[go: up one dir, main page]

JPH0724740B2 - Exhaust gas purifying catalyst and its manufacturing method - Google Patents

Exhaust gas purifying catalyst and its manufacturing method

Info

Publication number
JPH0724740B2
JPH0724740B2 JP60144007A JP14400785A JPH0724740B2 JP H0724740 B2 JPH0724740 B2 JP H0724740B2 JP 60144007 A JP60144007 A JP 60144007A JP 14400785 A JP14400785 A JP 14400785A JP H0724740 B2 JPH0724740 B2 JP H0724740B2
Authority
JP
Japan
Prior art keywords
catalyst
dimensional structure
gas
coarse
filter function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60144007A
Other languages
Japanese (ja)
Other versions
JPS627448A (en
Inventor
皓一 斉藤
健次 植田
康生 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60144007A priority Critical patent/JPH0724740B2/en
Priority to CA000512739A priority patent/CA1260909A/en
Priority to DE8686108950T priority patent/DE3666536D1/en
Priority to AT86108950T priority patent/ATE47533T1/en
Priority to US06/880,827 priority patent/US4749671A/en
Priority to EP86108950A priority patent/EP0211233B1/en
Publication of JPS627448A publication Critical patent/JPS627448A/en
Publication of JPH0724740B2 publication Critical patent/JPH0724740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディーゼルエンジン排ガスあるいは可燃性炭
素微粒子を含有する産業排ガスの浄化用触媒およびその
製法に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst for purifying diesel engine exhaust gas or industrial exhaust gas containing combustible carbon fine particles and a method for producing the same.

近年ディーゼルエンジン排ガス中の微粒子状物質(主と
して固体状炭素微粒子、硫酸塩など硫黄系微粒子、そし
て、液状ないし固体状の高分子量炭化水素微粒子などよ
りなる)が環境衛生上問題化する傾向にある。これら微
粒子はその粒子径がほとんど1ミクロン以下であり、大
気中に浮遊しやすく、呼吸により人体内に取り込まれや
すいためである。したがってこれら微粒子のディーゼル
エンジンからの排出規制を厳しくしていく方向で検討が
進められている。
In recent years, particulate matter in diesel engine exhaust gas (mainly composed of solid carbon particulates, sulfur particulates such as sulfates, and liquid or solid high molecular weight hydrocarbon particulates) tends to become a problem for environmental hygiene. This is because these fine particles have a particle diameter of almost 1 micron or less, are easily suspended in the air, and are easily taken into the human body by respiration. Therefore, studies are underway in the direction of tightening regulations on the emission of these fine particles from diesel engines.

ところで、これら微粒子の除去方法としては、大別して
以下の2つの方法がある。1つは耐熱性ガスフィルター
(セラミックフォーム、ワイヤーメッシュ、金属発泡
体、目封じタイプのセラミックハニカムなど)を用いて
排ガスを過して、微粒子を捕捉し、圧損が上昇すれば
バーナーなどで蓄積した微粒子を燃焼せしめて、フィル
ターを再生する方法と、他はこの耐熱性ガスフィルター
構造を持つ担体に触媒物質を担持させ過操作とともに
燃焼操作も行なわせて上記燃焼再生の頻度を少なくする
とか、再生の必要のないほどに触媒の燃焼活性を高める
方法である。
By the way, methods for removing these fine particles are roughly classified into the following two methods. One is to use a heat resistant gas filter (ceramic foam, wire mesh, metal foam, plugged type ceramic honeycomb, etc.) to pass the exhaust gas, trap fine particles, and accumulate them with a burner if the pressure loss rises. The method of burning fine particles to regenerate the filter, and the other method is to reduce the frequency of the above combustion regeneration by supporting the catalyst substance on the carrier with this heat resistant gas filter structure and performing the combustion operation together with the overoperation. This is a method of increasing the combustion activity of the catalyst to the extent that there is no need.

前者の場合、微粒子の除去効果を高めれば高めるほど圧
損上昇が早く、再生頻度も多くなり、煩瑣であり、経済
的にも著しく不利となるであろう。それにくらべ後者の
方法は、ディーゼルエンジン排気ガスの排出条件(ガス
組成および温度)において触媒活性を有効に維持しうる
触媒物質が採用されるならばはるかに優れた方法と考え
られる。
In the former case, the higher the removal effect of fine particles, the faster the pressure loss rises, the more frequently the regeneration occurs, the more troublesome, and the economically disadvantageous. In contrast, the latter method is considered to be a much better method if a catalytic substance capable of effectively maintaining the catalytic activity under the emission conditions (gas composition and temperature) of diesel engine exhaust gas is adopted.

しかしながら、ディーゼルエンジンの排気ガス温度はガ
ソリンエンジンの場合と比較して、格段に低く、しかも
燃料として軽油を用いるために該排ガス中には硫黄化合
物とくにその酸化物、主として二酸化硫黄(SO2)も多
く含まれる。したがってサルフェート(SO2がさらに酸
化されてSO3や硫酸ミストとなったもの)生成能がほと
んどなく、かつ通常のエンジンの走行条件下でえられる
温度内で蓄積した微粒子を良好に着火燃焼させる性能を
有する上記排ガス浄化触媒が要求されるにもかかわら
ず、今迄この条件に十分に適合する触媒は提案されてい
ないのが現状である。
However, the exhaust gas temperature of a diesel engine is much lower than that of a gasoline engine, and since a light oil is used as a fuel, a sulfur compound, especially its oxide, mainly sulfur dioxide (SO 2 ) is also contained in the exhaust gas. Many are included. Therefore, it has almost no ability to generate sulfates (SO 2 is further oxidized to SO 3 or sulfuric acid mist), and it has the ability to satisfactorily ignite and burn fine particles accumulated within the temperature obtained under normal engine running conditions. In spite of the demand for the above-mentioned exhaust gas purifying catalyst having the above-mentioned characteristics, a catalyst which sufficiently meets this condition has not been proposed so far.

〔従来の技術〕[Conventional technology]

従来よりカーボン質微粒子の捕捉効果を高める目的で種
々の提案がなされている。貫通孔を有する構造体の貫通
孔内壁に耐熱性無機質繊維を接着せしめ、カーボン質微
粒子の捕捉効果を高める試み(特開昭59−142820号公
報)、あるいは貫通孔を有するセラミックハニカム構造
体の内壁に不規則な配列状態の突起を多数設けてカーボ
ン質微粒子を捕捉しようという試み(特開昭57−99314
号公報)、またオープンハニカムあるいはプラグハニカ
ムにセラミック粗大粒子を付着させるかあるいは壁面を
発泡させるかして突起を作製した後乾燥、焼成を行なう
ことによりカーボン質微粒子の捕捉効果を高める担体を
提案している(特開昭58−14921号公報)。
Various proposals have hitherto been made for the purpose of enhancing the effect of capturing carbonaceous fine particles. An attempt was made to adhere a heat-resistant inorganic fiber to the inner wall of the through hole of the structure having the through hole to enhance the capturing effect of the carbonaceous fine particles (JP-A-59-142820), or the inner wall of the ceramic honeycomb structure having the through hole. Attempt to capture carbonaceous fine particles by providing a large number of irregularly arranged protrusions on the surface (Japanese Patent Laid-Open No. 57-99314)
Japanese Patent Laid-Open Publication No. 1993-242242), and proposes a carrier that enhances the trapping effect of carbonaceous fine particles by forming coarse particles on an open honeycomb or a plug honeycomb or by foaming the wall surface to form protrusions, followed by drying and firing. (JP-A-58-14921).

しかし本発明に開示するようなガスフィルター機能を有
する隔壁のガス入口側に触媒活性成分を突起状に担持せ
しめ蓄積するカーボン質微粒子との接触効率を良くし、
触媒燃焼性能を高めたものは開示されていないのが現状
である。
However, to improve the contact efficiency with the carbonaceous fine particles that accumulate by accumulating catalytically active components in the form of protrusions on the gas inlet side of the partition having the gas filter function as disclosed in the present invention,
At present, there is no disclosure of one having improved catalytic combustion performance.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らは、特にディーゼルエンジンからの排ガス中
に含まれるカーボン質微粒子をより低温から燃焼させう
る触媒およびその調製法を提案するものである。
The present inventors propose a catalyst that can burn carbonaceous fine particles contained in exhaust gas from a diesel engine from a lower temperature, and a method for preparing the same.

本発明にかゝる触媒は以下の如き点で高い評価が与えら
れる。ディーゼルエンジンからの排ガス温度はガソリン
車に比べて格段に低く、市中走行時排ガス温度はマニホ
ールド出口でも450℃に達しないことから350℃以下でも
カーボン質微粒子の燃焼が良好な触媒が要求される。
The catalyst according to the present invention is highly evaluated in the following points. The exhaust gas temperature from the diesel engine is much lower than that of a gasoline vehicle, and the exhaust gas temperature during city driving does not reach 450 ° C even at the manifold outlet, so a catalyst with good combustion of carbon fine particles is required even at 350 ° C or less. .

しかし従来提案されている触媒は、三次元構造体のガス
接触部壁面に微細粒子で層状に触媒成分が担持されてい
るかあるいは隔壁骨材の内部細孔内壁面に担持されてい
て、捕捉されたカーボン質微粒子との接触効率が悪く、
触媒活性物質から充分な燃焼性能を引き出せていないの
が現状である。
However, the conventionally proposed catalyst is trapped because the catalyst component is supported in a layer by fine particles on the wall surface of the gas contact portion of the three-dimensional structure or on the inner wall surface of the inner pores of the partition aggregate. The contact efficiency with the carbonaceous particles is poor,
At present, it is not possible to derive sufficient combustion performance from catalytically active substances.

本発明者らは、カーボン質微粒子がフィルター機能を有
する隔壁のガス入口側壁面に層状に蓄積することに注目
し、該蓄積層に、触媒活性成分の粗粒状物を突起状に担
持させ、触媒とカーボン質微粒子の接触効率を上げるこ
とにより著しく、触媒性能を高めることを見い出し、本
発明を完成したものである。
The inventors of the present invention have noticed that the carbonaceous fine particles accumulate in layers on the side wall surface of the gas inlet of the partition having a filter function. The inventors have found that the catalytic performance is remarkably improved by increasing the contact efficiency between the carbonaceous fine particles and the carbon fine particles, and have completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以下の如く特定される。 The present invention is specified as follows.

(1)ガスフィルター機能を有する耐火性三次元構造体
のガス流入口側壁面に触媒活性成分を含有する粗粒状突
起物よりなる付着膜を形成せしめてなる触媒であって、
該粗粒状突起物が40μmを超える粒子が80%以上、かつ
300μm以下の粒子である粗粒状物で形成されることを
特徴とする排ガス浄化用触媒。
(1) A catalyst comprising a refractory three-dimensional structure having a gas filter function, and an adhesion film made of coarse particulate projections containing a catalytically active component formed on a gas inlet side wall surface of the refractory three-dimensional structure,
80% or more of particles in which the coarse-grained projections exceed 40 μm, and
An exhaust gas-purifying catalyst, characterized in that it is formed of coarse particles having a particle size of 300 μm or less.

(2)ガスフィルター機能を有する耐火性三次元構造体
が、多数のガス流通管よりなり、該流通管は交互にその
入口部が開口し、出口部で閉塞されている流通管と、入
口部が閉塞され出口部で開口されている流通管とから構
成され、その隣接する流通管壁がガスフィルター機能を
有する多孔性隔壁で構成されているセラミックモノリス
(プラグハニカム)であることを特徴とする上記(1)
記載の触媒。
(2) A refractory three-dimensional structure having a gas filter function is composed of a large number of gas distribution pipes, the distribution pipes are alternately open at their inlets and closed at their outlets, and an inlet. A ceramic monolith (plug honeycomb), which is composed of a flow tube that is closed and is open at the outlet, and the wall of the flow tube that is adjacent to the flow tube is a porous partition wall having a gas filter function. Above (1)
The described catalyst.

