[go: up one dir, main page]

JPH07243967A - Optical path length adjuster - Google Patents

Optical path length adjuster

Info

Publication number
JPH07243967A
JPH07243967A JP6038081A JP3808194A JPH07243967A JP H07243967 A JPH07243967 A JP H07243967A JP 6038081 A JP6038081 A JP 6038081A JP 3808194 A JP3808194 A JP 3808194A JP H07243967 A JPH07243967 A JP H07243967A
Authority
JP
Japan
Prior art keywords
optical path
plane
optical axis
path length
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6038081A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ozaki
義治 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6038081A priority Critical patent/JPH07243967A/en
Priority to US08/293,130 priority patent/US5548401A/en
Priority to KR1019940020772A priority patent/KR0136213B1/en
Publication of JPH07243967A publication Critical patent/JPH07243967A/en
Priority to US08/654,595 priority patent/US5661560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

(57)【要約】 【目的】 調節すべき光路を進む光線に制約なく、光軸
ずれを生じない安価な光路長調節装置を得る。 【構成】 入射光に対し透明または高透過度で光学的に
等方的物質の2枚の平行平面板103、104を、入射
光の光軸101に垂直な平面を対称面105とするよう
に設置する。
(57) [Summary] [Purpose] To obtain an inexpensive optical path length adjusting device which does not cause a deviation of the optical axis without restricting a light ray traveling in an optical path to be adjusted. [Structure] Two parallel plane plates 103 and 104, which are transparent or highly transparent to incident light and are optically isotropic substances, are arranged such that a plane perpendicular to an optical axis 101 of incident light is a plane of symmetry 105. Install.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、干渉計をはじめとした
光路長の調節が必要な光学機器に用いる光路長調節装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical path length adjusting device for use in an optical instrument such as an interferometer which requires adjustment of the optical path length.

【0002】[0002]

【従来の技術】従来から用いられていた、光学機器にお
ける光路長を調節するための技術を、図面を用いて説明
する。図4は上記技術の最も簡便な方法を示す図で、4
01は調節するべき光路を進む光線、402は上記光線
の波長に対して透明または透過度が高い物質からなる平
行平面板、403は上記平行平面板402を通過した光
線である。上記光線401と平行平面板402とがなす
角を調節することにより、光路長を調節することができ
る。しかし、上記方法は簡便で安価であるという利点を
有するけれど、図4で明らかなように、光線401と平
行平面板402とがなす角により光路長を調節している
ため、上記平行平面板402の通過前後における光線4
01と光線403とは一致しない。すなわち、光軸がず
れるという重大な欠点がある。
2. Description of the Related Art A conventional technique for adjusting an optical path length in an optical device will be described with reference to the drawings. Figure 4 shows the simplest method of the above technology.
Reference numeral 01 is a light ray traveling on the optical path to be adjusted, 402 is a plane-parallel plate made of a substance transparent or highly transmissive to the wavelength of the light ray, and 403 is a ray of light passing through the plane-parallel plate 402. The optical path length can be adjusted by adjusting the angle formed by the light beam 401 and the plane-parallel plate 402. However, although the above method has the advantage of being simple and inexpensive, the optical path length is adjusted by the angle between the light ray 401 and the plane parallel plate 402, as is apparent from FIG. Ray 4 before and after passing
01 and light ray 403 do not match. That is, there is a serious drawback that the optical axis is displaced.

【0003】図5は従来から光路長調節に用いられる別
の技術を説明する図である。501は調節するべき光路
を進む光線、502および503は一軸性媒質の楔型物
体、504は同様に一軸性媒質の平行平面板である。上
記楔型物体503と平行平面板504とは異方性軸が一
致するように、また楔型物体502は異方性軸が上記楔
型物体503や平行平面板504と直交するように作ら
れている。上記楔型物体502を移動させることによっ
て光路長を調節する。上記方法によれば光軸のずれは発
生しない。しかし、一軸性媒質が高価である上に加工が
複雑であり、全体としては極めて高価になる。さらに、
光線501は異方性軸と特定の角度をなす直線偏光であ
ることが条件になる。
FIG. 5 is a diagram for explaining another technique conventionally used for adjusting the optical path length. Reference numeral 501 is a light ray traveling on the optical path to be adjusted, 502 and 503 are wedge-shaped objects of a uniaxial medium, and 504 is a plane parallel plate of a uniaxial medium. The wedge-shaped object 503 and the plane-parallel plate 504 are made so that the anisotropic axes coincide with each other, and the wedge-shaped object 502 is made so that the anisotropy axis is orthogonal to the wedge-shaped object 503 and the plane-parallel plate 504. ing. The optical path length is adjusted by moving the wedge-shaped object 502. According to the above method, the deviation of the optical axis does not occur. However, the uniaxial medium is expensive and the processing is complicated, and the overall cost is extremely high. further,
The condition is that the light ray 501 is linearly polarized light that makes a specific angle with the anisotropic axis.

【0004】[0004]

【発明が解決しようとする課題】上記説明のように、従
来技術では、調節するべき光路を進む光線に制約がなく
装置が安価な方法は、光軸のずれが発生するという重大
な欠点があり、光軸ずれが発生しない方法には、調節す
るべき光路を進む光線に厳しい制約が加えられ、装置も
高価になるという欠点があった。
As described above, in the prior art, the method in which the light beam traveling in the optical path to be adjusted is not restricted and the device is inexpensive has a serious drawback in that the optical axis shifts. However, the method in which the optical axis deviation does not occur has a drawback in that severe restrictions are imposed on the light rays traveling along the optical path to be adjusted and the apparatus becomes expensive.

【0005】本発明の目的は、調節するべき光路を進む
光線に制約がなく、安価な装置で、光軸ずれの発生がな
い光路長調節装置を得ることにある。
It is an object of the present invention to obtain an optical path length adjusting device which does not cause a deviation of the optical axis and which is an inexpensive device in which there are no restrictions on the light rays traveling along the optical path to be adjusted.

【0006】[0006]

【課題を解決するための手段】上記目的は、入射光の波
長に対して透明または透過度が高く、光学的に等方的な
物質からなる2枚の平行平面板を、上記入射光の光軸に
垂直な平面を対称面とするように設置することにより達
成される。また、上記平行平面板は表面に単層または多
層の誘電体薄膜が形成され、さらに上記光軸にはその位
置を検出する手段を有し、上記手段は入射光の波長が可
視域または紫外域であることに応じて散乱性または蛍光
性の平らな表面を有する物体で、上記表面に模様などの
目印を有することにより達成され、あるいは上記手段が
光路中に設けた2次元光電変換装置であることにより達
成される。また、上記光軸の位置検出手段を光路中に挿
入または排除できる機構を有することにより達成され
る。
The above-mentioned object is to provide two parallel plane plates made of an optically isotropic substance, which are transparent or have a high transmittance with respect to the wavelength of the incident light, to the light of the incident light. It is achieved by arranging the plane perpendicular to the axis as a plane of symmetry. Further, the parallel plane plate has a single-layer or multi-layer dielectric thin film formed on the surface thereof, and further has means for detecting the position on the optical axis, and the means has a wavelength of incident light in a visible region or an ultraviolet region. Which is achieved by having a mark such as a pattern on the surface, or the means is a two-dimensional photoelectric conversion device provided in the optical path. It is achieved by Further, it is achieved by having a mechanism capable of inserting or removing the optical axis position detecting means in the optical path.

【0007】[0007]

【作用】本発明は、光路長を調節するべき光路において
光軸に対し垂直な平面を対称面とするようにして、光学
的に等方的な物質からなる2枚の平行平面板を設置する
ことを基本構成として、一方の平行平面板により光軸か
らずれた光路を、他方の平行平面板によって元の光軸に
戻すため、極めて簡単な構成で安価に得られる光路長調
節装置である。しかも、上記2枚の平行平面板は光学的
に等方的な物質で形成されているため、調節するべき光
路を進む光線に対する制約はない。さらに調節するべき
光路に対して垂直な平面を対称面とするように、2枚の
平行平面板を対向して設置しているため、光軸のずれを
発生することがない。また、迷光となる上記平行平面板
の表面反射光は、上記平行平面板の表面に無反射膜を形
成して防ぎ、光軸位置を確認するための光軸検出器を、
光路中に挿入したり排除したりできる機構を設けている
ので、光軸の一致を容易に確認することが可能である。
According to the present invention, two parallel plane plates made of an optically isotropic substance are installed so that a plane perpendicular to the optical axis is a plane of symmetry in the optical path for adjusting the optical path length. With this as a basic configuration, the optical path deviated from the optical axis by one of the parallel plane plates is returned to the original optical axis by the other parallel plane plate, so that the optical path length adjusting device can be obtained with an extremely simple configuration at low cost. Moreover, since the two parallel plane plates are made of an optically isotropic material, there is no restriction on the light rays traveling in the optical path to be adjusted. Further, since the two parallel plane plates are installed so as to face each other so that the plane perpendicular to the optical path to be adjusted is a plane of symmetry, the optical axis is not displaced. Further, the surface reflected light of the parallel plane plate that becomes stray light is prevented by forming a non-reflection film on the surface of the parallel plane plate, and an optical axis detector for confirming the optical axis position,
Since a mechanism that can be inserted into or removed from the optical path is provided, it is possible to easily confirm the coincidence of the optical axes.

【0008】[0008]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による光路長調節装置の第1実施例を
説明する図、図2は本発明の第2実施例を説明する図、
図3は本発明の第3実施例を説明する図である。本発明
の第1実施例を示す図1において、101は光軸、10
2は光軸101を進む光線、103および104は光学
的に等方的で光線の波長に対して透明もしくは透明度が
高い物質でできた平行平面板、105は光軸101に垂
直な平面であって、上記平行平面板103および104
は、上記光軸101に垂直な平面105に対し面対称に
なるように設置され、上記光軸に垂直な平面105が上
記平行平面板103および104の対称面になる。な
お、106a、106b、106c、106dはそれぞ
れ誘電体多層膜を示している。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram illustrating a first embodiment of an optical path length adjusting device according to the present invention, FIG. 2 is a diagram illustrating a second embodiment of the present invention,
FIG. 3 is a diagram for explaining the third embodiment of the present invention. In FIG. 1 showing a first embodiment of the present invention, 101 is an optical axis, 10
2 is a light ray traveling along the optical axis 101, 103 and 104 are plane-parallel plates made of a substance that is optically isotropic and transparent or highly transparent to the wavelength of the light ray, and 105 is a plane perpendicular to the optical axis 101. The parallel plane plates 103 and 104
Are installed so as to be plane-symmetric with respect to a plane 105 perpendicular to the optical axis 101, and the plane 105 perpendicular to the optical axis is the plane of symmetry of the parallel plane plates 103 and 104. Note that 106a, 106b, 106c, and 106d indicate dielectric multilayer films, respectively.

【0009】上記のように構成された本装置では、光軸
101に沿った光線102が、一方の平行平面板103
を通過した時点で光軸101から外れるが、他方の平行
平面板104を通過することによって再び元の光軸10
1上を進む。すなわち、本装置の前後において光軸のず
れは発生しない。さらに、上記平行平面板103および
104は光学的に等方的な物質でできているため、光線
102は直線偏光である必要はない。光路長の調節は上
記平行平面板103と104とが、それぞれ上記対称面
105となす角あるいは光軸101となす角を、上記対
称面105に対する対称性を保持した状態で調節するこ
とができる。また、光学装置において排除しなければな
らない迷光になる上記平行平面板103および104の
表面反射光は、上記誘電体多層膜106aから106d
の無反射膜によって発生を防止している。
In the present apparatus constructed as described above, the light beam 102 along the optical axis 101 has one parallel plane plate 103.
The optical axis 101 deviates from the optical axis 101 at the time of passing, but the original optical axis 10 becomes
Go up one. That is, no deviation of the optical axis occurs before and after this device. Further, since the plane-parallel plates 103 and 104 are made of an optically isotropic material, the light beam 102 does not need to be linearly polarized. The optical path length can be adjusted by adjusting the angle formed by the planes of parallelism 103 and 104 with the plane of symmetry 105 or the angle formed with the optical axis 101 while maintaining the symmetry with respect to the plane of symmetry 105. Further, the surface reflected light of the parallel plane plates 103 and 104, which becomes stray light that must be eliminated in the optical device, is the dielectric multilayer films 106a to 106d.
The non-reflective film prevents the occurrence.

【0010】図2に示す本発明の第2実施例は、実際に
光路長を調節する際の光軸確認の便宜を考慮した装置で
ある。201は光軸、202は光軸201を進む光線、
203と204とは表面に誘電体多層膜を形成された平
行平面板、205は散乱性平面の摺ガラス板、206は
摺ガラス板205の表面に設けた模様などの目印、20
7は摺ガラス板205に連結された引出し棒で、208
aと208bとは上記引出し棒207に固定された固定
片、209aと209bは固定ピンである。上記平行平
面板203および204による光路長調節機能は第1実
施例で説明したものと同じである。
The second embodiment of the present invention shown in FIG. 2 is an apparatus considering the convenience of checking the optical axis when actually adjusting the optical path length. 201 is an optical axis, 202 is a light ray traveling on the optical axis 201,
Reference numerals 203 and 204 denote parallel plane plates having a dielectric multilayer film formed on the surface thereof, 205 is a scattering glass flat glass plate, 206 is a mark such as a pattern provided on the surface of the glass slide plate 205, and 20.
7 is a drawer rod connected to the glass slide 205,
Reference numerals a and 208b are fixing pieces fixed to the drawer rod 207, and reference numerals 209a and 209b are fixing pins. The optical path length adjusting function of the parallel plane plates 203 and 204 is the same as that described in the first embodiment.

【0011】本実施例の重要な機能である光軸位置確認
動作についてつぎに説明する。まず、固定片208aが
固定ピン209aにあたるまで引出し棒207を押し込
む。その結果、摺ガラス板205は光路中に位置するよ
うになる。初めに2枚の平行平面板203と204とが
ない状態で、摺ガラス205上における光線202の位
置を、上記目印206を用いて確認しておく。つぎに、
平行平面板203と204とを所定の光路長が得られる
ように、光軸201となす角を調節して設置する。この
時、上記平行平面板203と204とが、第1実施例に
記載したように、光軸201に垂直な平面に関して面対
称になっていないと、摺ガラス205上における光線2
02の位置が初期の位置から変位する。この変位がなけ
れば上記平行平面板203と204とは正しく設置され
ていることになる。光軸位置を確認した後は、上記固定
片208bが固定ピン209bに当るまで引出し棒20
7を引き抜く。引出し棒207連結している摺ガラス板
205は光路外に排除されて、光線202の進行を阻害
することがない。
The optical axis position confirming operation, which is an important function of this embodiment, will be described below. First, the pull-out rod 207 is pushed in until the fixing piece 208a hits the fixing pin 209a. As a result, the glass slide plate 205 comes to be positioned in the optical path. First, the position of the light beam 202 on the glass slide 205 is confirmed using the mark 206 in the state where the two parallel plane plates 203 and 204 are not provided. Next,
The parallel plane plates 203 and 204 are installed by adjusting the angle formed with the optical axis 201 so that a predetermined optical path length can be obtained. At this time, if the plane-parallel plates 203 and 204 are not plane-symmetric with respect to the plane perpendicular to the optical axis 201 as described in the first embodiment, the light beam 2 on the glass slide 205 will be described.
The position 02 is displaced from the initial position. If there is no such displacement, the plane-parallel plates 203 and 204 are correctly installed. After confirming the optical axis position, the pull-out rod 20 is pushed until the fixing piece 208b hits the fixing pin 209b.
Pull out 7. The sliding glass plate 205 connected to the pull-out rod 207 is excluded from the optical path and does not hinder the travel of the light beam 202.

【0012】本実施例では光軸位置検出手段における光
軸位置確認板として摺ガラス板205を用いたが、上記
位置確認板は摺ガラス板に限らず、表面に微小な凹凸が
ある紙の板や金属の板などの散乱光を反射する物体であ
ればよい。また、光線202の波長が紫外域であるとき
には、蛍光を発する物体、例えば蛍光染料を含有した紙
の板や、蛍光性物質例えばサリチル酸を塗布した金属板
等であればよい。
In this embodiment, the frosted glass plate 205 is used as the optical axis position confirmation plate in the optical axis position detection means. However, the position confirmation plate is not limited to the frosted glass plate, and a paper plate having fine irregularities on the surface is used. Any object such as a metal plate or the like that reflects scattered light may be used. Further, when the wavelength of the light ray 202 is in the ultraviolet region, an object that emits fluorescence, for example, a paper plate containing a fluorescent dye, or a metal plate coated with a fluorescent substance such as salicylic acid may be used.

【0013】本発明の第3実施例を示す図3において、
301は光軸、302は光軸301を進む光線、303
および304は表面に誘電体多層膜を形成した平行平面
板、305は2次元光電変換装置としての2次元位置セ
ンサーである。平行平面板303と304とによる光路
長調節機能は第1実施例で説明したものと同じである。
本実施例における重要な機能は、光軸位置の確認を電気
的に行うことであり、2次元位置センサー305を上記
のように光路長に位置させるが、上記2次元位置センサ
ー305は例えば第2実施例に示したような方法によっ
て、光路中に挿入または排除する。つぎに、所定の光路
長が得られるように平行平面板303と304とを、光
軸301となす角を調節して設置する。この時、上記平
行平面板303と304とは、第1実施例で記載したよ
うに光軸301に垂直な平面に対して面対称になってい
ないと、2次元位置センサー305上における光線30
2の位置が初期の位置から変位する。この変位がなけれ
ば、上記平行平面板303と304とは正しく位置され
ている。光軸位置を確認したのちに、2次元位置センサ
ー305を上記第2実施例に示した方法により光路外に
排除すれば、光線302の進行は阻害されることがな
い。本実施例では光軸位置の確認に2次元位置センサー
305を用いたが、例えば2次元CCD素子など、光の
スポット位置を電気的に検出できるものであればよい。
In FIG. 3 showing the third embodiment of the present invention,
301 is an optical axis, 302 is a light ray traveling on the optical axis 301, 303
Reference numerals 304 and 304 denote parallel plane plates having a dielectric multilayer film formed on the surface thereof, and 305 denotes a two-dimensional position sensor as a two-dimensional photoelectric conversion device. The optical path length adjusting function of the plane parallel plates 303 and 304 is the same as that described in the first embodiment.
An important function in this embodiment is to electrically confirm the position of the optical axis, and the two-dimensional position sensor 305 is positioned in the optical path length as described above. Insertion or exclusion in the optical path is performed by the method as shown in the embodiment. Next, the plane parallel plates 303 and 304 are installed by adjusting the angle formed with the optical axis 301 so that a predetermined optical path length can be obtained. At this time, if the parallel plane plates 303 and 304 are not plane-symmetric with respect to the plane perpendicular to the optical axis 301 as described in the first embodiment, the light beam 30 on the two-dimensional position sensor 305 will be described.
The position of 2 is displaced from the initial position. Without this displacement, the plane parallel plates 303 and 304 are correctly positioned. If the two-dimensional position sensor 305 is removed from the optical path by the method shown in the second embodiment after confirming the optical axis position, the traveling of the light beam 302 is not hindered. In this embodiment, the two-dimensional position sensor 305 is used to confirm the optical axis position, but any two-dimensional CCD device or the like that can electrically detect the light spot position may be used.

【0014】上記各実施例では平行平面板の表面反射光
を防止するために、表面に誘電体多層膜を形成したが、
これに限らず誘電体単層膜であってもよい。
In each of the above embodiments, a dielectric multilayer film is formed on the surface in order to prevent the reflected light from the surface of the plane-parallel plate.
Not limited to this, it may be a dielectric single layer film.

【0015】[0015]

【発明の効果】上記のように本発明による光路長調節装
置は、入射光の波長に対して透明または透過度が高く、
光学的に等方的な物質からなる2枚の平行平面板を、上
記入射光の光軸に垂直な平面を対称面とするように設置
することにより、光軸のずれが生じることなく、また、
上記平行平面板が光学的に等方的な物質であるため光軸
を進む光線が直線偏光である必要はない。また、簡単な
構成であり、材料面や加工面とも安価にできる。さら
に、光軸位置の確認も光線の進行を阻害することなくで
き、平行平面板の表面には無反射処理を行っているた
め、迷光が発生することもないという効果を有する。
As described above, the optical path length adjusting device according to the present invention is transparent or has high transparency to the wavelength of incident light,
By disposing two parallel plane plates made of an optically isotropic material so that a plane perpendicular to the optical axis of the incident light is a plane of symmetry, the optical axis is not displaced, and ,
Since the plane-parallel plate is an optically isotropic substance, it is not necessary that the light ray traveling along the optical axis be linearly polarized light. Further, it has a simple structure and can be made inexpensive in terms of material and processing. Further, it is possible to confirm the position of the optical axis without hindering the progress of the light beam, and since the surface of the plane-parallel plate is subjected to antireflection treatment, stray light does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光路長調節装置の第1実施例を説
明する図である。
FIG. 1 is a diagram illustrating a first embodiment of an optical path length adjusting device according to the present invention.

【図2】本発明の第2実施例を説明する図である。FIG. 2 is a diagram illustrating a second embodiment of the present invention.

【図3】本発明の第3実施例を説明する図である。FIG. 3 is a diagram illustrating a third embodiment of the present invention.

【図4】従来の光路長調節装置の最も簡便な例を示す図
である。
FIG. 4 is a diagram showing the simplest example of a conventional optical path length adjusting device.

【図5】従来の光路長調節装置の他の例を示す図であ
る。
FIG. 5 is a diagram showing another example of a conventional optical path length adjusting device.

【符号の説明】[Explanation of symbols]

101、201、301 光軸 103、104、203、204、303、304
平行平面板 105 対称面 106a、106b、106c、106d 誘電体膜 205 散乱性または蛍光性の平面を有する物体(摺
ガラス) 206 模様 305 2次元光電変換装置(2次元位置センサー)
101, 201, 301 Optical axes 103, 104, 203, 204, 303, 304
Parallel plane plate 105 Symmetrical plane 106a, 106b, 106c, 106d Dielectric film 205 Object having a scattering or fluorescent plane (frosted glass) 206 Pattern 305 Two-dimensional photoelectric conversion device (two-dimensional position sensor)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】入射光の波長に対して透明または透過度が
高く、光学的に等方的な物質からなる2枚の平行平面板
を、上記入射光の光軸に垂直な平面を対称面とするよう
に設置する光路長調節装置。
1. A pair of plane-parallel plates, which are transparent or highly transparent to the wavelength of incident light and are made of an optically isotropic material, and a plane perpendicular to the optical axis of the incident light is a plane of symmetry. An optical path length adjustment device installed as follows.
【請求項2】上記平行平面板は、表面に単層または多層
の誘電体薄膜が形成されていることを特徴とする請求項
1記載の光路長調節装置。
2. The optical path length adjusting device according to claim 1, wherein the parallel plane plate has a single-layer or multi-layer dielectric thin film formed on the surface thereof.
【請求項3】上記光軸は、その位置を検出する手段を有
することを特徴とする請求項1記載の光路長調節装置。
3. The optical path length adjusting device according to claim 1, wherein said optical axis has means for detecting its position.
【請求項4】上記光軸の位置を検出する手段は、上記入
射光の波長が可視域の場合は散乱性の平らな表面を有
し、入射光の波長が紫外域の場合は蛍光性の平らな表面
を有する物体であって、かつ、上記平らな表面は目印を
有することを特徴とする請求項3記載の光路長調節装
置。
4. The means for detecting the position of the optical axis has a scattering flat surface when the wavelength of the incident light is in the visible range, and is fluorescent when the wavelength of the incident light is in the ultraviolet range. 4. The optical path length adjusting device according to claim 3, wherein the object has a flat surface, and the flat surface has a mark.
【請求項5】上記光軸の位置を検出する手段は、光路中
に設けた2次元光電変換装置であることを特徴とする請
求項3記載の光路長調節装置。
5. The optical path length adjusting device according to claim 3, wherein the means for detecting the position of the optical axis is a two-dimensional photoelectric conversion device provided in the optical path.
【請求項6】上記光軸の位置を検出する手段は、光路中
に挿入したり光路中から排除したりする機構を有してい
ることを特徴とする請求項3記載の光路長調節装置。
6. The optical path length adjusting device according to claim 3, wherein the means for detecting the position of the optical axis has a mechanism for inserting it in the optical path or removing it from the optical path.
JP6038081A 1993-08-23 1994-03-09 Optical path length adjuster Pending JPH07243967A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6038081A JPH07243967A (en) 1994-03-09 1994-03-09 Optical path length adjuster
US08/293,130 US5548401A (en) 1993-08-23 1994-08-19 Photomask inspecting method and apparatus
KR1019940020772A KR0136213B1 (en) 1993-08-23 1994-08-23 Photomask Inspection Method and Apparatus
US08/654,595 US5661560A (en) 1993-08-23 1996-05-29 Elliptical light measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038081A JPH07243967A (en) 1994-03-09 1994-03-09 Optical path length adjuster

Publications (1)

Publication Number Publication Date
JPH07243967A true JPH07243967A (en) 1995-09-19

Family

ID=12515538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038081A Pending JPH07243967A (en) 1993-08-23 1994-03-09 Optical path length adjuster

Country Status (1)

Country Link
JP (1) JPH07243967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792657A (en) * 2012-10-30 2014-05-14 福州高意通讯有限公司 Optical path length fine tuning structure and application structure thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792657A (en) * 2012-10-30 2014-05-14 福州高意通讯有限公司 Optical path length fine tuning structure and application structure thereof

Similar Documents

Publication Publication Date Title
US6020966A (en) Enhanced optical detection of minimum features using depolarization
US20150066393A1 (en) Prism-coupling systems and methods for characterizing curved parts
JPH07123108B2 (en) Proximity alignment system using polarized light and double conjugate projection lens
JP2010256359A (en) Device and method for surface inspection
KR20090113895A (en) Defect measuring device of glass sheet
AU1555900A (en) Set-up of measuring instruments for the parallel readout of spr sensors
US20050092893A1 (en) Method and arrangement for focusing in an optical measurement
CN1692269A (en) Fringe pattern discriminator for grazing incidence interferometer
US6795185B2 (en) Film thickness measuring apparatus
TW201107735A (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US20010043326A1 (en) Foreign substance inspecting method and apparatus, and exposure apparatus using this inspecting apparatus
JPS62266439A (en) Spectral temporary optical analyzer
JPH07243967A (en) Optical path length adjuster
EP0166881A2 (en) Apparatus for proximity detection of an opaque pattern on a translucent substrate
JP3203676B2 (en) Projection exposure equipment
TWI388817B (en) Method and device for measuring the defect of the CCD object by the critical angle method
US5044754A (en) Apparatus and method for use in determining the optical transmission factor or density of a translucent element
JPS60209106A (en) Flatness inspecting device
JP3326645B2 (en) Detecting head flying height measuring device and measuring method
Coelfen et al. Ultrasensitive Schlieren optical system
JPH01287448A (en) Stray light removal method and device for Raman spectroscopy
RU2039347C1 (en) Device for determining mutual disposition of cells of volumetric structure made of elastic material
AU736850B2 (en) Interferometer
US2684011A (en) Method and apparatus for measuring angles between reflecting surfaces
JPS63163105A (en) Light interference type film thickness measuring apparatus