伝搬領域
となる溝に充填される以外の余分なガラス材料を吸収す
ることができる。これにより光の伝搬領域となる溝以外
のガラス基板間に残留するガラス材料を極めて薄くする
ことができ、その結果この部分に導波モードは励起され
ない。また、ガラス基板の軟化温度よりも高い温度で上
記ガラス材料を加熱溶融させてガラス基板同志を密着さ
せることにより、ガラス基板とガラス材料との付着力を
強化でき、さらに溝内の凹凸を平滑化して散乱損失を少
なくできる。その際、両ガラス基板の外側の面を上記ガ
ラス材料の軟化温度よりも高い軟化温度を有する薄膜で
被覆しておくことで、ガラス基板と加圧手段との融着を
防げる。
Further, on both sides of the groove serving as the light propagation region, wide grooves which are not involved in light propagation are formed at intervals of at least twice the width of the groove, and then, as described above. If the above glass material is sandwiched between the two glass substrates, the contact pressure between the glass substrates can be increased, and excess glass material other than that filled in the groove serving as the light propagation region can be absorbed. As a result, the glass material remaining between the glass substrates other than the groove serving as the light propagation region can be made extremely thin, and as a result, the guided mode is not excited in this portion. Further, by heating and melting the glass material at a temperature higher than the softening temperature of the glass substrate to bring the glass substrates into close contact with each other, the adhesive force between the glass substrate and the glass material can be enhanced, and the unevenness in the groove can be smoothed. The scattering loss can be reduced. At this time, the outer surfaces of both glass substrates are coated with a thin film having a softening temperature higher than the softening temperature of the glass material, whereby fusion between the glass substrates and the pressing means can be prevented.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の一実施例を示すガラス導
波路の構造及び製造方法を示したものである。ガラス導
波路を製造する際、まずリン酸塩ガラスのブロックを
0.4mmの厚さにスライスし、その両面を鏡面研磨し
てガラス材料1を作成する。このガラス材料1を図1
(a)に示すように厚さ1mmの2枚のガラス基板2
a,2bによって上下から挟み込む。ガラス材料1はコ
ア層、それを挟む2枚のガラス基板2a,2bはクラッ
ド層となるので、ガラス基板2a,2bの屈折率はガラ
ス材料1のそれよりも小さくなければならない。本実施
例で用いたガラス材料1は60重量%のP2 5 からな
り、それ以外にSiO2 、K2 O、BaOなどが含まれ
ている。SiO2 は化学的な安定性を高め、K2 O、B
aOはガラス化範囲を広げると共に軟化温度を下げる働
きをする。さらにこのガラス材料1には光の増幅作用を
もたらす活性元素として0.2重量%のEr2 3 及び
増感材として10重量%のYb2 5 が含有されてい
る。このガラス材料1の屈折率は波長1.5μm帯にお
いて1.52であった。一方、クラッド層となるガラス
基板2a,2bにはBK7ガラスを用いた。波長1.5
μm帯におけるBK7ガラスの屈折率は1.50で、本
実施例で用いたガラス材料1の屈折率よりも小さい。一
方のガラス基板2bの片面の中央部にはフォトリソグラ
フィ法とドライエッチング法とにより幅及び深さが共に
6μmの凹型の溝3が形成されている。この溝3は後の
工程によって光の伝搬領域すなわちコア領域となる。さ
らにこの溝3の両側には溝3よりも幅広の別の溝4,5
が形成されている。これら両側の溝4,5は中央の溝3
と同時にフォトリソグラフィ法及びドライエッチング法
によって形成され、その溝幅は中央の溝3のそれよりも
十分広く200μmとした。また、中央の溝3と両側の
溝4,5との距離は、両側の溝4,5の存在が中央の溝
3の光の伝搬特性に影響を与えないように、中央の溝3
の幅の2倍以上離してある。本実施例では、これらの溝
3,4,5の形成された面が内側になるようにして、ガ
ラス材料1を2枚のガラス基板2a,2bによって挟み
込み、基板背後から加圧しながら全体を620℃に加熱
し、ガラス基板2a,2b同志を密着させ貼り合わせ
る。本実施例で用いたガラス材料1を構成するリン酸塩
ガラスの軟化温度は約520℃で、BK7ガラスのそれ
よりも低く、620℃の雰囲気ではガラス材料1が溶融
し、粘性を失い基板背後からの加圧によって溝3,4,
5内に均一に充填される。この加熱温度はBK7ガラス
の軟化温度よりも若干高い温度である。そのためガラス
基板2a,2bとガラス材料1との融着力は強く、さら
に溝3,4,5内の凹凸も平滑化され散乱損失は減少す
