[go: up one dir, main page]

JPH07248489A - Liquid crystal light modulator - Google Patents

Liquid crystal light modulator

Info

Publication number
JPH07248489A
JPH07248489A JP6042627A JP4262794A JPH07248489A JP H07248489 A JPH07248489 A JP H07248489A JP 6042627 A JP6042627 A JP 6042627A JP 4262794 A JP4262794 A JP 4262794A JP H07248489 A JPH07248489 A JP H07248489A
Authority
JP
Japan
Prior art keywords
liquid crystal
light modulator
resin
light
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6042627A
Other languages
Japanese (ja)
Other versions
JP3329565B2 (en
Inventor
Hideo Fujikake
英夫 藤掛
Kuniharu Takizawa
國治 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP04262794A priority Critical patent/JP3329565B2/en
Publication of JPH07248489A publication Critical patent/JPH07248489A/en
Application granted granted Critical
Publication of JP3329565B2 publication Critical patent/JP3329565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a half tone memory function based on an area gradation and to improve contrast, light transmissivity, resolution, intra-surface uniformity and stability by dispersing finely meshed synthetic resins of a shape extending in the orientation treatment direction of oriented films within a ferroelectric liquid crystal. CONSTITUTION:The spontaneous polarization of liquid crystal molecules face downward in the liquid crystal domains divided by the meshed synthetic resins 3 when the small positive voltage of a power source 8B is impressed to an upper transparent electrode 4A by a switch 7. The major axes of the molecules incline two-times of the tilt angle with respect to the polarization axis of incident light and, therefore, a phase difference arises in the two orthogonal polarization components of light and the polarization state of the exit light changes. The light emitted from a liquid crystal/resin composite 11 is made into linearly polarized light parallel with a polarizing plate 10B if the film thickness of the liquid crystal/resin composite 11 and the refractive index anisotropy of the liquid crystal 1 are previously adjusted. The transmitted light is, therefore, not absorbed in the polarizing plate 10B and opaque domains coexist. The half tone is thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は液晶を用いて、光強度
の変調を行う液晶光変調器に係り、特にメモリ性と高速
性が必要とされるディスプレイ用の液晶光変調器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal light modulator for modulating light intensity by using a liquid crystal, and more particularly to a liquid crystal light modulator for a display which is required to have a memory property and a high speed. .

【0002】[0002]

【従来の技術】液晶に電界を加えて、液晶分子の配列状
態を変化させるという液晶の電気光学効果を応用すると
光変調器が実現できる。液晶光変調器は、他の電気光学
効果を示す結晶に比べて低電圧で動作し、比較的大きな
面積のものを廉価に作ることができるため、ディスプレ
イ用の電気光学素子として近年注目されている。
2. Description of the Related Art An optical modulator can be realized by applying an electric field to a liquid crystal to change the alignment state of liquid crystal molecules and applying the electro-optical effect of the liquid crystal. Liquid crystal light modulators have been attracting attention in recent years as electro-optical elements for displays because they operate at a lower voltage than other crystals that exhibit an electro-optical effect and can make relatively large areas at low cost. .

【0003】このような液晶光変調器の1つとして、自
発分極をもちカイラルスメクティックC相を示す強誘電
性液晶を、狭いギャップ(通常、3μm 以下)に充填
し、液晶分子の配向状態を双安定化した表面安定化強誘
電性液晶がある。この場合、液晶分子は、配向膜の面に
水平を保ちながら、配向膜の配向処理方向から、液晶材
料固有のチルト角(22.5°程度が望ましい) だけ傾いた
2つの安定な配列状態をもつ。この液晶光変調器は、輝
度向上に不可欠なメモリ機能(2値)と、高速応答をも
つためティスプレイに有用である。しかし、この液晶光
変調器は双安定な動作をもつため中間調表示が困難であ
る。それを克服する方法として、2値の液晶領域を分割
し、その面積比率に応じて中間調を実現する面積階調法
がある。これまでに、面積階調法を得る方法として、以
下に示すような素子が提案されている。
As one of such liquid crystal light modulators, a narrow gap (usually 3 μm or less) is filled with a ferroelectric liquid crystal having spontaneous polarization and exhibiting a chiral smectic C phase so that the alignment state of liquid crystal molecules is changed to a twin state. There are stabilized surface-stabilized ferroelectric liquid crystals. In this case, the liquid crystal molecules have two stable alignment states that are tilted by the tilt angle (preferably about 22.5 °) peculiar to the liquid crystal material from the alignment treatment direction of the alignment film while keeping the liquid crystal molecules horizontal to the surface of the alignment film. This liquid crystal light modulator has a memory function (binary) indispensable for improving brightness and a high-speed response, and is useful for display. However, since this liquid crystal light modulator has a bistable operation, halftone display is difficult. As a method for overcoming this, there is an area gradation method in which a binary liquid crystal region is divided and halftones are realized according to the area ratio. Until now, the following devices have been proposed as a method for obtaining the area gradation method.

【0004】従来例1 図6に示されるように、回転楕円体状の強誘電性液晶小
滴1が分散された合成樹脂3が透明電極4A,4B間に
挟まれ、駆動電源15の電圧の大きさにより光透過率が
制御される素子(文献: H. S. Kitzerow , H. Molsen
and G.Hepple ,Applied Physics Letters , Vol.60 , N
o.25 , pp.3093-3095 参照) 。従来例2 図7に示されるように、数nm径の微小球(TiO2) 16
が分散された強誘電性液晶1が、SiO配向膜2A,2
Bの付着した透明電極4A,4B間に挟まれ、駆動電源
15の電圧の大きさにより、光透過率が制御される素子
(文献: A.Yasuda , K.Nito , Y. Y. Bao , H.Takanis
hi and N.A.Clark , 4th International Conference on
Ferroelectric Liquid Crystals (FLC-93) Digest , N
o.P -137 , P.351-352 参照) 。従来例3 図8に示されるように、ラングミュア・ブロジェット法
で作成された超薄膜配向膜17A,17B(ポリイミ
ド、膜厚2nm程度)が付着した透明電極4A,4B間
に強誘電性液晶1が挟まれ、さらにダイオード18と可
変電気抵抗19を介して駆動電源15が接続され、電気
抵抗19の抵抗値により光透過率が制御される素子(文
献:木村宗弘、前田博己、C.M.ゴメス、小林駿介、
電子情報通信学会電子ディスプレイ研究会、No.EID 89-
43 , pp.13-18 参照)。
Conventional Example 1 As shown in FIG. 6, the synthetic resin 3 in which the spheroidal ferroelectric liquid crystal droplets 1 are dispersed is sandwiched between the transparent electrodes 4A and 4B, and the voltage of the driving power source 15 is changed. Device whose light transmittance is controlled by size (Reference: HS Kitzerow, H. Molsen
and G. Hepple, Applied Physics Letters, Vol.60, N
o.25, pp.3093-3095). Conventional Example 2 As shown in FIG. 7, microspheres (TiO 2 ) 16 having a diameter of several nm are used.
The ferroelectric liquid crystal 1 having dispersed therein is the SiO alignment film 2A, 2
An element whose light transmittance is controlled by the magnitude of the voltage of the driving power supply 15 sandwiched between the transparent electrodes 4A and 4B to which B is attached (Reference: A. Yasuda, K. Nito, YY Bao, H. Takanis).
hi and NAClark, 4th International Conference on
Ferroelectric Liquid Crystals (FLC-93) Digest, N
oP -137, P.351-352). Conventional Example 3 As shown in FIG. 8, the ferroelectric liquid crystal 1 is provided between the transparent electrodes 4A and 4B to which the ultrathin alignment films 17A and 17B (polyimide, film thickness of about 2 nm) formed by the Langmuir-Blodgett method are attached. And a drive power source 15 is further connected via a diode 18 and a variable electric resistance 19, and the light transmittance is controlled by the resistance value of the electric resistance 19 (reference: Munehiro Kimura, Hiroki Maeda, CM. Gomez, Shunsuke Kobayashi,
IEICE Technical Committee on Electronic Display, No.EID 89-
43, pp.13-18).

【0005】[0005]

【発明が解決しようとする問題点】前述の従来例1,2
および3の素子は、いずれも強誘電性液晶1を分割し、
ドメイン化することにより中間調が得られるが、以下に
述べるような問題点を抱えている。従来例1の素子で
は、2枚の基板5A,5Bをずらすことにより、強誘電
性液晶1を球状から回転楕円体状に変形し、液晶1の配
向を行なっているが、不完全な配向によるコントラスト
低下や光散乱による透過率低下が避けられない。従来例
2の素子では、微小球16が凝集しやすく、均一に分散
した一様な素子を作ることが困難であり、また、強誘電
性液晶1内に浮遊する微小球16の移動により、経時変
化による安定性が問題となる。従来例3の素子では、液
晶ドメインの大きさが自在に制御できないため、ドメイ
ンの微細化による解像度の向上が困難である。
[Problems to be Solved by the Invention]
The elements of 3 and 3 both divide the ferroelectric liquid crystal 1.
Although halftone can be obtained by domainization, it has the following problems. In the element of Conventional Example 1, the ferroelectric liquid crystal 1 is deformed from a spherical shape to a spheroidal shape by shifting the two substrates 5A and 5B, and the liquid crystal 1 is aligned. A decrease in contrast and a decrease in transmittance due to light scattering cannot be avoided. In the device of Conventional Example 2, the microspheres 16 are easily aggregated, and it is difficult to form a uniformly dispersed uniform device. Further, due to the movement of the microspheres 16 floating in the ferroelectric liquid crystal 1, Stability due to change becomes a problem. In the device of Conventional Example 3, since the size of the liquid crystal domain cannot be freely controlled, it is difficult to improve the resolution by miniaturizing the domain.

【0006】そこで、本発明の目的は、前述の諸問題を
解決し、中間調のメモリ機能を有し、しかも、コントラ
スト、光透過率、解像度、面内均一性、安定性に優れた
液晶光変調器を提供せんとするものである。
Therefore, an object of the present invention is to solve the above-mentioned problems, to provide a liquid crystal light having a halftone memory function and excellent in contrast, light transmittance, resolution, in-plane uniformity, and stability. It is intended to provide a modulator.

【0007】[0007]

【問題点を解決するための手段】この目的を達成するた
め、本発明液晶光変調器は、自発分極をもちカイラルス
メクティッC相を示す強誘電性液晶と微細な3次元網目
状の合成樹脂からなる液晶・樹脂複合体と、当該液晶・
樹脂複合体を挟み液晶分子を配列させる配向膜と、液晶
・樹脂複合体と配向膜を挟む透明電極と、当該透明電極
に両極性の電圧を印加する電圧源とを具備することを特
徴とするものである。
In order to achieve this object, the liquid crystal light modulator of the present invention comprises a ferroelectric liquid crystal having spontaneous polarization and exhibiting a chiral smectic C phase and a fine three-dimensional network composite. Liquid crystal / resin composite consisting of resin
It is characterized by comprising: an alignment film for arranging liquid crystal molecules sandwiching a resin composite, a transparent electrode sandwiching the liquid crystal / resin composite and the alignment film, and a voltage source for applying a bipolar voltage to the transparent electrode. It is a thing.

【0008】さらに本発明の実施例では、配向膜の配向
処理方向に伸張した形状の微細な網目状の合成樹脂が、
強誘電性液晶内に分散されているため、強誘電性液晶の
配向が乱れず、高いコントラストが得られる(従来例1
の素子の問題点を解決)。また、網目をなす樹脂繊維の
太さが、入射光の波長以下で極めて微細なため、光散乱
を生じず、光透過率の低下が生じない(従来例1の素子
の問題点を解決)。また、合成樹脂は網目状に結合して
おり、経時変化を生ぜず、高い安定性をもつ(従来例2
の素子の問題点を解決)。網目状合成樹脂が一様に形成
されるため、高い面内一様性が得られる(従来例2の素
子の問題点を解決)。また、合成樹脂の網目の大きさ
は、樹脂形成の速度を制御することにより、容易に制御
できるため、高い解像度の素子が製作できる(従来例3
の素子の問題点を解決)。
Further, in the embodiment of the present invention, the fine mesh-like synthetic resin having a shape elongated in the alignment treatment direction of the alignment film is
Since it is dispersed in the ferroelectric liquid crystal, the orientation of the ferroelectric liquid crystal is not disturbed and high contrast is obtained (conventional example 1
The problem of the element of is solved). Further, since the thickness of the resin fiber forming the mesh is extremely fine at the wavelength of the incident light or less, light scattering does not occur and the light transmittance does not decrease (the problem of the element of Conventional Example 1 is solved). Further, the synthetic resin is bonded in a mesh shape, does not change with time, and has high stability (conventional example 2
The problem of the element of is solved). Since the mesh-like synthetic resin is uniformly formed, high in-plane uniformity can be obtained (the problem of the element of Conventional Example 2 is solved). Further, since the size of the mesh of the synthetic resin can be easily controlled by controlling the speed of resin formation, a device with high resolution can be manufactured (conventional example 3).
The problem of the element of is solved).

【0009】[0009]

【実施例】以下添付図面を参照し実施例により本発明を
詳細に説明する。実施例の構成 図1は、本発明を適用した液晶光変調器の一実施例の模
式的構成の断面図を示す。本実施例の液晶光変調器で
は、カイラルスメクティックC相を示す強誘電性液晶1
の中に、配向膜2Aの配向処理方向に伸張した形状の網
目状の合成樹脂3を分散し、透明電極4A,4B上に付
着した配向膜2A,2B間に液晶1および樹脂3を挟ん
で配設する。さらに2つの透明電極4A,4Bは、ガラ
ス基板5A,5B上に付着され、リード線6とスイッチ
7を介して、3つの駆動用直流電圧源8A,8B,8C
のいずれかに接続される。入射光9は偏光板10Aによ
り液晶の分子の長軸方向に偏光された後、一方のガラス
基板5Aから入射し、液晶1と合成樹脂3からなる液晶
・樹脂複合体11で、偏光状態が制御され出射側の偏光
板10Bを透過した後、出射光12となる。2つの偏光
板10A,10Bの偏光方向は、直交関係にあり、また
2つ配向膜2A,2Bの配向処理方向は平行である。さ
らに偏光板10Aの偏光方向は、配向膜2A,2Bの配
向処理方向と液晶分子のチルト角だけ傾いている。2つ
のガラス基板5A,5Bは、周囲をシール用樹脂13に
より堅牢に固定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. Configuration of Embodiment FIG. 1 is a sectional view of a schematic configuration of an embodiment of a liquid crystal light modulator to which the present invention is applied. In the liquid crystal light modulator of this embodiment, the ferroelectric liquid crystal 1 exhibiting the chiral smectic C phase is used.
In the inside, a synthetic resin 3 having a mesh shape extended in the alignment treatment direction of the alignment film 2A is dispersed, and the liquid crystal 1 and the resin 3 are sandwiched between the alignment films 2A and 2B attached on the transparent electrodes 4A and 4B. Arrange. Further, the two transparent electrodes 4A, 4B are attached on the glass substrates 5A, 5B, and the three driving DC voltage sources 8A, 8B, 8C are provided via the lead wire 6 and the switch 7.
Connected to any of. The incident light 9 is polarized in the long axis direction of the liquid crystal molecules by the polarizing plate 10A, then enters from one glass substrate 5A, and the polarization state is controlled by the liquid crystal / resin composite 11 including the liquid crystal 1 and the synthetic resin 3. After passing through the polarizing plate 10B on the emission side, it becomes emission light 12. The polarization directions of the two polarizing plates 10A and 10B are orthogonal to each other, and the alignment treatment directions of the two alignment films 2A and 2B are parallel to each other. Further, the polarization direction of the polarizing plate 10A is inclined by the tilt angle of the liquid crystal molecules with respect to the alignment treatment direction of the alignment films 2A and 2B. The two glass substrates 5A and 5B are securely fixed around the periphery by the sealing resin 13.

【0010】液晶1は、網目状合成樹脂3により微細に
分割され微小なドメインを形成する。また、合成樹脂3
は網目状に結合しており、経時変化を生ぜず高い安定性
をもつ。液晶1と合成樹脂3からなる液晶・樹脂複合体
11は、液晶1および合成樹脂3の構成材料を混ぜ合わ
せて、加熱しながら均質溶媒にした後、光硬化、熱硬化
および反応硬化等の方法を用いて、合成樹脂3成分のみ
を硬化し、液晶1を析出・凝集させることで得られる。
この時、液晶・樹脂複合体中の樹脂3の含有率を10%
以下にし、液晶1が自発分極を失うネマチック相を示す
高い温度で、樹脂材料の分子(モノマー)を液晶分子と
共に、配向膜2A,2Bの配向処理方向に配列させ、樹
脂材料を硬化させることにより、配向膜2A,2Bの配
向処理方向に伸張した形状の網目状樹脂3を形成するこ
とができる。この網目状樹脂3は液晶1がカイラルスメ
クティックC相を示す室温に戻った場合でも、液晶1の
配向を乱すことが少なく、高いコントラスト比を維持す
ることが可能である。また、網目を形成する合成樹脂繊
維3の太さは、波長よりも小さいため光散乱を生ぜず高
い光透過率を示す。なお、合成樹脂3の網目の大きさ
は、合成樹脂3の硬化速度により容易に制御可能であ
る。また、微細な網目状合成樹脂3を形成することによ
り液晶光変調器の解像度を増すことが可能である。ま
た、合成樹脂3の形成速度を均一に制御すれば、網目状
樹脂3が一様に形成されるため高い面内一様性が得られ
る。
The liquid crystal 1 is finely divided by the mesh synthetic resin 3 to form fine domains. Also, synthetic resin 3
Are connected in a mesh shape and have high stability without changing over time. The liquid crystal / resin composite 11 composed of the liquid crystal 1 and the synthetic resin 3 is prepared by mixing the constituent materials of the liquid crystal 1 and the synthetic resin 3 into a homogeneous solvent while heating, and then performing photo-curing, heat-curing and reaction-curing methods. It can be obtained by curing only the three components of the synthetic resin by using, and precipitating and aggregating the liquid crystal 1.
At this time, the content ratio of the resin 3 in the liquid crystal / resin composite is 10%.
By arranging the molecules of the resin material (monomer) together with the liquid crystal molecules in the alignment treatment directions of the alignment films 2A and 2B at a high temperature at which the liquid crystal 1 exhibits a nematic phase in which the liquid crystal 1 loses spontaneous polarization, and curing the resin material, It is possible to form the mesh resin 3 having a shape that extends in the alignment treatment direction of the alignment films 2A and 2B. Even when the liquid crystal 1 returns to room temperature where the liquid crystal 1 exhibits a chiral smectic C phase, the network resin 3 does not disturb the alignment of the liquid crystal 1 and can maintain a high contrast ratio. Further, since the thickness of the synthetic resin fiber 3 forming the mesh is smaller than the wavelength, it does not cause light scattering and exhibits a high light transmittance. The size of the mesh of the synthetic resin 3 can be easily controlled by the curing speed of the synthetic resin 3. Further, the resolution of the liquid crystal light modulator can be increased by forming the fine mesh-like synthetic resin 3. Further, if the formation rate of the synthetic resin 3 is controlled uniformly, the mesh resin 3 is formed uniformly, so that high in-plane uniformity can be obtained.

【0011】入射光の偏光状態を大きく制御するために
は、液晶1の屈折率異方性Δn(=異常光屈折率ne−
常光屈折率no)が大きい方が有利である。そのため、
液晶1には、屈折率異方性の大きなシッフ塩基系強誘電
性液晶、アゾ系強誘電性液晶、アゾキシ系強誘電性液
晶、ビフェニル系強誘電性液晶、エステル系強誘電性液
晶、フェニルピリミジン系強誘電性液晶などが適してき
る。さらに、自発分極が大きな強誘電性液晶1を用いた
場合、高速応答と低電圧駆動が可能となる。
In order to largely control the polarization state of incident light, the refractive index anisotropy Δn (= extraordinary light refractive index ne-
It is advantageous that the ordinary light refractive index no) is large. for that reason,
The liquid crystal 1 includes a Schiff base ferroelectric liquid crystal having a large refractive index anisotropy, an azo ferroelectric liquid crystal, an azoxy ferroelectric liquid crystal, a biphenyl ferroelectric liquid crystal, an ester ferroelectric liquid crystal, and phenylpyrimidine. Ferroelectric liquid crystals are suitable. Furthermore, when the ferroelectric liquid crystal 1 having a large spontaneous polarization is used, high speed response and low voltage driving are possible.

【0012】合成樹脂3には、透明なアクリル樹脂、エ
ポキシ樹脂、ウレタン樹脂または、それらの共重合体等
が最適である。また、配向膜2Aは、ラビング配向処理
されたポリイミド樹脂、ポリビニールアルコール膜、斜
方蒸着されたSiO、SiO2 もしくは、ラングミュア
・ブロジェット法で形成される超薄膜のポリイミド膜な
どが適当である。なお、液晶分子を配向膜2A,2Bの
面から僅かに傾斜(プレチルト角)させ、複合体11を
構成することも可能である。また、液晶分子が配向膜2
A,2Bの面で逆方向に僅かに傾き、液晶内部で分子配
向が折れ曲がった構造(シェブロン構造)の場合にも、
本方法は有効である。
For the synthetic resin 3, a transparent acrylic resin, an epoxy resin, a urethane resin, or a copolymer thereof is most suitable. Further, as the alignment film 2A, a polyimide resin subjected to rubbing alignment treatment, a polyvinyl alcohol film, obliquely vapor-deposited SiO, SiO 2, or an ultra-thin polyimide film formed by the Langmuir-Blodgett method is suitable. . It is also possible to form the composite 11 by slightly inclining the liquid crystal molecules from the surfaces of the alignment films 2A and 2B (pretilt angle). In addition, the liquid crystal molecules are aligned film 2
Even in the case of a structure (chevron structure) in which liquid crystal molecules are slightly tilted in the opposite directions on the planes A and 2B and the molecular orientation is bent inside the liquid crystal,
This method is effective.

【0013】一例として試作した本実施例では、カイラ
ルスメクティックC相の強誘電性液晶1として、チッソ
社CS− 1014 (屈折率異方性Δn= 0.15 ) を使用し
た。また、合成樹脂3として、紫外線硬化性のアクリル
・ウレタン共重合体(ノーランドプロダクツ社 NOA-65
、屈折率ne= 1.524)を用いた。
In this embodiment, which was produced as an example, as a chiral smectic C-phase ferroelectric liquid crystal 1, CS-1014 (refractive index anisotropy Δn = 0.15) of Chisso Corporation was used. Further, as the synthetic resin 3, an ultraviolet-curable acrylic-urethane copolymer (NOA-65 manufactured by Noland Products Co., Ltd.) is used.
, Refractive index ne = 1.524) was used.

【0014】製作方法は、以下の通りである。まず、ポ
リイミド膜2A(50nm厚) をスピンコート法により透明
電極4A(In2O3 : Sn、厚み72nm)付きのガラス基板5
A(3mm厚の青板ガラス) に塗布する。さらに、配向処
理として、このポリイミド膜2Aを微細なレーヨンブラ
シで一方向(ラビング方向)に摩擦する(ラビング処
理)。このような方法で作製した配向膜2A,2B付き
の2つのガラス基板5A,5Bの周辺部を、2μm の球
状スペーサ入りのシール用接着剤13で張り合わせる。
この場合、2枚の配向膜2A,2Bのラビング方向は、
平行である。
The manufacturing method is as follows. First, a glass substrate 5 with a polyimide film 2A (50 nm thickness) and a transparent electrode 4A (In 2 O 3 : Sn, thickness 72 nm) formed by spin coating.
Apply to A (blue plate glass with a thickness of 3 mm). Further, as an alignment treatment, the polyimide film 2A is rubbed in one direction (rubbing direction) with a fine rayon brush (rubbing treatment). Peripheral portions of the two glass substrates 5A and 5B with the alignment films 2A and 2B produced by such a method are pasted together with a sealing adhesive 13 containing a spherical spacer of 2 μm.
In this case, the rubbing directions of the two alignment films 2A and 2B are
Parallel.

【0015】次に、液晶1と合成樹脂3材料を 100℃ま
で加熱して混合し、均質溶液を作製する。この均質溶液
を前述の配向膜2A,2B間のギャップ(約2μm )
に、100 ℃に保ったまま注入する。さらに、ネマティッ
ク相を示す75℃まで冷却し、ガラス基板5Aを通し
て、強度40mW/cm2の紫外線(波長365 nm) を照射し、
網目状樹脂3を形成する。その後、室温まで徐冷する。
Next, the liquid crystal 1 and the synthetic resin 3 material are heated to 100 ° C. and mixed to prepare a homogeneous solution. This homogeneous solution is applied to the gap (about 2 μm) between the alignment films 2A and 2B described above.
Then, inject while maintaining at 100 ℃. Further, it was cooled to 75 ° C. showing a nematic phase, and irradiated with ultraviolet rays (wavelength 365 nm) having an intensity of 40 mW / cm 2 through the glass substrate 5A,
The mesh resin 3 is formed. After that, it is gradually cooled to room temperature.

【0016】このような方法で試作された本実施例の液
晶光変調器の有効面積は、20×20 mm2である。な
お、実用的なコントラスト比を得るためには、1〜10
μmの厚みの複合体11が必要となる。実施例の動作 次に、図1に示す本実施例の液晶光変調器の動作を、図
面を用いて説明する。
The effective area of the liquid crystal light modulator of this embodiment produced by the above method is 20 × 20 mm 2 . In order to obtain a practical contrast ratio, 1 to 10
A composite 11 with a thickness of μm is required. Operation of the Embodiment Next, the operation of the liquid crystal light modulator of this embodiment shown in FIG. 1 will be described with reference to the drawings.

【0017】図1のスイッチ7により、電源8Aの負の
電圧が上面の透明電極4Aに印加されるようにした場
合、液晶分子の自発分極が上方(透明電極4Aの方向)
を向く。それに伴い液晶分子14Aは、基板面に水平方
向を維持したまま、図2の動作図に示すように、配向膜
2A,2Bのラビング方向からチルト角だけ傾き配列す
る。この時、偏光板10Aを透過した光の偏光方向が液
晶分子14Aの長軸と一致するため、複屈折効果が現れ
ず、光の偏光状態が変化しない。そのため、複合体11
を透過した光は出射側の偏光板10Bで吸収され、透過
することができない(不透明状態)。
When the negative voltage of the power source 8A is applied to the transparent electrode 4A on the upper surface by the switch 7 of FIG. 1, the spontaneous polarization of the liquid crystal molecules is upward (direction of the transparent electrode 4A).
Turn to. Along with this, the liquid crystal molecules 14A are inclined and arranged from the rubbing direction of the alignment films 2A and 2B by a tilt angle while maintaining the horizontal direction on the substrate surface, as shown in the operation diagram of FIG. At this time, since the polarization direction of the light transmitted through the polarizing plate 10A coincides with the long axis of the liquid crystal molecule 14A, the birefringence effect does not appear and the polarization state of the light does not change. Therefore, the complex 11
The light transmitted through is absorbed by the polarizing plate 10B on the emission side and cannot be transmitted (opaque state).

【0018】次に、図1のスイッチ7により、電源8B
の比較的小さな正の電圧を上方の透明電極4Aに印加す
る。この場合、網目状合成樹脂3で分割された液晶ドメ
インは、個々に異なるしきい値電圧をもつため、一部の
液晶ドメインで、液晶分子14Bの自発分極が下方(透
明電極4Bの方向)に向く。この液晶ドメインの液晶分
子14Bは、図3に示すように配向膜2A,2Bの配向
処理方向に対して、チルト角だけ逆方向に傾き配列す
る。この液晶ドメインでは、入射光の偏光軸に対して、
分子14B長軸がチルト角の2倍傾くため、光の2つの
直交偏波成分に位相差が生じるため、出射光の偏光状態
が変化する。あらかじめ、180 °の位相差が生じるよう
に、液晶・樹脂複合体11の膜厚と液晶1の屈折率異方
性を調整しておくことにより、液晶・樹脂複合体11か
ら出射する光を、出射側の偏光板10Bと平行な直線偏
光にすることができる。そのため、この液晶ドメインを
透過した光は、出射側の偏光板10Bに吸収されずに透
過することができる。この時、透明な配向を示す液晶ド
メインと不透明な配向を示す液晶ドメインが混在するこ
とになり、それらの面積比率で中間調が得られることに
なる。
Then, the switch 7 shown in FIG.
A relatively small positive voltage is applied to the upper transparent electrode 4A. In this case, since the liquid crystal domains divided by the mesh synthetic resin 3 have different threshold voltages, the spontaneous polarization of the liquid crystal molecules 14B is downward (in the direction of the transparent electrode 4B) in some liquid crystal domains. Turn to. As shown in FIG. 3, the liquid crystal molecules 14B of the liquid crystal domain are tilted and aligned in the opposite direction by the tilt angle with respect to the alignment processing direction of the alignment films 2A and 2B. In this liquid crystal domain, with respect to the polarization axis of the incident light,
Since the long axis of the molecule 14B is tilted by twice the tilt angle, a phase difference occurs between the two orthogonal polarization components of the light, and the polarization state of the emitted light changes. By adjusting the film thickness of the liquid crystal / resin composite 11 and the refractive index anisotropy of the liquid crystal 1 in advance so that a phase difference of 180 ° is generated, the light emitted from the liquid crystal / resin composite 11 is It is possible to make linearly polarized light parallel to the polarizing plate 10B on the emitting side. Therefore, the light transmitted through the liquid crystal domain can be transmitted without being absorbed by the polarizing plate 10B on the emission side. At this time, a liquid crystal domain having a transparent alignment and a liquid crystal domain having an opaque alignment are mixed, and a halftone is obtained by the area ratio thereof.

【0019】さらに、図1のスイッチ7により、電源8
Cの大きな正の直流電圧を上方の透明電極4Aに印加し
た場合、図4に示すように、すべての液晶ドメインで、
透明状態を示す配向となる。この場合、入射光の大部分
が偏光板10Bで吸収されずに出射され透明状態にな
る。このような不透明状態、中間調状態、透明状態は,
印加電圧をゼロにした状態でも、液晶分子の配向がメモ
リ性を示すため保持される。それにより、中間調をもつ
メモリ動作が実現できる。
Further, the switch 7 shown in FIG.
When a positive DC voltage with a large C is applied to the upper transparent electrode 4A, as shown in FIG.
The orientation is transparent. In this case, most of the incident light is emitted without being absorbed by the polarizing plate 10B and becomes in a transparent state. Such an opaque state, a halftone state, and a transparent state are
Even when the applied voltage is zero, the orientation of the liquid crystal molecules is retained because it exhibits a memory property. As a result, a memory operation having halftone can be realized.

【0020】本実施例の一例として試作した上述の液晶
光変調器に、レベルの異なる正の電圧パルスを一時的に
印加し、単色入射光9(波長 633 nm のヘリウムネオン
レーザ光) を入射した場合の出射光の強度変化を図5に
示す。電圧パルスの強度に応じて、中間調の透過率が印
加電圧がゼロになった場合にも保持されることが確認で
きる。さらに、負の電圧パルスにより、出射光強度が低
レベルになるリセット動作が得られている。なお、本素
子の応答時間は、20Vの印加時に、200 μsと高速で
あった。自発分極の大きな液晶1を用いることにより、
さらに高速化が可能である。
Positive voltage pulses of different levels were temporarily applied to the above-described liquid crystal light modulator manufactured as an example of this embodiment, and monochromatic incident light 9 (helium neon laser light of wavelength 633 nm) was made incident. The change in the intensity of the emitted light in this case is shown in FIG. It can be confirmed that the halftone transmittance is maintained even when the applied voltage becomes zero, depending on the intensity of the voltage pulse. Furthermore, a reset operation has been obtained in which the intensity of emitted light is at a low level due to the negative voltage pulse. The response time of this device was as high as 200 μs when 20 V was applied. By using the liquid crystal 1 with large spontaneous polarization,
Further speedup is possible.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
配向膜2A,2Bの配向処理方向に伸張した形状の微細
な網目状合成樹脂3を強誘電性液晶1内に分散すること
により、面積階調に基づく中間調メモリ機能が得られ、
しかも、コントラスト、光透過率、解像度、面内均一
性、安定性に優れた液晶光変調器を提供することができ
る。従って、本発明の液晶光変調器は、ディスプレイに
好適に応用が可能であり、本発明を用いた場合、強誘電
性液晶を用いて中間調のメモリ動作が可能となり、コン
トラスト、光透過率、解像度、面内均一性、安定性に優
れたディスプレイを実現できる。
As described above, according to the present invention,
By dispersing in the ferroelectric liquid crystal 1 the fine mesh-like synthetic resin 3 having a shape elongated in the alignment treatment direction of the alignment films 2A and 2B, a halftone memory function based on area gradation can be obtained.
Moreover, it is possible to provide a liquid crystal light modulator excellent in contrast, light transmittance, resolution, in-plane uniformity, and stability. Therefore, the liquid crystal light modulator of the present invention can be suitably applied to a display, and when the present invention is used, a halftone memory operation can be performed by using a ferroelectric liquid crystal, and the contrast, light transmittance, A display with excellent resolution, in-plane uniformity, and stability can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の液晶光変調器の一実施例を示す
構成図、
FIG. 1 is a block diagram showing an embodiment of a liquid crystal light modulator of the present invention,

【図2】図2は図1に示した液晶光変調器の不透明状態
を示す動作図、
FIG. 2 is an operation diagram showing an opaque state of the liquid crystal light modulator shown in FIG.

【図3】図3は図1に示した液晶光変調器の中間調状態
を示す動作図、
FIG. 3 is an operation diagram showing a halftone state of the liquid crystal light modulator shown in FIG.

【図4】図4は図1に示した液晶光変調器の透明状態を
示す動作図、
FIG. 4 is an operation diagram showing a transparent state of the liquid crystal light modulator shown in FIG.

【図5】図5は図1に示した液晶光変調器のパルス電圧
強度と出射光強度の波形を示す図、
FIG. 5 is a diagram showing waveforms of pulse voltage intensity and emitted light intensity of the liquid crystal optical modulator shown in FIG.

【図6】図6は液晶光変調器の従来例1の構成を示す
図、
FIG. 6 is a diagram showing a configuration of a conventional example 1 of a liquid crystal light modulator,

【図7】図7は液晶光変調器の従来例2の構成を示す
図、
FIG. 7 is a diagram showing a configuration of a second conventional example of a liquid crystal light modulator,

【図8】図8は液晶光変調器の従来例3の構成を示す
図、
FIG. 8 is a diagram showing a configuration of a conventional example 3 of a liquid crystal light modulator,

【符号の説明】[Explanation of symbols]

1 強誘電性液晶 2A,2B 配向膜 3 合成樹脂 4A,4B 透明電極 5A,5B ガラス基板 6 リード線 7 スイッチ 8A,8B,8C 直流電圧源 9 入射光 10A,10B 偏光板 11 液晶・樹脂複合体 12 出射光 13 シール樹脂 14A,14B 液晶分子 15 電源 16 微小球 17A,17B 超薄膜配向膜 18 ダイオード 19 可変電気抵抗 DESCRIPTION OF SYMBOLS 1 Ferroelectric liquid crystal 2A, 2B Alignment film 3 Synthetic resin 4A, 4B Transparent electrode 5A, 5B Glass substrate 6 Lead wire 7 Switch 8A, 8B, 8C DC voltage source 9 Incident light 10A, 10B Polarizing plate 11 Liquid crystal / resin composite 12 Emitted light 13 Seal resin 14A, 14B Liquid crystal molecule 15 Power supply 16 Microsphere 17A, 17B Ultra-thin alignment film 18 Diode 19 Variable electric resistance

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 自発分極をもちカイラルスメクティック
C相を示す強誘電性液晶と微細な3次元網目状の合成樹
脂からなる液晶・樹脂複合体と、当該液晶・樹脂複合体
を挟み液晶分子を配列させる配向膜と、液晶・樹脂複合
体と配向膜を挟む透明電極と、当該透明電極に両極性の
電圧を印加する電圧源とを具備することを特徴とする液
晶光変調器。
1. A liquid crystal / resin composite comprising a ferroelectric liquid crystal having spontaneous polarization and exhibiting a chiral smectic C phase and a fine three-dimensional mesh-like synthetic resin, and liquid crystal molecules arranged with the liquid crystal / resin composite sandwiched therebetween. A liquid crystal light modulator, comprising: an alignment film, a transparent electrode sandwiching the liquid crystal / resin composite and the alignment film, and a voltage source for applying a bipolar voltage to the transparent electrode.
【請求項2】 前記合成樹脂の含有率が前記液晶・樹脂
複合体の10重量%以下であることを特徴とする請求項
1記載の液晶光変調器。
2. The liquid crystal light modulator according to claim 1, wherein the content of the synthetic resin is 10% by weight or less of the liquid crystal / resin composite.
【請求項3】 前記合成樹脂の網目が前記配向膜の配向
処理方向に伸張した形状であることを特徴とする請求項
1または2記載の液晶光変調器。
3. The liquid crystal light modulator according to claim 1, wherein the mesh of the synthetic resin has a shape elongated in the alignment treatment direction of the alignment film.
【請求項4】 前記合成樹脂の繊維の太さが、入射光の
波長以下であることを特徴とする請求項1から3いずれ
か1項に記載の液晶光変調器。
4. The liquid crystal light modulator according to claim 1, wherein the thickness of the fiber of the synthetic resin is not more than the wavelength of incident light.
【請求項5】 前記液晶がネマティック相を示す温度で
前記合成樹脂が形成されていることを特徴とする請求項
1から4いずれか1項に記載の液晶光変調器。
5. The liquid crystal light modulator according to claim 1, wherein the synthetic resin is formed at a temperature at which the liquid crystal exhibits a nematic phase.
【請求項6】 前記合成樹脂が、光硬化、熱硬化または
反応硬化により形成されるアクリル樹脂、エポキシ樹
脂、ウレタン樹脂、またはそれらの共重合体であること
を特徴とする請求項1から5いずれか1項に記載の液晶
光変調器。
6. The synthetic resin is an acrylic resin, an epoxy resin, a urethane resin formed by photo-curing, heat-curing or reaction-curing, or a copolymer thereof, according to any one of claims 1 to 5. 2. A liquid crystal light modulator according to item 1.
【請求項7】 前記配向膜が、ラビング配向処理された
ポリイミド樹脂、ポリビニルアルコール樹脂、斜方蒸着
されたSiO、SiO2 、ラングミュア・ブロジェット
法により形成されるポリイミド樹脂のいずれかであるこ
とを特徴とする請求項1から6いずれか1項に記載の液
晶光変調器。
7. The alignment film is one of a rubbing-aligned polyimide resin, a polyvinyl alcohol resin, obliquely vapor-deposited SiO, SiO 2 , and a polyimide resin formed by the Langmuir-Blodgett method. The liquid crystal light modulator according to claim 1, wherein the liquid crystal light modulator is a liquid crystal light modulator.
【請求項8】 前記液晶が、シッフ塩基系強誘電性液
晶、アゾ系強誘電性液晶、アゾキシ系強誘電性液晶、ビ
フェニル系強誘電性液晶、エステル系強誘電性液晶、ま
たはフェニルピリミジン系強誘電性液晶であることを特
徴とする請求項1から7いずれか1項に記載の液晶光変
調器。
8. The Schiff base type ferroelectric liquid crystal, azo type ferroelectric liquid crystal, azoxy type ferroelectric liquid crystal, biphenyl type ferroelectric liquid crystal, ester type ferroelectric liquid crystal, or phenylpyrimidine type ferroelectric liquid crystal. The liquid crystal light modulator according to any one of claims 1 to 7, which is a dielectric liquid crystal.
JP04262794A 1994-03-14 1994-03-14 Liquid crystal light modulator Expired - Fee Related JP3329565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04262794A JP3329565B2 (en) 1994-03-14 1994-03-14 Liquid crystal light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04262794A JP3329565B2 (en) 1994-03-14 1994-03-14 Liquid crystal light modulator

Publications (2)

Publication Number Publication Date
JPH07248489A true JPH07248489A (en) 1995-09-26
JP3329565B2 JP3329565B2 (en) 2002-09-30

Family

ID=12641261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04262794A Expired - Fee Related JP3329565B2 (en) 1994-03-14 1994-03-14 Liquid crystal light modulator

Country Status (1)

Country Link
JP (1) JP3329565B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782032A2 (en) 1995-12-27 1997-07-02 Sharp Kabushiki Kaisha Liquid crystal display element and a manufacturing method thereof
US6118512A (en) * 1995-12-27 2000-09-12 Sharp Kabushiki Kaisha Manufacturing method of a liquid crystal display element
US6151096A (en) * 1996-12-05 2000-11-21 Sharp Kabushiki Kaisha Liquid crystal display including dopant phase-separated from liquid crystal
EP1038204A4 (en) * 1997-12-10 2001-01-03 Univ Kent State Ohio COMPOSED, PHASE-SEPARATED ORGANIC FILM AND THEIR PRODUCTION
JP2002303891A (en) * 2001-01-31 2002-10-18 Shunsuke Kobayashi Manufacturing method of liquid crystal display element
JP2003066429A (en) * 2001-08-29 2003-03-05 Chisso Corp Liquid crystal display device with memory properties
EP1494014A1 (en) * 2003-06-30 2005-01-05 Emhart Glass S.A. System with a ferro-electric liquid crystal for two-fold optical inspection of containers
JP2016502144A (en) * 2012-12-14 2016-01-21 エルジー・ケム・リミテッド Liquid crystal element (Liquid Crystal Element)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20250080025A (en) * 2023-11-27 2025-06-05 동우 화인켐 주식회사 Optical laminate, and manufacturing method for the same, and smart window including the same, and automobile or windows for building using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782032A2 (en) 1995-12-27 1997-07-02 Sharp Kabushiki Kaisha Liquid crystal display element and a manufacturing method thereof
US5812230A (en) * 1995-12-27 1998-09-22 Sharp Kabushiki Kaisha Liquid crystal display and manufacturing method thereof with isotropic microstructural elements between smectic layers
US6118512A (en) * 1995-12-27 2000-09-12 Sharp Kabushiki Kaisha Manufacturing method of a liquid crystal display element
US6151096A (en) * 1996-12-05 2000-11-21 Sharp Kabushiki Kaisha Liquid crystal display including dopant phase-separated from liquid crystal
EP1038204A4 (en) * 1997-12-10 2001-01-03 Univ Kent State Ohio COMPOSED, PHASE-SEPARATED ORGANIC FILM AND THEIR PRODUCTION
JP2002303891A (en) * 2001-01-31 2002-10-18 Shunsuke Kobayashi Manufacturing method of liquid crystal display element
JP2003066429A (en) * 2001-08-29 2003-03-05 Chisso Corp Liquid crystal display device with memory properties
EP1494014A1 (en) * 2003-06-30 2005-01-05 Emhart Glass S.A. System with a ferro-electric liquid crystal for two-fold optical inspection of containers
JP2005024547A (en) * 2003-06-30 2005-01-27 Emhart Glass Sa Container inspection equipment
JP2016502144A (en) * 2012-12-14 2016-01-21 エルジー・ケム・リミテッド Liquid crystal element (Liquid Crystal Element)
US9828550B2 (en) 2012-12-14 2017-11-28 Lg Chem, Ltd. Polymerizable composition and method for manufacturing liquid crystal device
US9840668B2 (en) 2012-12-14 2017-12-12 Lg Chem, Ltd. Liquid crystal device
US10370591B2 (en) 2012-12-14 2019-08-06 Lg Chem, Ltd. Liquid crystal device

Also Published As

Publication number Publication date
JP3329565B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
EP0550846B1 (en) Ferroelectric liquid crystal device and process for production thereof
JP3086718B2 (en) Liquid crystal display device
US5062691A (en) Liquid crystal device with grey scale
JPH09160041A (en) Liquid crystal display element
AU683995B2 (en) Liquid crystal device
JPH01302226A (en) Ferroelectric liquid crystal element
JP3329565B2 (en) Liquid crystal light modulator
Kahn The molecular physics of liquid‐crystal devices
JP2647828B2 (en) Liquid crystal device manufacturing method
JP4220748B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal display device
JP2942442B2 (en) Liquid crystal display
JP4220810B2 (en) Method for manufacturing liquid crystal light modulation film, liquid crystal light modulation film, and liquid crystal light modulator
GB2288672A (en) Liquid crystal display
JP4223107B2 (en) Liquid crystal light modulator
JP3225932B2 (en) Manufacturing method of liquid crystal display element
JP4252202B2 (en) Liquid crystal light modulator using ferroelectric liquid crystal and manufacturing method thereof
JP3862473B2 (en) Liquid crystal element, liquid crystal functional material, and liquid crystal device
JP4220729B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP3757365B2 (en) Ferroelectric smectic liquid crystal dispersed in polymer
JP2753206B2 (en) Guest-host type liquid crystal display
JPH06118398A (en) Liquid crystal electrooptical device
JP2775042B2 (en) Liquid crystal electro-optical device
JP2692673B2 (en) Optical shutter device
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH03192324A (en) Polymer dispersion type liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees