[go: up one dir, main page]

JPH07259655A - Exhaust gas circulating device - Google Patents

Exhaust gas circulating device

Info

Publication number
JPH07259655A
JPH07259655A JP6076604A JP7660494A JPH07259655A JP H07259655 A JPH07259655 A JP H07259655A JP 6076604 A JP6076604 A JP 6076604A JP 7660494 A JP7660494 A JP 7660494A JP H07259655 A JPH07259655 A JP H07259655A
Authority
JP
Japan
Prior art keywords
valve
intake
exhaust
dead center
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6076604A
Other languages
Japanese (ja)
Other versions
JP3719611B2 (en
Inventor
Godo Ozawa
吾道 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP07660494A priority Critical patent/JP3719611B2/en
Priority to US08/704,524 priority patent/US5682854A/en
Priority to DE19581571T priority patent/DE19581571B4/en
Priority to PCT/JP1995/000341 priority patent/WO1995024549A1/en
Priority to GB9617109A priority patent/GB2301398B/en
Publication of JPH07259655A publication Critical patent/JPH07259655A/en
Priority to SE9603090A priority patent/SE507878C2/en
Application granted granted Critical
Publication of JP3719611B2 publication Critical patent/JP3719611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To attain an exhaust gas circulating current of a variable compression ratio engine at a low EGR rate in the case of high load and at a high EGR rate in the case of low load. CONSTITUTION:Two intake and exhaust valves are provided on a cylinder head 1, and operated by a first cam shaft 10 and a second cam shaft 20. In the intake stroke, the second exhaust valve 5 is operated through a lever 23 and a locker arm 15 by a cam 22 of the second cam shaft 20 to circulate exhaust gas. In the case of high load, the second exhaust valve 5 opens and closes near the top dead center of a piston in a quick close mirror cycle with a low compression ratio to attain a low EGR rate. The phase of the second cam shaft is changed, and in the case of high load, the second exhaust valve 5 openes and closes at 90+ or - before the bottom dead point in a normal cycle with a high compression ratio to attain a high EGR rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気還流装
置に関し、特には、通常サイクルとミラーサイクルとの
変換を可能にした可変圧縮比エンジンの排気還流装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation system for an internal combustion engine, and more particularly to an exhaust gas recirculation system for a variable compression ratio engine that enables conversion between a normal cycle and a Miller cycle.

【0002】[0002]

【従来の技術】車両用エンジンでは、従来より、排気ガ
ス中に含まれるNOxを低減するために、不活性ガスで
ある排気ガスを吸気中に還流し、燃焼ガス温度を低下さ
せる排気還流(EGR)が行われている。
2. Description of the Related Art Conventionally, in a vehicle engine, in order to reduce NOx contained in exhaust gas, exhaust gas, which is an inert gas, is recirculated into intake air and exhaust gas recirculation (EGR) is performed to lower the combustion gas temperature. ) Is done.

【0003】ところで、エンジンの高負荷時にはEGR
ガスの温度が低いほど体積効率が向上し、EGRガス量
が多いほど燃焼温度が低下してNOxが減少する。軽負
荷時にはEGRガスの温度が低いと燃焼が不安定になる
のでEGRガスの温度は高い方が良い。そのため、EG
Rガスの冷却手段を設けて高負荷時にはEGRガスを冷
却し、軽負荷時にはEGRガスを冷却しないように制御
する方法をとったものがある。
By the way, when the engine load is high, EGR
The lower the gas temperature, the higher the volumetric efficiency, and the larger the EGR gas amount, the lower the combustion temperature and the NOx. The combustion temperature becomes unstable when the temperature of the EGR gas is low when the load is light, so the temperature of the EGR gas is preferably high. Therefore, EG
There is a method in which a cooling means for the R gas is provided to cool the EGR gas when the load is high and to control the EGR gas not to cool when the load is light.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高負荷
時にEGRを行うと燃費悪化、出力低下などの悪影響が
生ずる。したがって、EGRガスの供給量(EGR率)
は低負荷時ほど多く、高負荷時ほど少なくする必要があ
る。
However, if EGR is performed under high load, adverse effects such as deterioration of fuel consumption and reduction of output occur. Therefore, the supply amount of EGR gas (EGR rate)
Needs to be high at low load and low at high load.

【0005】本発明は上記の問題点に着目してなされた
もので、低負荷時にはEGR率を高くし、高負荷時には
EGR率を低くして、特に通常サイクルとミラーサイク
ルとの変換が可能な可変圧縮比エンジンの広い運転域に
対して、常に最適のEGRを行う排気還流装置を提供す
ることを目的としている。
The present invention has been made by paying attention to the above-mentioned problems. It is possible to increase the EGR rate when the load is low and decrease the EGR rate when the load is high so that the normal cycle and the Miller cycle can be converted. An object of the present invention is to provide an exhaust gas recirculation system that always performs optimum EGR over a wide operating range of a variable compression ratio engine.

【0006】[0006]

【課題を解決するための手段】上記の目的達成のため、
本発明に係る排気還流装置の第1の発明においては、排
気ガスの一部を吸気中に還流する排気還流装置を備えた
内燃機関において、吸気行程中に排気弁を開閉する手段
を具備した。
[Means for Solving the Problems] To achieve the above object,
In the first aspect of the exhaust gas recirculation system according to the present invention, an internal combustion engine including an exhaust gas recirculation system that recirculates a part of exhaust gas into intake air is provided with means for opening and closing an exhaust valve during an intake stroke.

【0007】第2の発明においては、前記内燃機関にお
いて、1気筒あたり2個以上の吸気弁と、少なくとも1
個以上の排気弁を備え、該吸気弁、および排気弁を作動
するカムを設けた第1カムシャフトと、少なくとも1個
の吸気弁、および排気弁を作動するカムを設けた第2カ
ムシャフトとを具備した。
In the second invention, in the internal combustion engine, two or more intake valves per cylinder and at least one intake valve are provided.
A first camshaft provided with at least one exhaust valve and provided with a cam for operating the intake valve and the exhaust valve; and a second camshaft provided with at least one intake valve and a cam for operating the exhaust valve Equipped.

【0008】第3の発明においては、前記内燃機関にお
いて、少なくとも1個の吸気弁、および排気弁のバルブ
タイミングを、これらを開閉する第2カムシャフトのカ
ムの位相を変化させることにより可変とした。
In the third invention, in the internal combustion engine, the valve timing of at least one intake valve and exhaust valve is made variable by changing the phase of the cam of the second cam shaft which opens and closes these valves. .

【0009】第4の発明においては、前記内燃機関の吸
気行程において、吸気弁の閉時期をピストン下死点前に
設定するとともに、排気弁の開閉時期をピストン上死点
付近に設定し、運転条件によっては少なくとも1個の吸
気弁の閉時期をピストン下死点付近に設定するととも
に、排気弁の開閉時期をピストン下死点前に設定し得る
弁駆動装置を備えた。
In the fourth aspect of the invention, in the intake stroke of the internal combustion engine, the closing timing of the intake valve is set before the piston bottom dead center, and the opening and closing timing of the exhaust valve is set near the piston top dead center for operation. Depending on the conditions, a valve drive device that can set the closing timing of at least one intake valve near the piston bottom dead center and set the opening and closing timing of the exhaust valve before piston bottom dead center was provided.

【0010】第5の発明においては、前記内燃機関の吸
気行程において、吸気弁の閉時期をピストン下死点付近
に設定するとともに、排気弁の開閉時期をピストン下死
点前に設定し、運転条件によっては少なくとも1個の吸
気弁の閉時期をピストン下死点後に設定するとともに、
排気弁の開閉時期をピストン下支点付近に設定し得る弁
駆動装置を備えた。
In the fifth aspect of the invention, in the intake stroke of the internal combustion engine, the closing timing of the intake valve is set near the bottom dead center of the piston, and the opening and closing timing of the exhaust valve is set before the bottom dead center of the piston. Depending on the conditions, the closing timing of at least one intake valve is set after the piston bottom dead center, and
A valve drive device that can set the opening / closing timing of the exhaust valve near the fulcrum below the piston was provided.

【0011】[0011]

【作用】上記構成によれば、排気還流装置を備えた内燃
機関に、1気筒あたり2個以上の吸気弁と、1個以上の
排気弁と、吸気弁と排気弁とを駆動する第1カムシャフ
トと、少なくとも1個の吸気弁と排気弁とを作動する第
2カムシャフトとを設け、第2カムシャフトの位相を変
化させることにより、少なくとも1個の吸気弁と排気弁
とのバルブタイミングを可変とした。
According to the above construction, in an internal combustion engine equipped with an exhaust gas recirculation device, two or more intake valves per cylinder, one or more exhaust valves, and a first cam for driving the intake valves and the exhaust valves. By providing a shaft and a second cam shaft that operates at least one intake valve and an exhaust valve, and changing the phase of the second cam shaft, the valve timing of at least one intake valve and exhaust valve can be adjusted. It was variable.

【0012】そして、吸気行程において、吸気弁の閉時
期をピストン下死点前に設定するとともに、排気弁の開
閉時期をピストン上死点付近とし、運転条件によっては
少なくとも1個の吸気弁の閉時期をピストン下死点付近
に設定するとともに、排気弁の開閉時期をピストン下死
点前に設定するようにした。そのため、高負荷時には低
圧縮比の早閉じミラーサイクルとなり、その場合には排
気還流は殆ど行われず、低負荷時には高圧縮比の通常サ
イクルとなり、その場合には排気還流が行われる。
In the intake stroke, the closing timing of the intake valve is set before the piston bottom dead center, the opening and closing timing of the exhaust valve is set near the piston top dead center, and at least one intake valve is closed depending on operating conditions. The timing is set near the piston bottom dead center, and the opening / closing timing of the exhaust valve is set before the piston bottom dead center. Therefore, when the load is high, a low compression ratio early closing mirror cycle is performed. In that case, exhaust gas recirculation is hardly performed, and when the load is low, a high compression ratio normal cycle is performed, in which case exhaust gas recirculation is performed.

【0013】あるいは、吸気行程において、吸気弁の閉
時期をピストン下死点付近に設定するとともに、排気弁
の開閉時期をピストン下死点前とし、運転条件によって
は少なくとも1個の吸気弁の閉時期をピストン下死点後
に設定するとともに、排気弁の開閉時期をピストン下死
点付近に設定するようにした。そのため、低負荷時には
高圧縮比の通常サイクルとなり、その場合には排気還流
が行われ、高負荷時には低圧縮比の遅閉じミラーサイク
ルとなり、その場合には排気還流は殆ど行われない。
Alternatively, in the intake stroke, the closing timing of the intake valve is set near the piston bottom dead center and the opening / closing timing of the exhaust valve is set before the piston bottom dead center, and at least one intake valve is closed depending on operating conditions. The timing is set after the piston bottom dead center, and the opening / closing timing of the exhaust valve is set near the piston bottom dead center. Therefore, when the load is low, a normal cycle with a high compression ratio is performed, in which case exhaust gas recirculation is performed, and when the load is high, a slow closing mirror cycle with a low compression ratio is performed, and in that case, exhaust gas recirculation is hardly performed.

【0014】[0014]

【実施例】以下に、本発明に係る排気還流装置の実施例
について、図面を参照して詳述する。
Embodiments of the exhaust gas recirculation system according to the present invention will be described in detail below with reference to the drawings.

【0015】図1は1気筒に吸気弁2個、排気弁2個を
有するディーゼルエンジンのシリンダヘッド部分の平面
断面図、図2はその側面断面図であり、図3は図1のX
−X断面を示す側面断面図である。シリンダヘット1に
は第1吸気弁2、第2吸気弁3、第1排気弁4、第2排
気弁5、および第1カムシャフト10、第2カムシャフ
ト20が装着されている。第1カムシャフト10には第
1吸気弁2、第1排気弁4、および第2排気弁5用のカ
ム11、12、および13が設けられており、カム12
は直接第1排気弁4を作動し、カム11、およびカム1
3はそれぞれロッカアーム14、および15を介して第
1吸気弁2、および第2排気弁5を作動する。第2カム
シャフト20にはカム21、およびカム22が設けら
れ、カム21は直接第2吸気弁3を作動し、カム22は
図3に示すように、シリンダヘット1に装着されたレバ
ー23をピン24を中心に揺動させ、ロッカアーム15
を作動させて、第2排気弁5を開閉する。第2カムシャ
フト20は図示しない駆動装置により予め定められた角
度だけ回転するようになっており、カム21、およびカ
ム22の位相をずらすことにより第2吸気弁3、および
第2排気弁5のバルブタイミングを遅らせることができ
る。25はピストン、26、27は吸気通路、28は排
気通路である。
FIG. 1 is a plan sectional view of a cylinder head portion of a diesel engine having two intake valves and two exhaust valves in one cylinder, FIG. 2 is a side sectional view thereof, and FIG. 3 is an X section of FIG.
It is a side sectional view showing a -X section. A first intake valve 2, a second intake valve 3, a first exhaust valve 4, a second exhaust valve 5, a first camshaft 10 and a second camshaft 20 are mounted on the cylinder head 1. The first camshaft 10 is provided with cams 11, 12, and 13 for the first intake valve 2, the first exhaust valve 4, and the second exhaust valve 5, respectively.
Directly actuates the first exhaust valve 4, and the cam 11 and the cam 1
3 operates the first intake valve 2 and the second exhaust valve 5 via rocker arms 14 and 15, respectively. The second camshaft 20 is provided with a cam 21 and a cam 22, the cam 21 directly operates the second intake valve 3, and the cam 22 operates a lever 23 mounted on the cylinder head 1 as shown in FIG. The rocker arm 15 is swung around the pin 24.
Is operated to open and close the second exhaust valve 5. The second cam shaft 20 is adapted to rotate by a predetermined angle by a drive device (not shown), and by shifting the phases of the cam 21 and the cam 22, the second intake valve 3 and the second exhaust valve 5 can be rotated. The valve timing can be delayed. Reference numeral 25 is a piston, 26 and 27 are intake passages, and 28 is an exhaust passage.

【0016】つぎに、作動について説明する。図4は高
負荷時におけるピストン25の動きと、吸、排気弁の開
口面積との関係を示す図であり、縦軸は開口面積、横軸
はピストン22の位置を示している。実線は弁1個の開
口面積であり、細い2点鎖線は弁2個の総開口面積であ
る。図中、Aは排気弁、Bは吸気弁、Cは第2排気弁を
示す。すなわち、第1、第2排気弁4、5はピストン下
死点前から開き始め、ピストン上死点付近で閉じる。そ
して、その位相は常に同一である。また、第1、第2吸
気弁2、3も位相は同一でピストン上死点付近から開き
始め、ピストン下死点前90°付近で閉じるようになっ
ている。ピストン上死点付近で第2吸気弁3が開くと
き、同時に第2排気弁5がCに示すように短時間開く
が、ピストン上死点付近であるため、殆ど排気ガスは吸
気中には還流しない。したがって、燃費悪化、出力低下
の恐れはない。
Next, the operation will be described. FIG. 4 is a diagram showing the relationship between the movement of the piston 25 and the opening areas of the intake and exhaust valves when the load is high. The vertical axis represents the opening area and the horizontal axis represents the position of the piston 22. The solid line is the opening area of one valve, and the thin two-dot chain line is the total opening area of two valves. In the figure, A is an exhaust valve, B is an intake valve, and C is a second exhaust valve. That is, the first and second exhaust valves 4, 5 start to open before the piston bottom dead center and close near the piston top dead center. And the phase is always the same. The phases of the first and second intake valves 2 and 3 are the same, and the first and second intake valves 2 and 3 start to open near the top dead center of the piston and close at about 90 ° before the bottom dead center of the piston. When the second intake valve 3 opens near the top dead center of the piston, the second exhaust valve 5 opens at the same time for a short time as indicated by C, but almost all the exhaust gas recirculates during intake because it is near the top dead center of the piston. do not do. Therefore, there is no fear of deterioration of fuel consumption and output reduction.

【0017】図5は高負荷時のPV線図である。吸気行
程において0から吸い込みを開始し、1aにおいて第
1、第2吸気弁2、3は閉じるため筒内圧力は低下し、
矢印に沿って1bに至る。圧縮行程で1bから1aを経
て2aに至り、燃焼、膨張行程で2aから3、4に至
り、排気行程で4から1cに至り、1cから0に至る。
すなわち、早閉じミラーサイクルとなり、吸気行程の終
わり付近では1a−1b−1aという膨張、圧縮を行う
だけなので、実質的な圧縮比は低くなり、このときの圧
縮比は11〜13付近である。したがって、高出力化が
可能となる。
FIG. 5 is a PV diagram under high load. In the intake stroke, suction is started from 0, and in 1a, the first and second intake valves 2 and 3 are closed, so that the cylinder pressure decreases,
Follow the arrow to 1b. The compression stroke goes from 1b to 1a to 2a, the combustion and expansion strokes go from 2a to 3 and 4, the exhaust stroke goes from 4 to 1c, and 1c to 0.
That is, the early closing Miller cycle is performed, and since the expansion and compression of 1a-1b-1a are only performed near the end of the intake stroke, the substantial compression ratio becomes low, and the compression ratio at this time is around 11 to 13. Therefore, high output can be achieved.

【0018】図6は低負荷時におけるピストン25の動
きと、吸、排気弁の開口面積との関係を示す図であり、
この場合には第2カムシャフト20を駆動装置により回
転させてカム21、および22の位相を変更し、第2吸
気弁3の閉位置を遅らせてピストン下死点付近にする。
図中、B1は第1吸気弁2を示し、B2は第2吸気弁3
を示す。したがって、第2排気弁5はCに示す位置、す
なわち、ピストン下死点前90°付近となり、排気ガス
は吸気中に還流され、EGR率は高くなり、NOxの発
生を低減する。
FIG. 6 is a diagram showing the relationship between the movement of the piston 25 and the opening areas of the intake and exhaust valves when the load is low.
In this case, the second camshaft 20 is rotated by the drive device to change the phases of the cams 21 and 22, and the closing position of the second intake valve 3 is delayed so as to be near the piston bottom dead center.
In the figure, B1 indicates the first intake valve 2 and B2 indicates the second intake valve 3.
Indicates. Therefore, the second exhaust valve 5 is at the position indicated by C, that is, near 90 ° before the piston bottom dead center, the exhaust gas is recirculated into the intake air, the EGR rate is increased, and the generation of NOx is reduced.

【0019】図7は低負荷時のPV線図であり、吸気行
程0−1、圧縮行程1−2、燃焼行程2−3、膨張行程
3−4、排気行程4−1−0の通常のサイクル作動とな
る。このときの圧縮比は15〜17で、良好な始動性と
燃焼状況とを得ることができる。
FIG. 7 is a PV diagram at a low load, which is a normal intake stroke 0-1, compression stroke 1-2, combustion stroke 2-3, expansion stroke 3-4, and exhaust stroke 4-1-0. It becomes a cycle operation. The compression ratio at this time is 15 to 17, and good startability and combustion conditions can be obtained.

【0020】上記のエンジン負荷と、圧縮比、あるいは
EGR率との関係を整理するとつぎのようになる。図8
はエンジン負荷と圧縮比との関係を示す図であり、縦軸
はエンジンの負荷、横軸はエンジン回転数を示す。一番
外側の曲線はエンジンの最大出力時のトルク曲線であ
る。図に示すように負荷が大きくなるほど圧縮比は低く
なり、負荷が小さくなるほど圧縮比は高くなる。
The relationship between the engine load and the compression ratio or EGR rate is summarized as follows. Figure 8
FIG. 4 is a diagram showing a relationship between an engine load and a compression ratio, where the vertical axis represents the engine load and the horizontal axis represents the engine speed. The outermost curve is the torque curve at maximum engine output. As shown in the figure, the compression ratio decreases as the load increases, and the compression ratio increases as the load decreases.

【0021】図9はエンジン負荷とEGR率との関係を
示す図であり、図8と同様に縦軸はエンジンの負荷、横
軸はエンジン回転数である。図に示すように負荷が大き
くなるほどEGR率は低くなり、負荷が小さくなるほど
EGR率は高くなる。
FIG. 9 is a diagram showing the relationship between the engine load and the EGR rate. As with FIG. 8, the vertical axis represents the engine load and the horizontal axis represents the engine speed. As shown in the figure, the EGR rate decreases as the load increases, and the EGR rate increases as the load decreases.

【0022】図10は1気筒あたりそれぞれ2個の吸、
排気弁を備えたガソリンエンジンのシリンダヘッド部分
の平面断面図であり、図11は側面断面図、図12は図
10のY−Y断面を示す側面断面図である。シリンダヘ
ッド31には第1吸気弁32、第2吸気弁33、第1排
気弁34、第2排気弁35、および第1カムシャフト4
0、第2カムシャフト50が装着されている。第1カム
シャフト40には第1吸気弁32、第1排気弁34、お
よび第2排気弁35用のカム41、42、および43が
設けられており、カム41はロッカアーム44を介して
第1吸気弁32を作動し、カム42は直接第1排気弁3
4を作動し、カム43はシリンダヘッド31にピン45
により揺動自在に軸着されたレバー46を介して第2排
気弁35を作動する。第2カムシャフト50にはカム5
1、および52が設けられ、カム51は直接第2吸気弁
33を作動し、カム52はシリンダヘッド31にピン5
3により揺動自在に軸着されたレバー54によりレバー
46を揺動させ、第2排気弁35を開閉する。第2カム
シャフト50は図示しない駆動装置により予め定められ
た角度だけ回転するようになっており、カム51、およ
び52の位相をずらすことにより第2吸気弁33、およ
び第2排気弁35のバルブタイミングを遅らせることが
できる。55はピストン、56、57は吸気通路、58
は排気通路である。
FIG. 10 shows two intakes per cylinder,
FIG. 12 is a plan sectional view of a cylinder head portion of a gasoline engine provided with an exhaust valve, FIG. 11 is a side sectional view, and FIG. 12 is a side sectional view showing a section YY of FIG. 10. The cylinder head 31 includes a first intake valve 32, a second intake valve 33, a first exhaust valve 34, a second exhaust valve 35, and a first camshaft 4.
0, the second camshaft 50 is mounted. The first camshaft 40 is provided with cams 41, 42, and 43 for the first intake valve 32, the first exhaust valve 34, and the second exhaust valve 35, and the cam 41 has a first rocker arm 44 and a first camshaft 41. The intake valve 32 is operated, and the cam 42 directly connects the first exhaust valve 3
4 is operated, the cam 43 moves the pin 45 to the cylinder head 31.
The second exhaust valve 35 is actuated via the lever 46 pivotally attached by the. The cam 5 is provided on the second cam shaft 50.
1 and 52 are provided, the cam 51 directly operates the second intake valve 33, and the cam 52 connects the cylinder head 31 with the pin 5
The lever 46 pivotally mounted by 3 swings the lever 46 to open and close the second exhaust valve 35. The second camshaft 50 is configured to rotate by a predetermined angle by a drive device (not shown), and by shifting the phases of the cams 51 and 52, the valves of the second intake valve 33 and the second exhaust valve 35 are shifted. You can delay the timing. 55 is a piston, 56 and 57 are intake passages, 58
Is an exhaust passage.

【0023】つぎに作動について説明する。図13は低
負荷時のピストン55の動きと、吸、排気弁の開口面積
との関係を示す図であり、縦軸は吸、排気弁の開口面
積、横軸はピストン55の位置を示している。実線は弁
1個の開口面積であり、細い2点鎖線は弁2個の総開口
面積を示している。図中、Aは排気弁、Bは吸気弁、C
は第2排気弁を示す。すなわち、第1、第2排気弁3
4、35はピストン下死点前から開き始め、ピストン上
死点付近で閉じる。そして、その位相は常に同一であ
る。第1、第2吸気弁32、33はともに位相は同一
で、ピストン上死点付近から開き始め、ピストン下死点
付近で閉じる。このとき第2排気弁35はピストン下支
点前90°付近で短時間開き、排気ガスは吸気中に還流
され、EGR率は高く、NOxの発生を低減する。
Next, the operation will be described. FIG. 13 is a diagram showing the relationship between the movement of the piston 55 under low load and the opening areas of the intake and exhaust valves, where the vertical axis represents the intake and exhaust valve opening areas and the horizontal axis represents the position of the piston 55. There is. The solid line shows the opening area of one valve, and the thin two-dot chain line shows the total opening area of two valves. In the figure, A is an exhaust valve, B is an intake valve, and C
Indicates the second exhaust valve. That is, the first and second exhaust valves 3
Nos. 4 and 35 start to open before the piston bottom dead center and close near the piston top dead center. And the phase is always the same. The first and second intake valves 32 and 33 have the same phase and start to open near the top dead center of the piston and close at the bottom dead center of the piston. At this time, the second exhaust valve 35 opens for a short time near 90 ° before the piston lower fulcrum, the exhaust gas is recirculated into the intake air, the EGR rate is high, and the generation of NOx is reduced.

【0024】図14は低負荷時のPV線図であり、吸気
行程0−1、圧縮行程1−2、燃焼行程2−3、膨張行
程3−4、排気行程4−1−0のサイクル作動を行う。
このときの圧縮比は11〜13付近とし、始動性や熱効
率を向上し、燃費低減やCO2 の発生量低減が可能とな
る。
FIG. 14 is a PV diagram when the load is low, in which the intake stroke 0-1, the compression stroke 1-2, the combustion stroke 2-3, the expansion stroke 3-4, and the exhaust stroke 4-1-0 are cycled. I do.
At this time, the compression ratio is set to around 11 to 13 to improve the startability and the thermal efficiency, and it is possible to reduce fuel consumption and CO 2 generation amount.

【0025】図15は高負荷時のピストン55の動き
と、吸、排気弁の開口面積との関係を示す図であり、図
中、Aは排気弁、B1は第1吸気弁32、B2は第2吸
気弁33、Cは第2排気弁35を示す。この場合は図示
しない駆動装置により第2カムシャフト50を回転さ
せ、第2吸気弁33の閉時期をピストン下死点後90°
とする。したがって、第2排気弁35の開閉時期はピス
トン下死点付近となり、排気ガスは吸気中に殆ど還流さ
れない。したがって、燃費悪化、出力低下は発生しな
い。
FIG. 15 is a diagram showing the relationship between the movement of the piston 55 under high load and the opening areas of the intake and exhaust valves. In the figure, A is the exhaust valve, B1 is the first intake valve 32, and B2 is The second intake valve 33, C indicates the second exhaust valve 35. In this case, the second camshaft 50 is rotated by a drive device (not shown) so that the closing timing of the second intake valve 33 is 90 ° after the piston bottom dead center.
And Therefore, the opening / closing timing of the second exhaust valve 35 is near the piston bottom dead center, and the exhaust gas is hardly recirculated into the intake air. Therefore, the fuel consumption does not deteriorate and the output does not decrease.

【0026】図16は高負荷時のPV線図であり、吸気
行程0−1で吸気し、圧縮行程では1−1dでは第2吸
気弁33が開いているため昇圧せず、1d点で第2吸気
弁33が閉じるので圧縮行程は1d−2bとなる。以後
は燃焼行程2b−3、膨張行程3−4、排気行程4−1
−0の遅閉じミラーサイクル作動となる。このときの圧
縮比は8〜10付近であり、高出力発生可能であるとと
もに高出力時のノッキングの発生を防止する。
FIG. 16 is a PV diagram at the time of high load, in which the intake stroke is 0-1 and the compression stroke is 1-1d, the second intake valve 33 is open, so the pressure is not increased and the first stroke is made at the 1d point. Since the 2 intake valve 33 is closed, the compression stroke is 1d-2b. After that, combustion stroke 2b-3, expansion stroke 3-4, exhaust stroke 4-1
It becomes a delayed closing mirror cycle operation of -0. The compression ratio at this time is in the vicinity of 8 to 10, high output can be generated, and knocking at high output can be prevented.

【0027】[0027]

【発明の効果】以上詳述したように、本発明は、1気筒
あたり2個以上の吸気弁と、少なくとも1個以上の排気
弁とを有し、2本のカムシャフトにより吸、排気弁を作
動し、1本のカムシャフトの位相を変更して少なくとも
1個の吸気弁、および排気弁のバルブタイミングを可変
にした。
As described above in detail, the present invention has two or more intake valves per cylinder and at least one or more exhaust valves, and has two camshafts for intake and exhaust valves. In operation, the phase of one camshaft was changed to make the valve timing of at least one intake valve and exhaust valve variable.

【0028】そして、吸気行程で吸気弁の閉時期をピス
トン下死点前に設定するとともに、排気弁の開閉時期を
ピストン上死点付近に設定したため圧縮比は低くなり、
早閉じミラーサイクル作動となり高出力化が可能となる
が、排気還流は殆ど行われないので高出力時の燃費悪
化、出力低下は発生しない。また、低負荷時には少なく
とも1個の吸気弁の閉時期をピストン下死点付近に設定
し、排気弁の開閉時期をピストン下死点前に設定できる
ようにしたため、圧縮比は高くなり、通常サイクル作動
となり、始動性は良好で、燃焼状態も良く、EGR率は
高くなってNOxの発生を低減する。
Since the closing timing of the intake valve is set before the piston bottom dead center in the intake stroke and the opening and closing timing of the exhaust valve is set near the piston top dead center, the compression ratio becomes low.
The early closing Miller cycle operation enables high output, but since exhaust gas recirculation is hardly performed, deterioration of fuel efficiency and output reduction at high output do not occur. Also, at low load, the closing timing of at least one intake valve is set near the piston bottom dead center, and the opening and closing timing of the exhaust valve can be set before piston bottom dead center. The operation is started, the startability is good, the combustion state is good, the EGR rate is high, and the generation of NOx is reduced.

【0029】あるいは、吸気行程で吸気弁の閉時期をピ
ストン下死点付近に設定するとともに、排気弁の開閉時
期をピストン下支点前に設定したため圧縮比は高くな
り、通常サイクル作動となり、始動性は良好で、燃焼状
態も良く、EGR率は高くなってNOxの発生を低減す
る。また、高負荷時には少なくとも1個の吸気弁の閉時
期をピストン下死点後に設定するとともに、排気弁の開
閉時期をピストン下死点付近に設定できるようにしたた
め圧縮比は低くなり、遅閉じミラーサイクル作動となり
高出力化は可能となるが、排気還流は殆ど行われないの
で高出力時の燃費悪化、出力低下は発生しない。
Alternatively, since the closing timing of the intake valve is set near the piston bottom dead center in the intake stroke and the opening / closing timing of the exhaust valve is set before the piston bottom fulcrum, the compression ratio becomes high and the normal cycle operation is performed, and the startability is improved. Is good, the combustion state is good, the EGR rate is high, and the generation of NOx is reduced. Also, at the time of high load, the closing timing of at least one intake valve is set after the piston bottom dead center and the opening and closing timing of the exhaust valve can be set near the piston bottom dead center. Although it becomes a cycle operation and high output can be achieved, since exhaust gas recirculation is hardly performed, fuel consumption deterioration and output reduction at high output do not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排気還流装置を備えたディーゼルエン
ジンのシリンダヘッド部分の平面断面図である。
FIG. 1 is a plan sectional view of a cylinder head portion of a diesel engine equipped with an exhaust gas recirculation device of the present invention.

【図2】同エンジンの側面断面図である。FIG. 2 is a side sectional view of the engine.

【図3】同エンジンの排気弁駆動装置の側面断面図であ
る。
FIG. 3 is a side sectional view of an exhaust valve drive system of the engine.

【図4】同エンジンの高負荷時のピストンの動きと、
吸、排気弁の開口面積との関係を示す図である。
[Fig. 4] The movement of the piston under high load of the engine,
It is a figure which shows the relationship with the opening area of an intake and an exhaust valve.

【図5】同エンジンの高負荷時のPV線図である。FIG. 5 is a PV diagram when the engine is under high load.

【図6】同エンジンの低負荷時のピストンの動きと、
吸、排気弁の開口面積との関係を示す図である。
FIG. 6 shows the movement of the piston when the engine has a low load,
It is a figure which shows the relationship with the opening area of an intake and an exhaust valve.

【図7】同エンジンの低負荷時のPV線図である。FIG. 7 is a PV diagram when the engine is under a low load.

【図8】同エンジンの負荷と圧縮比の変化との関係を示
す図である。
FIG. 8 is a diagram showing a relationship between a load of the engine and a change in compression ratio.

【図9】同エンジンの負荷とEGR率の変化との関係を
示す図である。
FIG. 9 is a diagram showing a relationship between a load of the engine and a change in EGR rate.

【図10】本発明の排気還流装置を備えたガソリンエン
ジンのシリンダヘッド部分の平面断面図である。
FIG. 10 is a plan sectional view of a cylinder head portion of a gasoline engine equipped with the exhaust gas recirculation device of the present invention.

【図11】同エンジンの側面断面図である。FIG. 11 is a side sectional view of the engine.

【図12】同エンジンの排気弁駆動装置の側面断面図で
ある。
FIG. 12 is a side sectional view of an exhaust valve drive system of the engine.

【図13】同エンジンの低負荷時のピストンの動きと、
吸、排気弁の開口面積との関係を示す図である。
FIG. 13 shows the movement of the piston when the engine has a low load,
It is a figure which shows the relationship with the opening area of an intake and an exhaust valve.

【図14】同エンジンの低負荷時のPV線図である。FIG. 14 is a PV diagram when the engine is under a low load.

【図15】同エンジンの高負荷時のピストンの動きと、
吸、排気弁の開口面積との関係を示す図である。
FIG. 15 shows the movement of the piston when the engine is under high load,
It is a figure which shows the relationship with the opening area of an intake and an exhaust valve.

【図16】同エンジンの高負荷時のPV線図である。FIG. 16 is a PV diagram when the engine is under high load.

【符号の説明】[Explanation of symbols]

1、31‥‥シリンダヘッド、2、32‥‥第1吸気
弁、3、33‥‥第2吸気弁、4、34‥‥第1排気
弁、5、35‥‥第2排気弁、10、40‥‥第1カム
シャフト、20、50‥‥第2カムシャフト、14、1
5、44‥‥ロッカアーム、46、54‥‥レバー。
1, 31 ... Cylinder head, 2, 32 ... First intake valve, 3, 33 ... Second intake valve, 4, 34 ... First exhaust valve, 5, 35 ... Second exhaust valve, 10, 40 ... 1st camshaft, 20, 50 ... 2nd camshaft, 14, 1
5, 44 ... Rocker arm, 46, 54 ... Lever.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 15/00 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F02D 15/00 E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排気ガスの一部を吸気中に還流する排気
還流装置を備え、吸気行程中に排気弁を開閉する手段を
具備した内燃機関の排気還流装置において、1気筒あた
り2個以上の吸気弁と、少なくとも1個以上の排気弁を
備え、該吸気弁、および排気弁を作動するカムを設けた
第1カムシャフトと、少なくとも1個の吸気弁、および
排気弁を作動するカムを設けた第2カムシャフトとを具
備したことを特徴とする排気還流装置。
1. An exhaust gas recirculation system for an internal combustion engine, comprising: an exhaust gas recirculation system for recirculating a part of exhaust gas into intake air; and means for opening and closing an exhaust valve during an intake stroke. A first cam shaft provided with an intake valve and at least one exhaust valve and provided with a cam for operating the intake valve and the exhaust valve, and a cam for operating at least one intake valve and the exhaust valve An exhaust gas recirculation device comprising a second camshaft.
【請求項2】 前記内燃機関において、少なくとも1個
の吸気弁、および排気弁のバルブタイミングを、これら
を開閉する第2カムシャフトのカムの位相を変化させる
ことにより可変とすることを特徴とする請求項1記載の
排気還流装置。
2. The internal combustion engine is characterized in that the valve timing of at least one intake valve and exhaust valve is variable by changing the phase of a cam of a second cam shaft that opens and closes these valves. The exhaust gas recirculation device according to claim 1.
【請求項3】 前記内燃機関の吸気行程において、吸気
弁の閉時期をピストン下死点前に設定するとともに、排
気弁の開閉時期をピストン上死点付近に設定し、高負荷
時は少なくとも1個の吸気弁の閉時期をピストン下死点
付近に設定するとともに、排気弁の開閉時期をピストン
下死点前に設定し得る弁駆動装置を備えたことを特徴と
する請求項2記載の排気還流装置。
3. In the intake stroke of the internal combustion engine, the closing timing of the intake valve is set before the piston bottom dead center, and the opening and closing timing of the exhaust valve is set near the piston top dead center. The exhaust system according to claim 2, further comprising a valve drive device capable of setting the closing timing of each intake valve near the piston bottom dead center and setting the opening / closing timing of the exhaust valve before piston bottom dead center. Reflux device.
【請求項4】 前記内燃機関の吸気行程において、吸気
弁の閉時期をピストン下死点付近に設定するとともに、
排気弁の開閉時期をピストン下死点前に設定し、運転条
件によっては少なくとも1個の吸気弁の閉時期をピスト
ン下死点後に設定するとともに、排気弁の開閉時期をピ
ストン下死点付近に設定し得る弁駆動装置を備えたこと
を特徴とする請求項2記載の排気還流装置。
4. In the intake stroke of the internal combustion engine, the closing timing of the intake valve is set near the piston bottom dead center, and
The opening / closing timing of the exhaust valve is set before the piston bottom dead center, the closing timing of at least one intake valve is set after the piston bottom dead center, and the exhaust valve opening / closing timing is set near the piston bottom dead center depending on operating conditions. The exhaust gas recirculation device according to claim 2, further comprising a valve drive device that can be set.
JP07660494A 1994-03-07 1994-03-23 Exhaust gas recirculation device Expired - Lifetime JP3719611B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP07660494A JP3719611B2 (en) 1994-03-23 1994-03-23 Exhaust gas recirculation device
US08/704,524 US5682854A (en) 1994-03-07 1995-03-03 Variable compression ratio engine
DE19581571T DE19581571B4 (en) 1994-03-07 1995-03-03 Motor with variable compression ratio
PCT/JP1995/000341 WO1995024549A1 (en) 1994-03-07 1995-03-03 Variable compression ratio engine
GB9617109A GB2301398B (en) 1994-03-07 1995-03-03 Variable compression ratio engine
SE9603090A SE507878C2 (en) 1994-03-07 1996-08-27 Engine with variable compression ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07660494A JP3719611B2 (en) 1994-03-23 1994-03-23 Exhaust gas recirculation device

Publications (2)

Publication Number Publication Date
JPH07259655A true JPH07259655A (en) 1995-10-09
JP3719611B2 JP3719611B2 (en) 2005-11-24

Family

ID=13609944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07660494A Expired - Lifetime JP3719611B2 (en) 1994-03-07 1994-03-23 Exhaust gas recirculation device

Country Status (1)

Country Link
JP (1) JP3719611B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336271B1 (en) * 1999-10-30 2002-05-13 김덕중 Stratification combustion system of recirculation exhaust gas
EP1318286A2 (en) 2001-12-06 2003-06-11 Nissan Motor Co., Ltd. Engine control system of internal combustion engine with variable compression ratio mechanism and exhaust-gas recirculation control system
FR2844305A1 (en) * 2002-09-09 2004-03-12 Toyota Motor Co Ltd VALVE TRAIN SYSTEM OF AN INTERNAL COMBUSTION ENGINE AND ITS CONTROL METHOD
WO2004063545A1 (en) * 2003-01-14 2004-07-29 Yanmar Co., Ltd. Method of controlling premix compression self-igniting internal combustion engine
US7178492B2 (en) 2002-05-14 2007-02-20 Caterpillar Inc Air and fuel supply system for combustion engine
US7191743B2 (en) 2002-05-14 2007-03-20 Caterpillar Inc Air and fuel supply system for a combustion engine
US7201121B2 (en) 2002-02-04 2007-04-10 Caterpillar Inc Combustion engine including fluidically-driven engine valve actuator
US7204213B2 (en) 2002-05-14 2007-04-17 Caterpillar Inc Air and fuel supply system for combustion engine
US7222614B2 (en) 1996-07-17 2007-05-29 Bryant Clyde C Internal combustion engine and working cycle
US7252054B2 (en) 2002-05-14 2007-08-07 Caterpillar Inc Combustion engine including cam phase-shifting
WO2007094251A1 (en) * 2006-02-13 2007-08-23 Koichi Hatamura Four-cycle engine
US7281527B1 (en) 1996-07-17 2007-10-16 Bryant Clyde C Internal combustion engine and working cycle
CN102312731A (en) * 2010-06-29 2012-01-11 马自达汽车株式会社 The DENG that is used for vehicle
CN104641085A (en) * 2012-09-21 2015-05-20 戴姆勒股份公司 Method for operating an internal combustion engine, in particular an Otto engine, having at least one inlet valve
WO2017158676A1 (en) * 2016-03-14 2017-09-21 新潟原動機株式会社 Engine system and control method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013794A1 (en) 2015-10-22 2017-04-27 Man Truck & Bus Ag Method for operating an internal combustion engine, in particular a diesel engine
JP7348715B2 (en) 2018-04-26 2023-09-21 株式会社三井E&S Du engine system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281527B1 (en) 1996-07-17 2007-10-16 Bryant Clyde C Internal combustion engine and working cycle
US7222614B2 (en) 1996-07-17 2007-05-29 Bryant Clyde C Internal combustion engine and working cycle
KR100336271B1 (en) * 1999-10-30 2002-05-13 김덕중 Stratification combustion system of recirculation exhaust gas
EP1318286A2 (en) 2001-12-06 2003-06-11 Nissan Motor Co., Ltd. Engine control system of internal combustion engine with variable compression ratio mechanism and exhaust-gas recirculation control system
US6792924B2 (en) 2001-12-06 2004-09-21 Nissan Motor Co., Ltd. Engine control system of internal combustion engine with variable compression ratio mechanism and exhaust-gas recirculation control system
US7201121B2 (en) 2002-02-04 2007-04-10 Caterpillar Inc Combustion engine including fluidically-driven engine valve actuator
US7252054B2 (en) 2002-05-14 2007-08-07 Caterpillar Inc Combustion engine including cam phase-shifting
US7178492B2 (en) 2002-05-14 2007-02-20 Caterpillar Inc Air and fuel supply system for combustion engine
US7191743B2 (en) 2002-05-14 2007-03-20 Caterpillar Inc Air and fuel supply system for a combustion engine
US7204213B2 (en) 2002-05-14 2007-04-17 Caterpillar Inc Air and fuel supply system for combustion engine
FR2844305A1 (en) * 2002-09-09 2004-03-12 Toyota Motor Co Ltd VALVE TRAIN SYSTEM OF AN INTERNAL COMBUSTION ENGINE AND ITS CONTROL METHOD
EP1586757A1 (en) * 2003-01-14 2005-10-19 Yanmar Co., Ltd. Method of controlling premix compression self-igniting internal combustion engine
WO2004063545A1 (en) * 2003-01-14 2004-07-29 Yanmar Co., Ltd. Method of controlling premix compression self-igniting internal combustion engine
EP1586757A4 (en) * 2003-01-14 2010-07-07 Yanmar Co Ltd Method of controlling premix compression self-igniting internal combustion engine
WO2007094251A1 (en) * 2006-02-13 2007-08-23 Koichi Hatamura Four-cycle engine
JP4783827B2 (en) * 2006-02-13 2011-09-28 耕一 畑村 4-cycle engine
US8065988B2 (en) 2006-02-13 2011-11-29 Koichi Hatamura Four-cycle engine
CN102312731A (en) * 2010-06-29 2012-01-11 马自达汽车株式会社 The DENG that is used for vehicle
JP2012012949A (en) * 2010-06-29 2012-01-19 Mazda Motor Corp Diesel engine for vehicle
CN102312731B (en) * 2010-06-29 2015-07-15 马自达汽车株式会社 Diesel engine for vehicle
CN104641085A (en) * 2012-09-21 2015-05-20 戴姆勒股份公司 Method for operating an internal combustion engine, in particular an Otto engine, having at least one inlet valve
WO2017158676A1 (en) * 2016-03-14 2017-09-21 新潟原動機株式会社 Engine system and control method therefor
JPWO2017158676A1 (en) * 2016-03-14 2018-03-22 新潟原動機株式会社 Engine system and control method thereof

Also Published As

Publication number Publication date
JP3719611B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4170999B2 (en) Multi-cylinder diesel engine with variable drive valve
JP3936901B2 (en) Internal combustion engine and internal combustion engine control method
US5224460A (en) Method of operating an automotive type internal combustion engine
US5682854A (en) Variable compression ratio engine
US6792924B2 (en) Engine control system of internal combustion engine with variable compression ratio mechanism and exhaust-gas recirculation control system
US4424790A (en) Method of improving the efficiency of a supercharged diesel engine
JP4255035B2 (en) 6 cycle engine with increased valve opening opportunities
US6237551B1 (en) Multi-cylinder diesel engine with variable valve actuation
EP0560476B1 (en) Variable valve timing operated engine
JPH07259655A (en) Exhaust gas circulating device
JP4186613B2 (en) Intake control device for internal combustion engine
JPH07269381A (en) Variable compression ratio engine
JP3994783B2 (en) Control device for internal combustion engine
US20030140877A1 (en) Four-stroke gasoline engine with direct injection and method for valve control
JPH0726994A (en) Intake device of engine provided with supercharger
JPH0754678A (en) Engine operating method and 4-stroke engine
JPH07127403A (en) Valve system for internal combustion engine
JPH08218879A (en) Intake structure of four-cycle engine
JPH11117776A (en) Suction device for direct injection diesel engine
JPS6185516A (en) Variable valve timing mechanism
JP2936981B2 (en) Internal combustion engine with variable valve mechanism
JPH0642410A (en) Internal combustion engine provided with exhaust gas reflux device
JP3163587B2 (en) Valve train control device for internal combustion engine
JPH084599A (en) Combustion control method for engine
JPH06330776A (en) Intake device for engine with mechanical supercharger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7