る。この実施例では石英製の台6の上にガラス基板2b
を載せ、ガラス基板2aの上から石英製の重り7を用い
て荷重をかけており、その圧力はおよそ1〜3kg/c
2 とした。620℃の温度状態ではBK7ガラスも軟
化し台6及び重り7と融着する可能性があるので、2枚
のガラス基板2a,2bの外側面にはそれぞれ約1μm
厚のSiO2薄膜9を蒸着し重り7との融着を防止して
いる。2枚のガラス基板2a,2bの外側面に加熱温度
よりも軟化温度が高い薄膜9をコーティングしておくこ
とで、ガラス基板2a,2bの軟化温度より高い温度で
加熱しても、加重を加えるための台6及び重り7とガラ
ス基板2a,2bとが溶融接着することはない。溝3,
4,5内にはリン酸塩ガラスが充填され、溝3,4,5
以外の部分のリン酸塩ガラスは加圧により除去される。
光の伝搬に関与しない幅の広い溝4,5を光伝搬用の溝
3の両側に形成したことにより、ガラス基板2a,2b
同志に加わる圧力を高め、光伝搬用の溝3に充填される
以外の余分なリン酸塩ガラスを吸収することができる。
これにより溝3,4,5以外のガラス基板2a,2b間
に残留するリン酸塩ガラスの接着層を極めて薄くするこ
とができ、その結果この部分に導波モードは励起されな
い。
FIG. 1 shows a structure and a manufacturing method of a glass waveguide showing an embodiment of the present invention. When manufacturing a glass waveguide, first, a block of phosphate glass is sliced to a thickness of 0.4 mm, and both surfaces thereof are mirror-polished to prepare a glass material 1. This glass material 1 is shown in FIG.
Two glass substrates 2 having a thickness of 1 mm as shown in (a)
It is sandwiched by a and 2b from above and below. Since the glass material 1 is a core layer and the two glass substrates 2a and 2b sandwiching it are clad layers, the refractive index of the glass substrates 2a and 2b must be smaller than that of the glass material 1. The glass material 1 used in this example is composed of 60% by weight of P 2 O 5 , and other than that, SiO 2 , K 2 O, BaO and the like are contained. SiO 2 enhances chemical stability, K 2 O, B
aO serves to widen the vitrification range and lower the softening temperature. Further, this glass material 1 contains 0.2% by weight of Er 2 O 3 as an active element which brings about a light amplification effect and 10% by weight of Yb 2 O 5 as a sensitizer. The refractive index of this glass material 1 was 1.52 in the wavelength band of 1.5 μm. On the other hand, BK7 glass was used for the glass substrates 2a and 2b to be the cladding layers. Wavelength 1.5
The refractive index of BK7 glass in the μm band is 1.50, which is smaller than the refractive index of the glass material 1 used in this example. A concave groove 3 having a width and a depth of 6 μm is formed by a photolithography method and a dry etching method at the center of one surface of one glass substrate 2b. This groove 3 will become a light propagation region, that is, a core region in a later process. Further, on both sides of this groove 3, another groove 4, 5 wider than the groove 3 is provided.
Are formed. The grooves 4 and 5 on both sides are the central groove 3
At the same time, it was formed by photolithography and dry etching, and its groove width was set to 200 μm, which was sufficiently wider than that of the central groove 3. The distance between the central groove 3 and the grooves 4 and 5 on both sides is set so that the existence of the grooves 4 and 5 on both sides does not affect the light propagation characteristics of the central groove 3.
Is more than twice the width of. In this embodiment, the glass material 1 is sandwiched between the two glass substrates 2a and 2b so that the surfaces on which the grooves 3, 4, and 5 are formed are on the inside, and 620 is applied as a whole while applying pressure from the back of the substrates. The glass substrates 2a and 2b are heated and brought into close contact with each other, and are bonded together. The softening temperature of the phosphate glass constituting the glass material 1 used in this example is about 520 ° C., which is lower than that of the BK7 glass, and the glass material 1 melts in the atmosphere of 620 ° C. and loses its viscosity and loses its backside. Groove 3,4 by pressure from
5 is uniformly filled. This heating temperature is slightly higher than the softening temperature of BK7 glass. Therefore, the fusion force between the glass substrates 2a and 2b and the glass material 1 is strong, and the irregularities in the grooves 3, 4, and 5 are smoothed, and scattering loss is reduced. In this embodiment, the glass substrate 2b is placed on the quartz table 6.
, And a weight is applied from above the glass substrate 2a using a quartz weight 7, and the pressure is about 1 to 3 kg / c.
It was set to m 2 . At a temperature of 620 ° C., BK7 glass may also be softened and fused to the table 6 and the weight 7, so that the outer surfaces of the two glass substrates 2a and 2b each have a thickness of about 1 μm.
A thick SiO 2 thin film 9 is vapor-deposited to prevent fusion with the weight 7. By coating the outer surfaces of the two glass substrates 2a and 2b with the thin film 9 having a softening temperature higher than the heating temperature, even if the glass substrates 2a and 2b are heated at a temperature higher than the softening temperature, a load is applied. The base 6 and the weight 7 are not melt-bonded to the glass substrates 2a and 2b. Groove 3,
Phosphate glass is filled in the grooves 4, 5, and the grooves 3, 4, 5
The phosphate glass in the other parts is removed by pressing.
Since the wide grooves 4 and 5 that do not participate in light propagation are formed on both sides of the light propagation groove 3, the glass substrates 2a and 2b are formed.
It is possible to increase the pressure applied to each other and absorb the excess phosphate glass other than that filled in the light propagation groove 3.
As a result, the adhesive layer of phosphate glass remaining between the glass substrates 2a and 2b other than the grooves 3, 4, and 5 can be made extremely thin, and as a result, the guided mode is not excited in this portion.

【0015】このようにしてガラス材料1すなわちリン
酸塩ガラスは図1(b)に示すように溝3に閉じ込めら
れ、ガラス基板2a,2bはクラッドを構成し、これに
より周辺部より屈折率が高いコア領域すなわち光の導波
領域8が形成される。最後に、接合されたガラス基板2
a,2bを所望の長さに切断し、両端面を鏡面に研磨し
てガラス導波路が完成する。2枚のガラス基板2a,2
bは、単なるクラッドの働きばかりでなく導波路端面を
研磨する際の保護材の働きも兼ねることになる。
In this way, the glass material 1, that is, the phosphate glass is confined in the groove 3 as shown in FIG. 1 (b), and the glass substrates 2a and 2b form a clad, whereby the refractive index from the peripheral portion is increased. A high core region or light guiding region 8 is formed. Finally, the bonded glass substrate 2
The glass waveguide is completed by cutting a and 2b into desired lengths and polishing both end faces into mirror surfaces. Two glass substrates 2a, 2
b serves not only as a clad but also as a protective material when polishing the end face of the waveguide.

【0016】本発明の構造では、光の伝搬領域8が完全
に埋め込まれているので、端面を研磨し光ファイバと接
続する際にも、導波路端面の欠けや光ファイバとの接続
不良を生じることがない。図1の例では一方のガラス基
板2bのみに光の伝搬領域8が形成されているが、もう
一方のガラス基板2aにも同様に光の伝搬領域を形成す
ることによって、より集積度の高い立体回路が形成でき
る。リン酸塩ガラスは、ケイ酸塩ガラスのような3次元
網目構造とは異なり、鎖状構造を持つためEr等の光の
増幅作用をもたらす元素を高密度ドープしても濃度消光
が起こりにくい。したがって石英系のErドープファイ
バと比較して単位長さ当りの利得を大きくでき導波路型
の増幅器を形成する上で有望な材料である。なお、本実
施例では、通信用へ適用するために1.53μm付近の
光の増幅を目的として、Erを光の増幅作用をもたらす
元素として添加したが、これ以外にPr、Nd、Yb、
Ho、Tm等の希土類元素をドープしても良好な増幅特
性が得られる。
In the structure of the present invention, since the light propagation region 8 is completely embedded, even when the end face is polished and connected to the optical fiber, the waveguide end face is chipped or the optical fiber is not properly connected. Never. In the example of FIG. 1, the light propagation region 8 is formed only on one glass substrate 2b, but by forming the light propagation region on the other glass substrate 2a in the same manner, a three-dimensional structure having a higher degree of integration can be obtained. A circuit can be formed. Unlike phosphate glass, which has a three-dimensional network structure like silicate glass, phosphate glass has a chain structure, so that concentration quenching does not easily occur even if it is highly densely doped with an element such as Er that has a light amplifying effect. Therefore, the gain per unit length can be increased as compared with a silica-based Er-doped fiber, and it is a promising material for forming a waveguide type amplifier. In addition, in the present embodiment, Er was added as an element that brings about an amplification effect of light for the purpose of amplifying light in the vicinity of 1.53 μm for application to communication, but other than this, Pr, Nd, Yb,
Even if a rare earth element such as Ho or Tm is doped, good amplification characteristics can be obtained.

【0017】[0017]

【発明の効果】以上要するに本発明によれば、以下のよ
うな優れた効果が発揮できる。
In summary, according to the present invention, the following excellent effects can be exhibited.

【0018】(1) 本発明のガラス導波路によれば、
2枚のガラス基板間にガラス材料を挟み込み、ガラス材
料を加熱溶融させてガラス基板同志を密着させることに
よってガラス材料を上記溝内に充填して光の伝搬領域が
形成されるので、断面が対称構造の光の伝搬領域を容易
に形成でき、光ファイバとの接続損失を小さく抑えるこ
とができる。また、所望の元素をガラス材料に添加でき
るので、光の増幅作用をもたらす種々の元素を光の伝搬
領域に添加できる。また、ガラス材料に添加する屈折率
制御用ド−パントの濃度を調節することで光の伝搬領域
の屈折率を容易に調節できるので、光の伝搬領域とその
周辺の低屈折率領域との屈折率差を所望の値に容易に調
節できる。
(1) According to the glass waveguide of the present invention,
The glass material is sandwiched between two glass substrates, and the glass material is heated and melted to bring the glass substrates into close contact with each other to fill the glass material in the groove to form a light propagation region. The light propagation region of the structure can be easily formed, and the connection loss with the optical fiber can be suppressed small. Further, since a desired element can be added to the glass material, various elements that bring about a light amplification effect can be added to the light propagation region. Further, since the refractive index of the light propagation region can be easily adjusted by adjusting the concentration of the dopant for controlling the refractive index added to the glass material, the refraction of the light propagation region and the surrounding low refractive index region The rate difference can be easily adjusted to the desired value.

【0019】(2) 本発明のガラス導波路の製造方法
によれば、少なくとも一方に溝を形成した2枚のガラス
基板間にガラス材料を挟み込みガラス材料を溶融させて
基板同志を密着させるだけで、光増幅作用を伴うコアと
それを埋め込むクラッドからなるガラス導波路を容易に
製造できる。複雑・高価な製造装置を必要としないので
生産コストを著しく削減できる。
(2) According to the method for manufacturing a glass waveguide of the present invention, a glass material is sandwiched between two glass substrates having a groove formed in at least one of them, the glass material is melted, and the substrates are brought into close contact with each other. It is possible to easily manufacture a glass waveguide including a core having an optical amplification function and a clad that embeds the core. Since no complicated and expensive manufacturing equipment is required, the production cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すガラス導波路の構造及
び製造方法を示す図である。 1 ガラス材料 2a,2b ガラス基板 3,4,5 溝
FIG. 1 is a diagram showing a structure and a manufacturing method of a glass waveguide showing an embodiment of the present invention. 1 glass material 2a, 2b glass substrate 3, 4, 5 groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本郷 晃史 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 樫村 誠一 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akifumi Hongo 3550, Kidayo-cho, Tsuchiura-shi, Ibaraki Hitachi Cable Ltd. Advanced Research Center (72) Inventor Seiichi Kashimura 3550, Kidayo-cho, Tsuchiura-shi, Ibaraki Hitachi Cable Shares Company Advance Research Center

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 2枚のガラス基板と、少なくとも一方の
ガラス基板の片面に形成された溝と、この溝が形成され
た面を内側にして両ガラス基板間にガラス基板よりも屈
折率が高く且つ軟化温度が低い別のガラス材料を挟み込
み、これを両側から加圧しながら上記ガラス材料を加熱
溶融させてガラス基板同志を密着させることにより上記
ガラス材料を上記溝内に充填してなる光の伝搬領域とで
構成されていることを特徴とするガラス導波路。
1. Two glass substrates, a groove formed on one surface of at least one of the glass substrates, and a surface having the groove formed inside is provided with a higher refractive index than the glass substrates between the glass substrates. Also, another glass material having a low softening temperature is sandwiched, and the glass material is heated and melted while being pressed from both sides to bring the glass substrates into close contact with each other so that the glass material is filled in the groove to propagate light. A glass waveguide comprising a region and a region.
【請求項2】 上記光の伝搬領域となる溝の両側に、こ
の溝の幅の少なくとも2倍以上の間隔を隔ててより幅の
広い別の溝が形成されている請求項1記載のガラス導波
路。
2. The glass conductor according to claim 1, wherein another groove having a wider width is formed on both sides of the groove serving as the light propagation region at a distance of at least twice the width of the groove. Waveguide.
【請求項3】 上記ガラス材料としてPr、Nd、E
r、Yb、Ho、Tmのうちの少なくとも一種類の希土
類元素を含有したリン酸塩ガラスを用いてなる請求項1
記載のガラス導波路。
3. Pr, Nd, E as the glass material
2. A phosphate glass containing at least one kind of rare earth element selected from r, Yb, Ho and Tm.
The described glass waveguide.
【請求項4】 2枚のガラス基板の少なくとも一方のガ
ラス基板の片面に光の伝搬領域となる溝を形成した後、
この溝が形成された面を内側にして両ガラス基板間にガ
ラス基板よりも屈折率が高く且つ軟化温度が低い別のガ
ラス材料を挟み込み、これを両側から加圧しながら上記
ガラス材料を加熱溶融させてガラス基板同志を密着させ
ることにより上記ガラス材料を上記溝内に充填して光の
伝搬領域を形成するようにしたことを特徴とするガラス
導波路の製造方法。
4. After forming a groove serving as a light propagation region on at least one surface of at least one of the two glass substrates,
Another glass material having a higher refractive index and a lower softening temperature than the glass substrate is sandwiched between both glass substrates with the surface having the groove formed inside, and the glass material is heated and melted while pressing it from both sides. A method of manufacturing a glass waveguide, wherein the glass material is filled in the groove to form a light propagation region by closely adhering the glass substrates together.
【請求項5】 上記光の伝搬領域なる溝の両側に、この
溝の幅の少なくとも2倍以上の間隔を隔ててより幅の広
い別の溝を形成しておき、両ガラス基板間に上記ガラス
材料を挟み込むようにした請求項4記載のガラス導波路
の製造方法。
5. Another groove having a wider width is formed on both sides of the groove serving as the light propagation region at an interval of at least twice the width of the groove, and the glass is sandwiched between both glass substrates. The method for manufacturing a glass waveguide according to claim 4, wherein the material is sandwiched.
【請求項6】 上記ガラス基板の外側の面を上記ガラス
材料の軟化温度よりも高い軟化温度を有する薄膜で被覆
しておき、この薄膜の軟化温度よりも高い温度で上記ガ
ラス材料を加熱溶融させてガラス基板同志を密着させる
ようにした請求項4記載のガラス導波路の製造方法。
6. The outer surface of the glass substrate is covered with a thin film having a softening temperature higher than the softening temperature of the glass material, and the glass material is heated and melted at a temperature higher than the softening temperature of the thin film. The method for manufacturing a glass waveguide according to claim 4, wherein the glass substrates are brought into close contact with each other.
JP5176894A 1994-03-23 1994-03-23 Glass waveguide and manufacturing method thereof Pending JPH07261040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5176894A JPH07261040A (en) 1994-03-23 1994-03-23 Glass waveguide and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5176894A JPH07261040A (en) 1994-03-23 1994-03-23 Glass waveguide and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH07261040A true JPH07261040A (en) 1995-10-13

Family

ID=12896136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5176894A Pending JPH07261040A (en) 1994-03-23 1994-03-23 Glass waveguide and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07261040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536824A (en) * 1999-01-27 2002-10-29 ショット、グラス、テクノロジーズ、インコーポレイテッド High power guided laser
WO2004088374A1 (en) * 2003-03-28 2004-10-14 Nhk Spring Co., Ltd. Optical waveguide circuit component and production method therefor
CN115259695A (en) * 2022-08-25 2022-11-01 济宁市海富电子科技有限公司 Intelligent watch bottom cover compounded with glass and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536824A (en) * 1999-01-27 2002-10-29 ショット、グラス、テクノロジーズ、インコーポレイテッド High power guided laser
WO2004088374A1 (en) * 2003-03-28 2004-10-14 Nhk Spring Co., Ltd. Optical waveguide circuit component and production method therefor
US7221844B2 (en) 2003-03-28 2007-05-22 Omron Corporation Optical waveguide circuit component and method of manufacturing the same
CN115259695A (en) * 2022-08-25 2022-11-01 济宁市海富电子科技有限公司 Intelligent watch bottom cover compounded with glass and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3773575B2 (en) Doped fiber, splicing method thereof, and optical amplifier
EP0469792A2 (en) Optical communication system comprising a fiber amplifier
JPH09105965A (en) Optical device
US5064266A (en) Circular channel waveguides and lenses formed from rectangular channel waveguides
JPH01260405A (en) Optical fiber
JPH03504052A (en) Optical waveguide connection
JPH0627343A (en) Optical fiber juncture for optical fiber amplifier
JPH06342110A (en) Preparation of glass base material for planar optical waveguide and planar optical waveguide
US6742939B2 (en) Optical fiber fusion splice having a controlled mode field diameter expansion match
CA2332385A1 (en) Silica based optical waveguide and production method therefor
JP2530823B2 (en) Fiber type single mode lightwave circuit element and method of manufacturing the same
JPH07261040A (en) Glass waveguide and manufacturing method thereof
US20020131746A1 (en) Compact cladding-pumped planar waveguide amplifier and fabrication method
JP2003114335A (en) Optical filter module and method of manufacturing the same
US7756377B2 (en) Waveguide comprising a channel on an optical substrate
JPH06174955A (en) Method of manufacturing optical waveguide
JP3067231B2 (en) Method for manufacturing optical waveguide for optical amplifier
JPH07318734A (en) Quartz glass waveguide and method of manufacturing the same
JPH0688914A (en) Optical waveguide and manufacturing method thereof
EP1659430A1 (en) Optical waveguide circuit component and production method therefor
JPS6365619B2 (en)
JP3823812B2 (en) Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber
JP2827640B2 (en) Optical component manufacturing method
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device