(3)ガスフィルター機能を有する耐火性三次元構造体
のガス流入口側壁面に触媒活性成分を含有する粗粒状突
起物よりなる付着膜を形成せしめるに際し、該粗粒状突
起物が12μmを超える粒子が80%以上、かつ300μm以
下の粒子である粗粒状物で形成され、該粗粒状物をアル
ミナゾル、チタニアゾル、ジルコニアゾル、シリカゾ
ル、可溶性ベーマイト、可溶性有機高分子化合物よりな
る群から選ばれた少なくとも1種の分散剤とともに水性
スラリー化せしめたものを使用し、これを耐火性三次元
構造体ガス流入口側から注入せしめる製法ことを特徴と
する排ガス浄化用触媒の製法。
(3) When forming an adhered film made of coarse granular protrusions containing a catalytically active component on the side wall surface of the gas inlet of the refractory three-dimensional structure having a gas filter function, the coarse granular protrusions exceed 12 μm. Of 80% or more and 300 μm or less are formed as coarse particles, and the coarse particles are at least 1 selected from the group consisting of alumina sol, titania sol, zirconia sol, silica sol, soluble boehmite, and soluble organic polymer compound. A method for producing an exhaust gas-purifying catalyst, characterized in that an aqueous slurry is used together with one kind of dispersant, and this is injected from the gas inlet side of the refractory three-dimensional structure.

市販のプラグハニカム担体のフィルター機能を有する隔
壁には平均12μm〜40μmぐらいの細孔が無数に存在し
ている。該担体に触媒活性成分を担持する際、担体固有
の通気背圧をあまり上昇させずに触媒化するのが好まし
く、本発明においてはこの細孔を塞ぐことなく、ガス入
口側壁面に突起状に触媒活性成分を付着せしめ触媒化す
ることにより、ここに蓄積するカーボン質の微粒子との
接触効率を上げ、該触媒活性を著しく向上させうること
を見い出した。
In the partition walls having a filter function of a commercially available plug honeycomb carrier, an infinite number of pores having an average diameter of about 12 μm to 40 μm exist. When carrying a catalytically active component on the carrier, it is preferable to catalyze without raising the ventilation back pressure inherent to the carrier so much. In the present invention, a protrusion is formed on the gas inlet side wall surface without blocking the pores. It was found that the catalytic efficiency can be remarkably improved by increasing the contact efficiency with the carbonaceous fine particles accumulated here by adhering the catalytically active component to form a catalyst.

従来のウォッシュコート技術では、活性成分がガス入口
側担体壁面に層状に担持されるか或いはさらに細孔内に
も担持されて三次元構造体の背圧を上昇させる結果、触
媒機能を充分に引き出せない欠点があった。
In the conventional washcoat technology, the active ingredient is loaded in a layer on the wall surface of the gas inlet side carrier or is also loaded in the pores to increase the back pressure of the three-dimensional structure, and as a result, the catalytic function can be sufficiently extracted. There were no drawbacks.

従って、本発明においては第1にフィルター機能を有す
る隔壁の細孔径に対して、その細孔を閉塞しない適切な
粒度を有する触媒成分含有の粗粒の粒子を用いることを
特徴としている。
Therefore, the first feature of the present invention is that coarse particles containing a catalyst component having an appropriate particle size that does not close the pores of the partition walls having a filter function are used.

ここでガスフィルター機能を有する三次元構造体を構成
する材質としてはコージェライト、ムライト、リチウム
アルミニウムシリケート、スピネル、アルミナ、ジルコ
ニア、炭化ケイ素(SiC)、窒化ケイ素(Si3N4)などが
挙げられる。これらのうち好ましくはコージェライト、
ムライト、リチウムアルミニウムシリケートが用いられ
る。
Here, examples of the material forming the three-dimensional structure having a gas filter function include cordierite, mullite, lithium aluminum silicate, spinel, alumina, zirconia, silicon carbide (SiC), silicon nitride (Si 3 N 4 ) and the like. . Of these, cordierite is preferred,
Mullite and lithium aluminum silicate are used.

また、本発明において、触媒活性成分としてはバナジウ
ム、マンガン、銅、モリブデン、クロム、コバルト、ニ
ッケル、鉄、亜鉛、銀、タングステン、ニオブ、カリウ
ム、ナトリウム、セシウム、ルビジウムなどのアルカリ
金属、バリウム、カルシウム、ストロンチウム、マグネ
シウムなどのアルカリ土類金属、白金、ロジウム、パラ
ジウム、ランタン、セリウムよりなる群から選ばれた少
くとも1種の金属化合物からなり、またこれらの活性成
分を混合あるいは担持させて粗粒状付着膜を形成するた
めに用いる耐熱性無機質物質としては活性アルミナ、シ
リカ、チタニア、ジルコニア、シリカ−アルミナ、アル
ミナ−ジルコニア、アルミナ−チタニア、シリカ−チタ
ニア、シリカ−ジルコニア、チタニア−ジルコニア、ゼ
オライト等が好適である。
Further, in the present invention, as the catalytically active component, vanadium, manganese, copper, molybdenum, chromium, cobalt, nickel, iron, zinc, silver, tungsten, niobium, potassium, sodium, cesium, alkali metal such as rubidium, barium, calcium. , Strontium, magnesium, and other alkaline earth metals, platinum, rhodium, palladium, lanthanum, and at least one metal compound selected from the group consisting of cerium, and these active ingredients are mixed or supported to form coarse particles. Examples of the heat-resistant inorganic substance used for forming the adhered film include activated alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica-zirconia, titania-zirconia, and zeolite. Suitable A.

本発明にかかる粗粒状付着膜形成物(以下、「粗粒状
物」ともいう)は、上述の特定の如く、300μmを超え
ない粒径のものであり、かつ市販品が有する平均細孔径
(通常は12〜40μmの範囲)を超える粒径のものが少な
くとも80%、好ましくは90%以上を占めるもので構成さ
れる。その場合、触媒活性成分のみからなる粗粒物(と
くに、水難溶性のものが好ましい)としてもよいし、上
述の耐熱性無機質物質の粉末に触媒活性成物を担持さ
せ、これを粗粒物として調製してもよく、とくに後者の
形で使用されることが好結果を与える。
The coarse-grained adhered film-forming product according to the present invention (hereinafter, also referred to as “coarse-grained substance”) has a particle size not exceeding 300 μm, as described above, and has an average pore size (normally Is at least 80%, preferably 90% or more. In that case, coarse particles composed of only catalytically active components (particularly preferably sparingly water-soluble) may be used, or the above-mentioned heat-resistant inorganic substance powder may be loaded with a catalytically active component and used as coarse particles. It may be prepared, with particular success if used in the latter form.

本発明にかかる触媒調製法は特定はされないが、好まし
いものとしては以下の方法が一例としてあげられる。
The method for preparing the catalyst according to the present invention is not specified, but the following method is preferred as an example.

すなわち、活性アルミナペレットに触媒活性成分の水可
溶性塩の水溶液で含浸担持し、乾燥、焼成する。次いで
ハンマーミル(例えば細川ミクロン社製、PULVERIZER)
で粉砕し、粉砕品を分級機(例えば細川ミクロン社製、
MICRON SEPARATOR、MS−O型)にて分級し、フィルター
機能を有する隔壁の平均細孔径よりも大きい粒度を有す
る微粒子が80%以上になるように微細粒子を除去する。
また300μm以上の粗大粒子は篩にて除去する。
That is, activated alumina pellets are impregnated and supported with an aqueous solution of a water-soluble salt of a catalytically active component, dried and calcined. Next is a hammer mill (for example, PULVERIZER manufactured by Hosokawa Micron Co., Ltd.)
Crushed with a classifier (eg Hosokawa Micron,
MICRON SEPARATOR, MS-O type), and fine particles are removed so that 80% or more of the particles have a particle size larger than the average pore size of the partition walls having a filter function.
Coarse particles of 300 μm or more are removed with a sieve.

次いで分級された該粒状物を可溶性ベーマイト(例えば
CONDEA社製、DISPERAL)をアルミナ(Al2O3)換算で1
〜20重量%含有する水溶液に投入し撹拌する。分散剤と
しのベーマイトの増粘効果により撹拌中はもちろんのこ
と撹拌を止めても粒状活性物質は沈降せずに安定なスラ
リーがえられる。該スラリーをプラグハニカム担体の吸
水量よりも10〜50%多い量でガス入口部より投入し、余
分なスラリーをエアーブローして吹き飛ばし所望の担持
量に合わせる。次いで乾燥し、200〜800℃、とくに300
〜700℃の温度で焼成する。
The classified particles are then treated with soluble boehmite (eg
CONDEA's DISPERAL) converted to alumina (Al 2 O 3 ) 1
Add to an aqueous solution containing ~ 20 wt% and stir. Due to the thickening effect of boehmite as a dispersant, a stable slurry can be obtained without sedimenting the granular active substance not only during stirring but also when stirring is stopped. The slurry is charged from the gas inlet portion in an amount 10 to 50% higher than the water absorption amount of the plug honeycomb carrier, and the excess slurry is blown by air blowing to match the desired supported amount. Then dry, 200-800 ℃, especially 300
Bake at a temperature of ~ 700 ° C.

この調製方法において、粗粒状触媒活性成分をスラリー
化する際、粗粒子が沈降しないように増粘効果を有する
アルミナ、チタニア、ジルコニア、シリカなどのゾルや
可溶性ベーマイト、可溶性有機高分子化合物よりなる群
から選ばれた少なくとも1種の分散剤とともに水性スラ
リー化せしめて使用しうるが、該可溶性有機高分子化合
物としては、ポリアクリル酸ナトリウム、ポリアクリル
酸アンモニウム、アクリル酸−マレイン酸共重合体のナ
トリウム塩またはアンモニウム塩、ポリエチレンオキサ
イド、ポリビニルアルコール、カルボキシメチルセルロ
ース、メチルセルロース、ヒドロキシエチルセルロー
ス、でんぷん、アラビアゴム、グァーガム、にかわ等が
好適に用いられる。また、粗粒子状触媒活性成分の担持
強度を向上させる目的でスラリー中に無機質繊維状物
質、例えばガラス繊維、アルミナ繊維、窒化ケイ素(Si
3N4)、シリコンカーバイド(SiC)、チタン酸カリウ
ム、ロックウール等を分散させても良い。
In this preparation method, when slurrying the coarse particulate catalytically active component, alumina having a thickening effect so that coarse particles do not settle, titania, zirconia, sol such as silica and soluble boehmite, a group consisting of soluble organic polymer compounds The soluble organic polymer compound may be used in the form of an aqueous slurry together with at least one dispersant selected from the group consisting of sodium polyacrylate, ammonium polyacrylate and sodium acrylic acid-maleic acid copolymer. Salts or ammonium salts, polyethylene oxide, polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, starch, gum arabic, guar gum, glue and the like are preferably used. Further, for the purpose of improving the carrying strength of the coarse-particle catalytically active component, an inorganic fibrous substance such as glass fiber, alumina fiber, silicon nitride (Si
3 N 4 ), silicon carbide (SiC), potassium titanate, rock wool, etc. may be dispersed.

また触媒コート層をさらに多孔性にするためにスラリー
中にポリエチレングリコールなどの可溶性有機高分子化
合物を添加して焼成により除去する方法を併用しても良
い。該スラリー中に隔壁の有する平均細孔径よりも小さ
い微粒子が20%以上存在する場合は触媒化して使用する
と背圧上昇が大きくなり好ましくない。また、300μm
より大きい粗大粒子はスラリー中で沈降が早く均一に担
体に担持することが困難であり好ましくなく、仮に担持
されたとしてもその付着強度も十分でない。
In order to make the catalyst coat layer more porous, a method of adding a soluble organic polymer compound such as polyethylene glycol to the slurry and removing it by firing may be used in combination. When 20% or more of fine particles smaller than the average pore size of the partition walls are present in the slurry, it is not preferable because the back pressure is increased when used as a catalyst. Also, 300 μm
Larger coarse particles are not preferable because they settle quickly in the slurry and it is difficult to uniformly support them on the carrier, and even if they are supported, their adhesive strength is not sufficient.

その他、本発明に好適な調製法としては、あらかじめ耐
熱性無機物質の粗状物(上記と同じ分級した粒度のも
の)を三次元構造体に担持しておき、触媒活性成分の水
溶性あるいは有機溶媒可溶性塩の溶液を含浸担持して触
媒化しても良い。
In addition, as a preparation method suitable for the present invention, a coarse product of a heat-resistant inorganic substance (having the same classified particle size as above) is preliminarily supported on a three-dimensional structure, and the water-soluble or organic compound of the catalytically active component is added. A solution of a solvent-soluble salt may be impregnated and supported for catalysis.

調製法はこれに限定されるものではなく、ガスフィルタ
ー機能を有する隔壁のガス入口側壁面に、触媒活性成分
を突起状に担持する方法であればよい。
The preparation method is not limited to this, and any method may be used as long as the catalyst active component is supported in the form of protrusions on the gas inlet side wall surface of the partition having a gas filter function.

本発明にかかる触媒においては、触媒活性成分担持量
は、とくに限定されるものではないが、本発明が規定す
る粗粒状物として触媒1当り10〜200g、好ましくは20
〜150gの範囲である。そして、耐熱性無機質物質として
は触媒1当り5〜150g、好ましくは10〜120gの範囲、
触媒活性成分は酸化物あるいは金属として触媒1当り
0.01〜50g、好ましくは0.05〜30gの範囲である。
In the catalyst according to the present invention, the amount of the catalytically active component supported is not particularly limited, but it is 10 to 200 g, preferably 20 per 100 g of the catalyst as coarse particles defined by the present invention.
It is in the range of ~ 150g. And, as the heat-resistant inorganic substance, a range of 5 to 150 g, preferably 10 to 120 g, per catalyst,
The catalytically active component is an oxide or metal per catalyst
It is in the range of 0.01 to 50 g, preferably 0.05 to 30 g.

〔作用〕[Action]

カーボン質微粒子の燃焼反応は固体−固体の反応であ
り、触媒活性物質とカーボン質微粒子の接触効率が非常
に重要な要因である。
The combustion reaction of carbonaceous fine particles is a solid-solid reaction, and the contact efficiency between the catalytically active substance and the carbonaceous fine particles is a very important factor.

本発明はこの点に鑑み、触媒粒状物質をガス入口側壁面
に突起状に担持し、接触効率を積極的に高めたことによ
り著しく活性を向上させたことに本発明の作用効果があ
る。
In view of this point, the present invention has the action and effect of the present invention in that the catalyst particulate matter is supported on the side wall surface of the gas inlet in a protrusion shape and the contact efficiency is positively improved to significantly improve the activity.

以下本発明の実施例と比較例とを示し、本発明を具体的
に説明する。
Hereinafter, the present invention will be specifically described by showing Examples and Comparative Examples of the present invention.

実施例 1 市販の活性アルミナペレット(3〜5mmφ、表面積150m2
/g)1kgを量りとり、メタバナジン酸アンモニウム290g
に修酸435gを添加して溶解した水溶液1を調製し、こ
れに含浸後引き上げ150℃で3時間乾燥し、空気中500℃
で2時間焼成した。該ペレットをハンマーミルで粉砕し
分級装置で30μm以下が20%以下になるように分級し
た。また300μm以上の粗大粒子は篩を用いて取り除い
た。この結果えられた粗粒状活性物質の粒度は30μm未
満12.5%、30〜45μm 13.5%、45〜74μm 22%、74
〜105μm 27%、105〜149μm 12%、149〜300μm
13%の粒度分布を有しており平均粒子径は75μmであ
った。
Example 1 Commercially available activated alumina pellets (3-5 mmφ, surface area 150 m 2
/ g) Weigh 1 kg, and ammonium metavanadate 290 g
Aqueous solution 1 was prepared by adding 435 g of oxalic acid to and dissolving it, and after impregnating it, it was pulled up and dried at 150 ° C for 3 hours, and then in air at 500 ° C.
It was baked for 2 hours. The pellets were crushed with a hammer mill and classified with a classifier such that 30 μm or less was 20% or less. Coarse particles of 300 μm or more were removed using a sieve. The particle size of the resulting coarse-grained active material is less than 30 μm 12.5%, 30-45 μm 13.5%, 45-74 μm 22%, 74
~ 105μm 27%, 105-149μm 12%, 149-300μm
It had a particle size distribution of 13% and had an average particle size of 75 μm.

あらかじめ可溶性ベーマイト15g(Al2O3換算11.25g)を
溶解させてえた水溶液に該分級粉末触媒150gを分散さ
せ、安定したスラリー520mlをえた。
150 g of the classified powder catalyst was dispersed in an aqueous solution prepared by previously dissolving 15 g of soluble boehmite (11.25 g in terms of Al 2 O 3 ) to obtain 520 ml of stable slurry.

このスラリーの粘度は、25cps(室温)であった。The viscosity of this slurry was 25 cps (room temperature).

担体として市販のプラグハニカム(材質:コージェライ
ト)5.66インチ径×6.0インチ長さ、100セル/平方イン
チ、壁厚17ミルのものを用いた。該担体の隔壁の有する
平均細孔径は30μmであった。
As the carrier, a commercially available plug honeycomb (material: cordierite) having a diameter of 5.66 inches × 6.0 inches, 100 cells / square inch, and a wall thickness of 17 mil was used. The average pore diameter of the partition walls of the carrier was 30 μm.

該担体のガス入口部側面から上記スラリー520mlを注
ぎ、余分なスラリーを反対側からの空気ブローで取り除
いた。ついで150℃で3時間乾燥し、空気中500℃で2時
間焼成し完成触媒をえた。
520 ml of the above slurry was poured from the side of the gas inlet of the carrier, and the excess slurry was removed by blowing air from the opposite side. Then, it was dried at 150 ° C. for 3 hours and calcined in air at 500 ° C. for 2 hours to obtain a finished catalyst.

出来上りの各成分の担持量はAl2O3 40g/−担体、V2O5
9g/−担体であった。この触媒は担体壁面上にその細
孔を閉塞することなく粗粒子の積層膜を形成しているこ
とが観察された。
The loading amount of each component of the finished product is Al 2 O 3 40 g / − carrier, V 2 O 5
9 g / -carrier. It was observed that this catalyst formed a laminated film of coarse particles on the wall surface of the carrier without blocking the pores.

実施例 2 市販のチタニアペレット(3〜5mmφ、表面積30m2/g)1
kgに、モリブデン酸アンモニウム276gを溶解した水溶液
450mlを含浸させ、150℃で3時間乾燥し、空気中500℃
で2時間焼成した。
Example 2 Commercially available titania pellets (3-5 mmφ, surface area 30 m 2 / g) 1
An aqueous solution of 276 g of ammonium molybdate dissolved in kg
Impregnate 450 ml and dry at 150 ° C for 3 hours, 500 ° C in air
It was baked for 2 hours.

該ペレットを実施例1におけると同様に粉砕分級した
(平均粒径65μm)。該分級粉末触媒150gを用いて実施
例1におけると同様に触媒化した。使用したスラリーの
粘度は28cpsであった。
The pellets were pulverized and classified in the same manner as in Example 1 (average particle size 65 μm). Using 150 g of the classified powder catalyst, it was catalyzed in the same manner as in Example 1. The viscosity of the slurry used was 28 cps.

出来上りの各成分の担持量はTiO2 40g/−担体、MoO3
9g/−担体であった。
The loading amount of each component of the finished product is TiO 2 40 g / − carrier, MoO 3
9 g / -carrier.

実施例 3 実施例1におけると同様にアルミナペレットに白金(P
t)およびロジウム(Rh)を担持して分級した粉末触媒
をえた。Ptはジニトロジアンミン白金の硝酸溶液、Phは
硝酸ロジウム溶液を用いた。該粉末触媒を用いて実施例
1で用いたのと同様の三次元構造体に担持し、触媒を調
製した。
Example 3 As in Example 1, platinum (P
t) and rhodium (Rh) were supported to obtain a classified powder catalyst. Pt was a nitric acid solution of dinitrodiammine platinum, and Ph was a rhodium nitrate solution. The powder catalyst was loaded on the same three-dimensional structure as that used in Example 1 to prepare a catalyst.

出来上りの各成分の担持量はAl2O3 40g/−担体、Pt
0.9g/−担体、Rh 0.1g/−担体であった。
The amount of each finished component loaded is Al 2 O 3 40 g /-carrier, Pt
It was 0.9 g / -carrier and Rh 0.1 g / -carrier.

実施例 4 あらかじめ調製してえたチタニア−シリカペレット(Ti
O2/SiO2モル比=4/1)に実施例1におけると同様な方法
で硝酸銅〔Cu(NO3・6H2O〕を用いて酸化銅〔CuO〕
を担持し、分級した粉末触媒をえた。
Example 4 Titania-silica pellets (Ti
O 2 / SiO 2 molar ratio = 4/1) copper nitrate in the same manner as in Example 1 to [Cu (NO 3) 2 · 6H 2 O ] copper oxide using [CuO]
Was carried and the classified powder catalyst was obtained.

該粉末触媒を用いて実施例1で用いたと同様の三次元構
造体に担持し触媒を調製した。
A catalyst was prepared by supporting the powder catalyst on the same three-dimensional structure as that used in Example 1.

出来上りの各成分の担持量はTiO2−SiO2 40g/−担
体、CuO 9g/−担体であった。
The loading amount of each component was TiO 2 —SiO 2 40 g / − carrier and CuO 9 g / − carrier.

実施例 5 実施例1におけると同様に、耐熱性無機質物質のペレッ
トに表1に示す触媒活性物質を担持して、分級した粉末
触媒をえた。該粉末触媒を用いて実施例1で用いたと同
様の三次元構造体に担持し、表1に示す触媒物質を担持
した。
Example 5 In the same manner as in Example 1, pellets of the heat-resistant inorganic substance were loaded with the catalytically active substances shown in Table 1 to obtain a classified powder catalyst. The powder catalyst was loaded on the same three-dimensional structure as used in Example 1 to load the catalyst substances shown in Table 1.

実施例 6 実施例2におけると同様に粉砕分級して調製したMoO3
持チタニアの粉末触媒150gを用いて、あらかじめポリア
クリル酸アンモニウム(日本触媒化学工業(株)社製ア
クアリックNL)を固形分として1重量%になるように溶
解させた水溶液に分散させ、安定したスラリー520mlを
えた。実施例1におけると同様に、該スラリーを用いて
触媒化した。
Example 6 150 g of a powder catalyst of MoO 3 -supporting titania prepared by pulverizing and classifying in the same manner as in Example 2 was used to previously prepare ammonium polyacrylate (Aquaric NL manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.) as a solid content. As a result, 1% by weight was dispersed in the dissolved aqueous solution to obtain 520 ml of stable slurry. As in Example 1, the slurry was used to catalyze.

出来上りの各成分の担持量はTiO2 40g/−担体、MoO3
9g/−担体であった。
The loading amount of each component of the finished product is TiO 2 40 g / − carrier, MoO 3
9 g / -carrier.

比較例 1 実施例1におけると同様にして調製したV2O5担持アルミ
ナペレットをハンマーミルで粉砕し、ついで通常の湿式
ミルで湿式粉砕して平均粒子径0.8μmの粒度を有する
スラリーをえた。
Comparative Example 1 V 2 O 5 -supporting alumina pellets prepared in the same manner as in Example 1 were pulverized with a hammer mill and then wet pulverized with an ordinary wet mill to obtain a slurry having an average particle diameter of 0.8 μm.

該スラリーを用いて実施例1で用いたのと同様の三次元
構造体に浸漬担持し、余分なスラリーをエアーブローで
取り除き、150℃で3時間乾燥して500℃で2時間焼成し
て触媒化した。
Using the slurry, the same three-dimensional structure as used in Example 1 was dipped and supported, excess slurry was removed by air blow, dried at 150 ° C. for 3 hours, and calcined at 500 ° C. for 2 hours to obtain a catalyst. Turned into

出来上りの触媒成分の担持量はAl2O3 40g/−担体、V2
O5 9g/−担体であったが、担体壁面上への担持量にく
らべその細孔内への閉塞担持量が多く、しかも不均一な
担持状態であることが認められた。
The loading amount of the finished catalyst component is Al 2 O 3 40 g / -support, V 2
Although it was O 5 9 g / − carrier, it was confirmed that the amount of clogging in the pores was larger than that of the carrier on the wall surface of the carrier and the carrier was in a non-uniform state.

比較例 2 実施例5−4でえられたのと同じ組成のZrO2ペレットを
粉砕し、比較例1におけると同様に湿式ミルで湿式粉砕
して平均粒子径1.0μmの粒度を有するスラリーをえ
た。該スラリーを用いて実施例1におけると同様に触媒
を調製したところ、出来上り触媒成分の担持量はMnO2 5
g/−担体、CuO 4g/−担体、ZrO2 40g/−担体であ
った。
Comparative Example 2 ZrO 2 pellets having the same composition as obtained in Example 5-4 were pulverized and wet pulverized with a wet mill in the same manner as in Comparative Example 1 to obtain a slurry having an average particle size of 1.0 μm. . When a catalyst was prepared in the same manner as in Example 1 using the slurry, the amount of the finished catalyst component supported was MnO 2 5
g / - carrier, CuO 4g / - carrier, ZrO 2 40g / - was carrier.

実施例 7 実施例1〜6、比較例1〜2でえられた触媒について、
排気量2300cc、4気筒ディーゼルエンジンを用いて、触
媒の評価試験を行なった。エンジン回転数2500rpm、ト
ルク4.0kg・mの条件で微粒子の捕捉約2時間を行な
い、次いでトルクを0.5kg・m間隔で5分毎に上昇させ
て、触媒層の圧損変化を連続的に記録し、微粒子が触媒
上で排ガス温度上昇に伴ない、微粒子の蓄積による圧力
上昇と微粒子の燃焼による圧力降下とが等しくなる温度
(Te)と着火燃焼し、圧損が急激に降下する温度(Ti)
を求めた。また2500rpm、トルク4.0kg・mで微粒子を捕
捉する場合の圧損の経時変化を1時間あたりの圧損変化
量をチャートから計算して△P(mmHg/Hr)の値を求め
た。
Example 7 Regarding the catalysts obtained in Examples 1-6 and Comparative Examples 1-2,
A catalyst evaluation test was performed using a 2300 cc 4-cylinder diesel engine. Fine particles were captured for about 2 hours under the conditions of an engine speed of 2500 rpm and a torque of 4.0 kg · m, and then the torque was increased at intervals of 0.5 kg · m every 5 minutes to continuously record the pressure loss change of the catalyst layer. The temperature at which the pressure rise due to the accumulation of fine particles and the pressure drop due to the combustion of fine particles become equal (Te) and the pressure loss rapidly decreases (Ti) as the exhaust gas temperature rises on the catalyst
I asked. Further, the change over time in pressure loss when trapping fine particles at 2500 rpm and a torque of 4.0 kg · m was calculated from the pressure loss change amount per hour from the chart to obtain the value of ΔP (mmHg / Hr).

結果を表2に示した。The results are shown in Table 2.

フロントページの続き (56)参考文献 特開 昭59−142820(JP,A) 特開 昭57−99314(JP,A) 特開 昭58−14921(JP,A) 特開 昭59−49825(JP,A) 特開 昭57−147415(JP,A)Continuation of the front page (56) Reference JP 59-142820 (JP, A) JP 57-99314 (JP, A) JP 58-14921 (JP, A) JP 59-49825 (JP , A) JP-A-57-147415 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガスフィルター機能を有する耐火性三次元
構造体のガス流入口側壁面に触媒活性成分を含有する粗
粒状突起物よりなる付着膜を形成せしめてなる触媒であ
って、該粗粒状突起物が40μmを超える粒子が80%以
上、かつ300μm以下の粒子である粗粒状物で形成され
ることを特徴とする排ガス浄化用触媒。
1. A catalyst comprising a fire-resistant three-dimensional structure having a gas filter function, wherein an adhering film composed of coarse-grained projections containing a catalytically active component is formed on a side wall surface of a gas inlet of the fire-resistant three-dimensional structure. An exhaust gas-purifying catalyst, characterized in that the projections are formed of coarse particles having a particle size of 40 μm or more and 80% or more and 300 μm or less.
【請求項2】ガスフィルター機能を有する耐火性三次元
構造体が、多数のガス流通管よりなり、該流通管は交互
にその入口部が開口し、出口部で閉塞されている流通管
と、入口部が閉塞され出口部で開口されている流通管と
から構成され、その隣接する流通管壁がガスフィルター
機能を有する多孔性隔壁で構成されているセラミックモ
ノリス(プラグハニカム)であることを特徴とする特許
請求の範囲第(1)項記載の触媒。
2. A refractory three-dimensional structure having a gas filter function is composed of a large number of gas flow pipes, and the flow pipes have alternately open inlets and closed outlets. A ceramic monolith (plug honeycomb), which is composed of a flow pipe having an inlet closed and an outlet open, and the wall of the flow pipe adjacent to the flow pipe is a porous partition wall having a gas filter function. The catalyst according to claim (1).
【請求項3】ガスフィルター機能を有する耐火性三次元
構造体のガス流入口側壁面に触媒活性成分を含有する粗
粒状突起物よりなる付着膜を形成せしめるに際し、該粗
粒状突起物が12μmを超える粒子が80%以上、かつ300
μm以下の粒子である粗粒状物で形成され、該粗粒状物
をアルミナゾル、チタニアゾル、ジルコニアゾル、シリ
カゾル、可溶性ベーマイト、可溶性有機高分子化合物よ
りなる群から選ばれた少くとも1種の分散剤とともに水
性スラリー化せしめたものを使用し、これを耐火性三次
元構造体ガス流入口側から注入せしめる製法ことを特徴
とする排ガス浄化用触媒の製法。
3. When forming an adhered film made of coarse granular projections containing a catalytically active component on the side wall surface of a gas inlet of a refractory three-dimensional structure having a gas filter function, the coarse granular projections have a thickness of 12 μm. Over 80% of particles and 300
formed of coarse particles having a particle size of not more than μm, and the coarse particles together with at least one dispersant selected from the group consisting of alumina sol, titania sol, zirconia sol, silica sol, soluble boehmite, and soluble organic polymer compound. A method for producing a catalyst for exhaust gas purification, which comprises using an aqueous slurry and injecting it from the gas inlet side of a refractory three-dimensional structure.
JP60144007A 1985-07-02 1985-07-02 Exhaust gas purifying catalyst and its manufacturing method Expired - Fee Related JPH0724740B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60144007A JPH0724740B2 (en) 1985-07-02 1985-07-02 Exhaust gas purifying catalyst and its manufacturing method
CA000512739A CA1260909A (en) 1985-07-02 1986-06-30 Exhaust gas cleaning catalyst and process for production thereof
DE8686108950T DE3666536D1 (en) 1985-07-02 1986-07-01 Exhaust gas cleaning catalyst and process for production thereof
AT86108950T ATE47533T1 (en) 1985-07-02 1986-07-01 EXHAUST GAS PURIFICATION CATALYST AND PROCESS OF PRODUCTION.
US06/880,827 US4749671A (en) 1985-07-02 1986-07-01 Exhaust gas cleaning catalyst and process for production thereof
EP86108950A EP0211233B1 (en) 1985-07-02 1986-07-01 Exhaust gas cleaning catalyst and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60144007A JPH0724740B2 (en) 1985-07-02 1985-07-02 Exhaust gas purifying catalyst and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS627448A JPS627448A (en) 1987-01-14
JPH0724740B2 true JPH0724740B2 (en) 1995-03-22

Family

ID=15352141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144007A Expired - Fee Related JPH0724740B2 (en) 1985-07-02 1985-07-02 Exhaust gas purifying catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0724740B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565678Y2 (en) * 1991-04-01 1998-03-18 ダイハツ工業株式会社 Roof rail mounting structure for automobiles
JP2564344Y2 (en) * 1991-04-01 1998-03-09 ダイハツ工業株式会社 Roof rail mounting structure for automobiles
JP4742405B2 (en) * 2000-06-28 2011-08-10 トヨタ自動車株式会社 Fuel reformer
EP1475151B1 (en) * 2002-02-15 2013-06-19 Umicore Shokubai Japan Co., Ltd. Use of a catalyst for purifying exhaust gas of diesel engines
KR100469066B1 (en) * 2003-04-14 2005-02-02 에스케이 주식회사 A catalytic filter for the removal of soot particulates from diesel engine and method of making the same
CN106512598B (en) * 2016-11-30 2019-01-11 山东工业陶瓷研究设计院有限公司 Ceramic film filtering element and preparation method thereof with dedusting and catalytic denitration function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147415A (en) * 1981-03-07 1982-09-11 Nippon Soken Inc Structure for filtering carbon particulate in exhaust gas and production of the same
DE3232729A1 (en) * 1982-09-03 1984-03-08 Degussa Ag, 6000 Frankfurt METHOD FOR REDUCING THE IGNITION TEMPERATURE OF DIESEL CARBON FILTERED OUT OF THE EXHAUST GAS FROM DIESEL ENGINES
JPS61129016A (en) * 1984-11-28 1986-06-17 Kiyataraa Kogyo Kk Honeycomb shaped particulate collection filter, honeycomb shaped catalyst filter and preparation thereof

Also Published As

Publication number Publication date
JPS627448A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
KR950002223B1 (en) Catalyst for purification of exhausted gas from diesel engine
JP4628676B2 (en) Internal combustion engine exhaust gas purification catalyst, method for producing the same, and internal combustion engine exhaust gas purification method
US4749671A (en) Exhaust gas cleaning catalyst and process for production thereof
US5320999A (en) Exhaust gas cleaner and method of cleaning exhaust gas
JP4284588B2 (en) Exhaust gas purification filter catalyst
JP2736099B2 (en) Diesel engine exhaust gas purification catalyst
US20100316545A1 (en) Platinum group metal-free catalysts for reducing the ignition temperature of particulates on a diesel particulate filter
JPH0771634B2 (en) Exhaust gas purifying catalyst and its manufacturing method
JPH0724740B2 (en) Exhaust gas purifying catalyst and its manufacturing method
JPH0768176A (en) Catalyst for purification of exhaust gas from diesel engine
JPH0568301B2 (en)
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JPH11192430A (en) Waste gas purifying material and waste gas purifying device using the same
JPH05115782A (en) Material for cleaning exhaust gas and method for cleaning exhaust gas
JPH0531330A (en) Decontamination of exhaust gas
JPS6146246A (en) Catalyst for purifying exhaust gas
JP3337081B2 (en) Diesel engine exhaust gas purification catalyst
JPH05115789A (en) Member for cleaning exhaust gas and method for cleaning exhaust gas
JPH06210172A (en) Catalyst for purification of exhaust gas from diesel engine
JPH05115788A (en) Member for cleaning exhaust gas and method for cleaning exhaust gas
JP3559372B2 (en) Diesel engine exhaust gas purification catalyst
JPH0462779B2 (en)
CN117940205A (en) Particulate filter with partially coated catalytic layer
JPH04354518A (en) Material and method for purifying exhaust gas
JPH05115790A (en) Material for cleaning exhaust gas and method for cleaning exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees