JPH07256704A - Injection mold and injection molding method using the same - Google Patents
Injection mold and injection molding method using the sameInfo
- Publication number
- JPH07256704A JPH07256704A JP4862894A JP4862894A JPH07256704A JP H07256704 A JPH07256704 A JP H07256704A JP 4862894 A JP4862894 A JP 4862894A JP 4862894 A JP4862894 A JP 4862894A JP H07256704 A JPH07256704 A JP H07256704A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- cavity
- molten resin
- thermal conductivity
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001746 injection moulding Methods 0.000 title description 11
- 229920005989 resin Polymers 0.000 claims abstract description 51
- 239000011347 resin Substances 0.000 claims abstract description 51
- 238000002347 injection Methods 0.000 claims abstract description 34
- 239000007924 injection Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000000748 compression moulding Methods 0.000 claims description 21
- 238000003825 pressing Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 abstract description 20
- 239000000463 material Substances 0.000 description 29
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱可塑性樹脂から射出
圧縮成形法によって成形品を製造する際に、残留歪が少
ない成形品を得ることができる射出圧縮成形用金型及び
この金型を用いた射出圧縮成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection compression molding die and a molding die for producing a molding with a small residual strain when a molding is manufactured from a thermoplastic resin by an injection compression molding method. It relates to the injection compression molding method used.
【0002】[0002]
【従来の技術】熱可塑性樹脂から射出成形法によって成
形品を製造する際の残留歪を少なくする方法として、従
来は、開いた金型に成形材料を射出し、次いで金型を高
圧で閉じる射出圧縮成形法が用いられてきた。2. Description of the Related Art As a method of reducing residual strain when a molded product is manufactured from a thermoplastic resin by injection molding, conventionally, a molding material is injected into an open mold and then the mold is closed at high pressure. Compression molding methods have been used.
【0003】[0003]
【発明が解決しようとする課題】射出圧縮成形法は、溶
融樹脂を射出充填した後、金型の一部(可動型)を動か
すかまたは型締力を利用して溶融樹脂全体に均等な圧力
を付加しながら成形する方法であって、成形品の残留歪
が低減するという特徴がある。しかしながら、充填直後
のキャビティ内溶融樹脂には、通常不均一な温度分布、
圧力分布等が生じている。そのため、成形品中の残留応
力にムラが生じ、透明成形品では映像の歪みとなるな
ど、良好な製品が得られない原因となっている。According to the injection compression molding method, after the molten resin is injected and filled, a part of the mold (movable mold) is moved or the mold clamping force is used to apply a uniform pressure to the entire molten resin. Is a method of molding while adding, and is characterized in that the residual strain of the molded product is reduced. However, the molten resin in the cavity immediately after filling usually has an uneven temperature distribution,
Pressure distribution etc. has occurred. Therefore, the residual stress in the molded product becomes uneven, and the transparent molded product causes image distortion, which is a cause that a good product cannot be obtained.
【0004】かかる問題に対し、一般には金型温度を樹
脂のガラス転移温度以上とし、これにより樹脂を緩和さ
せて温度、圧力の均一化を図り、残留応力ムラを少なく
する方法が用いられている。しかし、金型温度を高くす
ると冷却時間が長くなり、成形能率が下がるという欠点
がある。 従って、金型温度を高くすることなく残留歪
を少なくする方法が求められている。In order to solve such a problem, a method is generally used in which the mold temperature is set to be equal to or higher than the glass transition temperature of the resin so that the resin is relaxed so that the temperature and the pressure are made uniform and the residual stress unevenness is reduced. . However, if the mold temperature is raised, the cooling time becomes longer, and the molding efficiency is lowered. Therefore, there is a demand for a method of reducing residual strain without increasing the mold temperature.
【0005】これに対し、キャビティを形成する金型壁
表面を低熱伝導物質で被覆した金型で射出成形を行う
と、型表面の再現性等が良くなることが報告されてい
る。 即ち、特開昭63−306017号公報には、射
出成形用金型において、溶融樹脂の流入する金型のキャ
ビティ表面の見掛けの熱伝導率が0.05〜15.0kc
al/m・Hr・℃となるようにしたことを特徴とする射出成形
用金型が開示されている。On the other hand, it has been reported that reproducibility and the like of the mold surface are improved when injection molding is performed with a mold in which the mold wall surface forming the cavity is coated with a low heat conductive material. That is, in Japanese Patent Laid-Open No. 63-306017, the apparent thermal conductivity of the cavity surface of the mold into which the molten resin flows is 0.05 to 15.0 kc.
Disclosed is an injection molding die, which is characterized in that the pressure is set to al / m · Hr · ° C.
【0006】かかる金型を用いて一般に射出成形に使用
できる熱可塑性樹脂で成形した成形品は、残留歪が従来
に金型を用いて得られた成形品よりも少なくなってい
る。しかし、透明で光学的な映像度を要求されるような
成形品の場合においては、ゲート近傍に過大な応力が残
り、映像のゆがみを生じ、良好な成形品は得られない。Molded products molded from a thermoplastic resin that can be generally used for injection molding using such a mold have a smaller residual strain than molded products conventionally obtained by using a mold. However, in the case of a molded product that is transparent and requires an optical image quality, excessive stress remains near the gate, causing image distortion, and a good molded product cannot be obtained.
【0007】[0007]
【課題を解決するための手段】本発明者らは、光学的な
映像度を満足するほど残留歪が少なく、かつ型表面の再
現性等にも優れた射出成形品を得るべく鋭意検討した結
果、溶融樹脂が接触するキャビティ表面の見掛けの熱伝
導率が0.05〜15kcal/m・Hr・℃となるようにした射
出圧縮成形用金型を用い、金型を寸開した状態で金型キ
ャビティ内へ溶融樹脂を射出して射出圧縮成形を行う新
規な射出圧縮成形方法を採用することにより、残留歪の
著しく少ない良好な成形品を得ることができることを見
出し、本発明に到達した。Means for Solving the Problems As a result of intensive investigations by the present inventors, an injection-molded article having less residual distortion as well as excellent reproducibility of the mold surface, etc., which satisfies the optical image quality, was obtained. , Using a mold for injection compression molding in which the apparent thermal conductivity of the cavity surface with which the molten resin comes into contact is 0.05 to 15 kcal / m · Hr · ° C, with the mold open The inventors have found that by adopting a new injection compression molding method in which a molten resin is injected into a cavity to perform injection compression molding, it is possible to obtain a good molded product with a remarkably small residual strain, and arrived at the present invention.
【0008】すなわち、本発明の要旨は、溶融樹脂が接
触するキャビティ表面の少なくとも一部の見掛けの熱伝
導率が0.05〜15kcal/m・Hr・℃であることを特徴と
する、射出圧縮成形用金型、及び、該金型を用い、キャ
ビティを寸開した状態で該キャビティ内へ溶融樹脂を射
出すると共に、可動型を固定型へ押圧させながらキャビ
ティ内の溶融樹脂を展延し、次いで溶融樹脂の供給を停
止し、更に可動型を押圧させながら、キャビティ内の溶
融樹脂を冷却固化させることを特徴とする、射出圧縮成
形方法、に存する。That is, the gist of the present invention is that the apparent thermal conductivity of at least a part of the surface of the cavity in contact with the molten resin is 0.05 to 15 kcal / m · Hr · ° C. A mold for molding, and using the mold, while injecting the molten resin into the cavity with the cavity opened, while spreading the molten resin in the cavity while pressing the movable mold against the fixed mold, Then, the injection compression molding method is characterized in that the supply of the molten resin is stopped and the molten resin in the cavity is cooled and solidified while further pressing the movable mold.
【0009】以下、本発明を詳細に説明する。本発明の
金型は、射出圧縮成形用金型であるが、射出圧縮成形用
金型とは、一般には溶融樹脂を射出充填した後、金型の
一部(可動型)を動かすかまたは型締力を利用して溶融
樹脂全体に均等な圧力を付加しながら成形する方法であ
る。本発明においては、従来より使用されている射出圧
縮成形用金型であれば特に制限はないが、好ましくは、
可動型を固定型に対し進退動自在としたものを用い、該
可動型を動かすことによって、射出された溶融樹脂に圧
力を加えながら成形を行なう。The present invention will be described in detail below. The mold of the present invention is a mold for injection compression molding. The mold for injection compression molding generally means that a part (movable mold) of the mold is moved after the molten resin is injected and filled. This is a method of molding while applying uniform pressure to the entire molten resin by utilizing the clamping force. In the present invention, there is no particular limitation as long as it is a conventionally used injection compression molding mold, but preferably,
A movable mold is used that can move back and forth with respect to a fixed mold. By moving the movable mold, molding is performed while applying pressure to the injected molten resin.
【0010】本発明の射出圧縮成形用金型は、溶融樹脂
が充填されるキャビティ内の型表面の少なくとも一部の
見掛けの熱伝導率が0.05〜15kcal/m・Hr・℃である
ことを特徴とする。射出圧縮成形用金型において、見掛
けの熱伝導率をこの範囲内とすることにより、得られる
成形品の残留歪が著しく低減する。一方、これが0.0
5kcal/m・Hr・℃未満では、溶融樹脂の固化が遅くなり、
成形サイクルが長くなり、実用的価値が激減する。逆
に、15kcal/m・Hr・℃を越えると、通常の金型と同じレ
ベルになり、残留歪低減の優れた効果が得られない。In the injection compression molding die of the present invention, the apparent thermal conductivity of at least a part of the die surface in the cavity filled with the molten resin is 0.05 to 15 kcal / m · Hr · ° C. Is characterized by. By controlling the apparent thermal conductivity within this range in the injection compression molding die, the residual strain of the obtained molded product is significantly reduced. On the other hand, this is 0.0
If it is less than 5 kcal / m · Hr · ° C, the solidification of the molten resin will be delayed,
The molding cycle becomes long and the practical value is drastically reduced. On the other hand, when it exceeds 15 kcal / m · Hr · ° C, the level is the same as that of a normal mold, and the excellent effect of reducing residual strain cannot be obtained.
【0011】このような特定の熱伝導率を有する金型を
得るためには、金型のキャビティ表面に樹脂等を塗装又
は薄膜として被覆すればよいと考えられるが、これらの
方法では、熱に対して弱く、又、耐摩耗性にも問題があ
る。そこで、本発明に斯かる金型とするには、金型キャ
ビティ表面の一部又は宣撫、特に成形品の耐摩耗性が要
求される部分に対応する金型のキャビティ表面にそって
見掛け熱伝導率が前記要件を満たす熱伝導性緩衝材を介
在させる。In order to obtain a mold having such a specific thermal conductivity, it is considered that the cavity surface of the mold should be coated or coated with a resin as a thin film. On the other hand, it is weak and has a problem in wear resistance. Therefore, in order to obtain a mold according to the present invention, an apparent heat is applied along a part of the mold cavity surface or a stroke, particularly a mold cavity surface corresponding to a part of the molded article where abrasion resistance is required. A thermal conductive cushioning material having conductivity satisfying the above requirements is interposed.
【0012】ここで、本発明における見掛けの熱伝導率
は、用いる緩衝材の0℃における熱伝導率を採用し、2
種以上の緩衝材を重ね合わせたときは、次式で算出す
る。Here, the apparent thermal conductivity in the present invention is the thermal conductivity at 0 ° C. of the cushioning material used,
When more than one type of cushioning material is used, calculate with the following formula.
【0013】[0013]
【数1】 l0:重ね合わせた緩衝材の合計厚み 1n:重ね合わせた各々の緩衝材の厚み λ0:重ね合わせた緩衝材全体の0℃における熱伝導率 λn:重ね合わせた各々の緩衝材の0℃における熱伝導
率[Equation 1] l 0 : Total thickness of the buffer materials that are stacked 1 n : Thickness of each buffer material that is stacked λ 0 : Thermal conductivity of the entire buffer material that is stacked at 0 ° C. λ n : Of each buffer material that is stacked Thermal conductivity at 0 ℃
【0014】金型キャビティ表面にそって一種以上の熱
伝導性緩衝材を介在させるには、緩衝材上を金属で被覆
するような2層以上の材料を重ね合わせた金型を使用す
るか、或いは、金型キャビティ表面にそって、ガラス
質、或いはAl2O3、Si、SiO2、MgO、TiN
等の金属或いは金属化合物系のセラミックスなどからな
る熱伝導性緩衝材を被覆すればよい。In order to interpose one or more heat-conducting buffer materials along the surface of the mold cavity, a mold in which two or more layers of materials, which cover the buffer material with a metal, are stacked, or Or, along the mold cavity surface, glassy or Al 2 O 3 , Si, SiO 2 , MgO, TiN
A thermally conductive buffer material made of a metal or a metal compound-based ceramics may be coated.
【0015】金型キャビティ表面上にそって介在させる
熱伝導性緩衝材の厚みは、その材料の熱伝導率を考慮し
て決めることができるが、0.05〜5mmの範囲が好
適である。表面に金属層を有する2層以上の熱伝導性緩
衝材層に使用される緩衝材の具体例としては、セロハ
ン、酢酸セルロース、ポリカーボネート、ポリ塩化ビニ
ル、フッ化ビニリデン、ポリエステル、ポリスルフォ
ン、エポキシ樹脂、ガラス、セラミック等が挙げられる
が、これらの例にのみ限定されるものではない。The thickness of the thermally conductive cushioning material interposed along the surface of the mold cavity can be determined in consideration of the thermal conductivity of the material, but is preferably in the range of 0.05 to 5 mm. Specific examples of the buffer material used for the two or more heat conductive buffer layers having a metal layer on the surface include cellophane, cellulose acetate, polycarbonate, polyvinyl chloride, vinylidene fluoride, polyester, polysulfone, and epoxy resin. , Glass, ceramics, etc., but not limited to these examples.
【0016】これらの熱伝導性緩衝材を金型キャビティ
表面上に介在させる方法としては、金型キャビティ表面
が曲面又は平坦なものであれば、溶融状態にしてキャビ
ティ表面に均一に吹きつけるか、または塗布後固化させ
て被覆する方法等を採用することができ、また、キャビ
ティ表面が平坦なものの場合は、熱伝導性緩衝材を予め
薄板に加工して金型キャビティ表面にはりつけて固定す
る方法を採用することもできる。As a method of interposing these heat-conductive cushioning materials on the surface of the mold cavity, if the surface of the mold cavity is curved or flat, it is melted and sprayed uniformly on the surface of the mold. Alternatively, a method of coating and solidifying after coating can be adopted, and when the cavity surface is flat, a method of previously processing a heat conductive cushioning material into a thin plate and attaching it to the mold cavity surface and fixing it Can also be adopted.
【0017】このような緩衝材の上に金属層を設ける方
法としては、スズ系の合金に代表される低融点合金の溶
射、或いは、1〜20mm程度の鉄板をキャビティ表面
の形状にそって均一に接着剤を介して緩衝材層と接着さ
せるなど、従来公知の方法で実施可能である。接着剤と
しては、アクリル系、ウレタン系、エポキシ系、ポリエ
ステル系などほとんどすべての接着剤が使用可能である
が、溶融樹脂による熱劣化を防ぐために、熱硬化タイプ
のウレタン系、エポキシ系が特に好適である。As a method for providing a metal layer on such a cushioning material, a low melting point alloy represented by a tin-based alloy is sprayed, or an iron plate of about 1 to 20 mm is uniformly formed along the shape of the cavity surface. It can be carried out by a conventionally known method, such as adhering to the cushioning material layer via an adhesive. Almost all adhesives such as acrylic, urethane, epoxy, polyester, etc. can be used as the adhesive, but thermosetting urethane-based and epoxy-based adhesives are particularly suitable to prevent thermal deterioration due to molten resin. Is.
【0018】又、ガラス質、或いは金属、金属化合物な
どのセラミックス層を金型キャビティ表面に設ける方法
としては、ペースト状にしたセラミックスを金型キャビ
ティ表面にコーティングし、その後焼結する方法が一般
的であるが、キャビティ全体がセラミックスからなる金
型を使用することも可能である。また、化学蒸着法又は
物理蒸着法などの手法を用いて金型キャビティ表面にA
l2O3、Si、SiO 2、MgO、TiN等の比較的熱
伝導率の低い金属、或いは金属化合物層を形成すること
も可能である。Further, glass, metal, metal compound, etc.
How to provide which ceramic layer on the mold cavity surface
As for the paste-like ceramics,
Generally, the method of coating on the tee surface and then sintering
However, the entire cavity is made of ceramics.
It is also possible to use types. Also, chemical vapor deposition or
A on the surface of the mold cavity using a technique such as physical vapor deposition.
l2O3, Si, SiO 2, MgO, TiN, etc.
Forming a metal or metal compound layer with low conductivity
Is also possible.
【0019】尚、本発明の金型の材質としては鋼鉄、鋼
鉄を主成分とする合金、アルミニウム合金、亜鉛合金等
の金型用に一般に使用される金属であれば特に制限され
ない。本発明の射出圧縮成形方法は、上述した本発明の
金型を用い、キャビティを寸開した状態で該キャビティ
内へ溶融樹脂を射出すると共に、可動型を固定型へ押圧
させながらキャビティ内の溶融樹脂を展延し、次いで溶
融樹脂の供給を停止し、更に可動型を押圧させながら、
キャビティ内の溶融樹脂を冷却固化させることにより行
われる。The material of the mold of the present invention is not particularly limited as long as it is a metal generally used for molds such as steel, alloys containing steel as a main component, aluminum alloy, zinc alloy and the like. The injection compression molding method of the present invention uses the above-mentioned mold of the present invention to inject molten resin into the cavity while the cavity is opened, and melt the interior of the cavity while pressing the movable die against the fixed die. While spreading the resin, then stopping the supply of the molten resin and further pressing the movable mold,
This is performed by cooling and solidifying the molten resin in the cavity.
【0020】具体的には先ず、金型を「閉」の状態にし
て、キャビティを製品肉厚約1〜5mm、圧縮代約1〜
10mmとしておき、金型キャビティ内へ溶融樹脂の射
出を行う。この際の成形条件については周知の条件が採
用されるが、例えば材料温度(樹脂温度)は約200〜
350℃、金型温度は約50〜150℃、樹脂の射出速
度は約100〜200mm/secが好ましい。Specifically, first, the mold is in a "closed" state, and the cavity has a product wall thickness of about 1 to 5 mm and a compression allowance of about 1 to 5.
The distance is set to 10 mm, and the molten resin is injected into the mold cavity. Well-known conditions are adopted as the molding conditions at this time, for example, the material temperature (resin temperature) is about 200 to
It is preferable that the temperature is 350 ° C., the mold temperature is about 50 to 150 ° C., and the resin injection speed is about 100 to 200 mm / sec.
【0021】溶融樹脂の射出と共に、可動型キャビティ
部を射出圧縮ピストンで固定型へ押圧させながら、キャ
ビティ内の溶融樹脂を展延し、金型キャビティ内に充満
させた後に射出成形機の開閉弁を閉じる。射出圧力は約
20〜100tonf、圧力制御は多段で行なうのが好
ましい。射出成形機の開閉弁を閉じた後、キャビティ内
の冷却に伴う体積収縮と共に、更に可動型キャビティ部
を押圧させながら、金型キャビティ内の溶融樹脂を冷却
固化させた後、金型を開き、成形品の脱型を行う。While the molten resin is being injected, the movable die cavity is pressed against the stationary die by the injection compression piston, the molten resin in the cavity is spread and filled in the die cavity, and then the on-off valve of the injection molding machine is opened. Close. The injection pressure is preferably about 20 to 100 tonf, and the pressure control is preferably performed in multiple stages. After closing the on-off valve of the injection molding machine, the mold shrinks due to cooling in the cavity, and while pressing the movable mold cavity, the molten resin in the mold cavity is cooled and solidified, and then the mold is opened. Demold the molded product.
【0022】本発明に係る金型に使用しうる成形材料の
種類については特に制限されるものではなく、射出成形
される樹脂ならば何れでもよいが、例えば、ポリカーボ
ネート、ポリアミド、ポリエステル等が挙げられる。The type of molding material that can be used in the mold according to the present invention is not particularly limited, and any resin that can be injection-molded may be used, and examples thereof include polycarbonate, polyamide and polyester. .
【0023】[0023]
【実施例】次に本発明を実施例により具体的に説明する
が、本発明は、その要旨を逸脱しない限り、これら実施
例により何ら制限されるものではない。本実施例で用い
る射出成形用金型及び成形機の概略を図1に示す。図1
において、1は可動型、2は固定型、3は熱伝導性緩衝
材、4は背板、7はエジェクタープレート、8は押圧ロ
ッドをそれぞれ示しており、可動型の熱伝導緩衝材と背
板は押圧ロッドに連結され進退自在となっている。EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples without departing from the gist thereof. An outline of an injection molding die and a molding machine used in this example is shown in FIG. Figure 1
In the figure, 1 is a movable type, 2 is a fixed type, 3 is a heat conductive cushioning material, 4 is a back plate, 7 is an ejector plate, and 8 is a pressing rod, respectively. Is connected to a pressing rod and can move back and forth.
【0024】また、キャビティを2個設け、内1個は比
較例のため熱伝導緩衝材は無く背板のみとした。図1
中、5は射出圧縮ピストン、6は射出圧縮ブロック、9
はノズル部、10は開閉弁、11は樹脂材料、12はバ
レル、13はスクリュー、14は射出装置を示す。型締
め方向はSで示す方向である。Further, two cavities were provided, and one of them was a comparative example, so that there was no heat conduction buffering material and only the back plate was used. Figure 1
Inside, 5 is an injection compression piston, 6 is an injection compression block, and 9
Is a nozzle part, 10 is an on-off valve, 11 is a resin material, 12 is a barrel, 13 is a screw, and 14 is an injection device. The mold clamping direction is the direction indicated by S.
【0025】尚、この実験に用いた成形機は、住友重機
械工業(株)製SG75SYCAP−MIIIAである。 (実施例1)100mm×100mm×3mmの大きさ
のキャビティを2個備えた上述の金型を用い、一方のキ
ャビティには9mm厚の炭素鋼からなる背板と、背板の
裏面に熱伝導性緩衝材として3mmのガラス板を被覆物
層として可動側と固定側に各々設けた。このキャビティ
表面の見掛けの熱伝導率は0.80kcal/m・Hr・℃であっ
た。他方のキャビティには、可動側、固定側共に12m
m厚の炭素鋼を各々設け、比較例用とした。The molding machine used in this experiment was SG75SYCAP-MIIIA manufactured by Sumitomo Heavy Industries, Ltd. (Example 1) The above-mentioned mold provided with two cavities each having a size of 100 mm x 100 mm x 3 mm was used, one of the cavities was a back plate made of carbon steel having a thickness of 9 mm, and heat was transferred to the back surface of the back plate. A 3 mm glass plate was provided as a buffer layer on the movable side and the fixed side, respectively, as a coating layer. The apparent thermal conductivity of the cavity surface was 0.80 kcal / m · Hr · ° C. The other cavity has 12m on both the movable and fixed sides.
m-thick carbon steel was provided for each of the comparative examples.
【0026】この金型及び成形機を用いて、射出圧縮成
形でそれぞれ平板成形品を得た。成形に用いた樹脂及び
成形条件は、以下の通りである。 樹 脂 :ポリカーボネート(三菱化成(株)製、ノバ
レックス7022L1) 成形条件:材料温度300℃、金型温度80℃、射出速
度150mm/sec 射出圧縮力40tonf、圧力制御3段、射出圧縮スト
ローク5mm 成形動作は、金型「閉」の状態でキャビティを製品肉厚
3mm、圧縮代5mmとしておき、金型キャビティ内へ
溶融樹脂の射出を行うと共に、可動型キャビティ部を射
出圧縮ピストンで固定型へ押圧させながら、キャビティ
内の溶融樹脂を展延し、金型キャビティ内に充満させた
後に射出成形機の開閉弁を閉じ、キャビティ内の冷却に
伴う体積収縮と共に、更に可動型キャビティ部を押圧さ
せながら、金型キャビティ内の溶融樹脂を冷却固化させ
た後、金型を開き、成形品の脱型を行った。Flat plate molded articles were obtained by injection compression molding using this mold and molding machine. The resin used for molding and molding conditions are as follows. Resin: Polycarbonate (Novalex 7022L1 manufactured by Mitsubishi Kasei Co., Ltd.) Molding conditions: Material temperature 300 ° C, mold temperature 80 ° C, injection speed 150mm / sec Injection compression force 40tonf, pressure control 3 stages, injection compression stroke 5mm Molding In the operation, the mold is closed and the cavity has a product thickness of 3 mm and a compression allowance of 5 mm, the molten resin is injected into the mold cavity, and the movable mold cavity is pressed against the fixed mold by the injection compression piston. While expanding the molten resin in the cavity and filling the mold cavity, the on-off valve of the injection molding machine is closed, and the volume of the cavity shrinks as the cavity cools, while further pressing the movable mold cavity. After the molten resin in the mold cavity was cooled and solidified, the mold was opened and the molded product was demolded.
【0027】得られた平板成形品について、透明物体内
の歪(応力)を偏光計(東芝硝子(株)製、歪検査器S
VP−100)により測定した。その結果を表1に示
す。With respect to the obtained flat plate molded product, the strain (stress) in the transparent object is measured by a polarimeter (Toshiba Glass Co., Ltd., strain inspector S).
VP-100). The results are shown in Table 1.
【0028】(実施例2)実施例1で用いた金型におい
て、3mmのガラス板に代えて1mmのウレタンフォー
ム、1mmの塩化ビニール、及び1mmの鉄板の3層か
らなる熱伝導率緩衝材を設けた。この金型を用い、実施
例1におけると同様の手順で韮板成形品の成形を行っ
た。この金型の熱伝導率緩衝材被覆物層の見掛けの熱伝
導率、得られた成形品についての偏光計による透明物体
内の歪(応力)測定結果を、表1に示す。(Embodiment 2) In the mold used in Embodiment 1, instead of the 3 mm glass plate, a thermal conductivity buffering material consisting of 3 layers of 1 mm urethane foam, 1 mm vinyl chloride, and 1 mm iron plate was used. Provided. Using this mold, a dwarf plate molded product was molded in the same procedure as in Example 1. Table 1 shows the apparent thermal conductivity of the thermal conductivity buffer material coating layer of this mold, and the strain (stress) measurement result in the transparent object by a polarimeter for the obtained molded product.
【0029】(実施例3)実施例1で用いた金型におい
て、背板を11mm厚の炭素鋼とし、背板の表側、即
ち、キャビティ面に1mm厚のZrO2−Y2O3セラミ
ックスをプラズマ溶射することにより、熱伝導率緩衝材
被覆層を設けた。 この金型を用い、実施例1における
と同様の手順で平板成形品の成形を行った。この金型の
熱伝導率緩衝材被覆層の見掛けの熱伝導率、得られた成
形品についての偏光計による透明物体内の歪(応力)測
定結果を表1に示す。(Example 3) In the mold used in Example 1, the back plate was made of carbon steel having a thickness of 11 mm, and ZrO 2 -Y 2 O 3 ceramics having a thickness of 1 mm was used on the front side of the back plate, that is, on the cavity surface. A thermal conductivity cushioning material coating layer was provided by plasma spraying. Using this mold, a flat plate molded product was molded in the same procedure as in Example 1. Table 1 shows the apparent thermal conductivity of the thermal conductivity buffer coating layer of this mold, and the strain (stress) measurement result in the transparent object by the polarimeter of the obtained molded product.
【0030】(実施例4)実施例1で用いた金型におい
て、背板の裏側に3mmのステンレス鋼(SUS30
4)を用いた以外は実施例1におけると同様の条件で平
板成形品の成形を行い、得られた成形品について実施例
1におけると同様の評価を行った。その結果を表1に示
す。(Example 4) In the mold used in Example 1, 3 mm of stainless steel (SUS30) was attached to the back side of the back plate.
A flat plate molded product was molded under the same conditions as in Example 1 except that 4) was used, and the obtained molded product was evaluated in the same manner as in Example 1. The results are shown in Table 1.
【0031】[0031]
【表1】 [Table 1]
【0032】[0032]
【発明の効果】以上のように、従来の射出圧縮成形で
は、金型温度を樹脂のガラス転移温度(ポリカーボネー
トの場合は約145℃)以上として、成形品中の残留歪
を低減する方法が一般に行われていたが、本発明に係る
金型及び成形方法を用いて得られる成形品は、通常の金
型温度においても、その残留歪が大幅に低減しているこ
とがわかる。As described above, in the conventional injection compression molding, a method is generally used in which the mold temperature is set to the glass transition temperature of the resin (about 145 ° C. in the case of polycarbonate) or higher to reduce the residual strain in the molded product. Although it has been performed, it can be seen that the residual strain of the molded product obtained by using the mold and the molding method according to the present invention is significantly reduced even at a normal mold temperature.
【図1】本実施例で用いる射出成形用金型及び成形機の
概略である。FIG. 1 is a schematic view of an injection molding die and a molding machine used in this embodiment.
1 可動型 2 固定型 3 熱伝導性緩衝材 4 背板 5 射出圧縮ピストン 6 射出圧縮ブロック 7 エジェクタープレート 8 押圧ロッド 9 ノズル部 10 開閉弁 11 樹脂材料 12 バレル 13 スクリュー 14 射出装置 DESCRIPTION OF SYMBOLS 1 Movable type 2 Fixed type 3 Thermally conductive buffer material 4 Back plate 5 Injection compression piston 6 Injection compression block 7 Ejector plate 8 Push rod 9 Nozzle part 10 Open / close valve 11 Resin material 12 Barrel 13 Screw 14 Injection device
Claims (3)
なくとも一部の見掛けの熱伝導率が0.05〜15kcal
/m・Hr・℃であることを特徴とする、射出圧縮成形用金
型。1. The apparent thermal conductivity of at least a part of the surface of the cavity in contact with the molten resin is 0.05 to 15 kcal.
Mold for injection compression molding, characterized in that / m ・ Hr ・ ° C.
ャビティ部が固定型に対し、進退自在となっていること
を特徴とする、請求項1記載の射出圧縮成形用金型。2. A mold for injection compression molding according to claim 1, wherein the mold has a movable mold and a fixed mold, and the cavity of the movable mold is movable back and forth with respect to the fixed mold.
なくとも一部の見掛けの熱伝導率が0.05〜15kcal
/m・Hr・℃であることを特徴とする射出圧縮成形用金型を
用い、キャビティを寸開した状態で該キャビティ内へ溶
融樹脂を射出すると共に、可動型を固定型へ押圧させな
がらキャビティ内の溶融樹脂を展延し、次いで溶融樹脂
の供給を停止し、更に可動型を押圧させながら、キャビ
ティ内の溶融樹脂を冷却固化させることを特徴とする、
射出圧縮成形方法。3. The apparent thermal conductivity of at least a part of the surface of the cavity in contact with the molten resin is 0.05 to 15 kcal.
/ m · Hr · ° C, using a mold for injection compression molding, the molten resin is injected into the cavity while the cavity is opened, and the cavity is pressed while the movable die is pressed against the fixed die. Characterized in that the molten resin in the cavity is spread, then the supply of the molten resin is stopped, and the molten resin in the cavity is cooled and solidified while pressing the movable mold.
Injection compression molding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4862894A JPH07256704A (en) | 1994-03-18 | 1994-03-18 | Injection mold and injection molding method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4862894A JPH07256704A (en) | 1994-03-18 | 1994-03-18 | Injection mold and injection molding method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07256704A true JPH07256704A (en) | 1995-10-09 |
Family
ID=12808662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4862894A Pending JPH07256704A (en) | 1994-03-18 | 1994-03-18 | Injection mold and injection molding method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07256704A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160005033A (en) * | 2013-05-07 | 2016-01-13 | 다우 글로벌 테크놀로지스 엘엘씨 | Method to manufacture multi-layer electrical article |
-
1994
- 1994-03-18 JP JP4862894A patent/JPH07256704A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160005033A (en) * | 2013-05-07 | 2016-01-13 | 다우 글로벌 테크놀로지스 엘엘씨 | Method to manufacture multi-layer electrical article |
JP2016517812A (en) * | 2013-05-07 | 2016-06-20 | ダウ グローバル テクノロジーズ エルエルシー | Method for manufacturing a multilayer electrical article |
US10384380B2 (en) | 2013-05-07 | 2019-08-20 | Dow Global Technologies Llc | Method to manufacture multi-layer electrical article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2477149C (en) | Method for expansion injection molding | |
KR101197419B1 (en) | Forming method of thick leading light plate and forming die | |
JP4107569B2 (en) | Molded product injection and compression decoration molding method by mold exchange | |
US20190291322A1 (en) | Reusable mold for injection molding and molding method | |
JP4182951B2 (en) | In-mold coating molding method | |
JPH07256704A (en) | Injection mold and injection molding method using the same | |
JP4725906B2 (en) | Mold for thermoplastic resin injection molding | |
CA2432481A1 (en) | Molding composite objects | |
JP3648364B2 (en) | Resin molding equipment | |
JP2010173280A (en) | Mold for molding very thin molding and method for molding very thin molding | |
JP5541579B2 (en) | In-mold coating mold and in-mold coating method | |
JPH1067032A (en) | Manufacture of hollow injection-molded product | |
JP2793129B2 (en) | Injection molding method and injection molding device | |
JPH0939047A (en) | Injection molding die, injection molding apparatus, and injection molding method | |
JP2002326261A (en) | Screw coated with glassy layer or enamel and injection or extrusion device having the screw | |
JP2510441B2 (en) | Injection molding method for synthetic resin moldings | |
JP2599292B2 (en) | Injection mold | |
JP2001179394A (en) | Metal mold for casting | |
JPH0295815A (en) | Composite injection molder | |
JP4558222B2 (en) | How to paint injection molded products | |
JPH0857888A (en) | Manufacture of injection molded form | |
JP2003145258A (en) | Method and apparatus for molding metal | |
JPS61130015A (en) | Method of molding substrate for optical disk | |
JPH09207176A (en) | Mold assembly for injection compression molding and injection compression molding method | |
JPH06305746A (en) | Mold for forming optical glass lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040629 |