[go: up one dir, main page]

JPH07243039A - Dc-magnetron reactive sputtering method - Google Patents

Dc-magnetron reactive sputtering method

Info

Publication number
JPH07243039A
JPH07243039A JP6032190A JP3219094A JPH07243039A JP H07243039 A JPH07243039 A JP H07243039A JP 6032190 A JP6032190 A JP 6032190A JP 3219094 A JP3219094 A JP 3219094A JP H07243039 A JPH07243039 A JP H07243039A
Authority
JP
Japan
Prior art keywords
target
magnetron
reactive sputtering
sputtering method
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6032190A
Other languages
Japanese (ja)
Inventor
Kinya Kisoda
欣弥 木曽田
Hachiro Touchi
八郎 戸内
Masao Kamiide
雅男 上出
Eiji Furuya
英二 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP6032190A priority Critical patent/JPH07243039A/en
Publication of JPH07243039A publication Critical patent/JPH07243039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To conduct stabilized sputtering for a long time. CONSTITUTION:In this DC-magnetron reactive sputtering method, the magnetic field of a magnet 3 disposed on the rear side of a target 4 is moved to form an erosion region over the whole surface of the target, hence the formation of a reaction product layer is suppressed on the target surface, and further a negative DC voltage contg. a pulse having a positive peak voltage is impressed on a magnetron cathode 2 to doubly prevent the generation of an abnormal discharge on the target surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直流マグネトロン型反応
性スパッタ法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC magnetron type reactive sputtering method.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来、直
流マグネトロン型反応性スパッタ法においては、導電物
ターゲットを用い、スパッタ中に反応性ガスを成膜室内
に導入することにより絶縁物を処理材に成膜する関係
上、導電物であるターゲット表面にも、短時間で薄い絶
縁物が作製されるためチャージアップ現象が生じ、この
チャージアップに起因して、異常放電(アーク放電)が
発生し、スパッタリングを安定して行なうことができな
いという問題が生じる。そのため、特開昭64−153
70号公報で、カソードに間欠的に直流電圧を印加し、
すなわち、直流電源に電力をON−OFFする回路を設
けて、カソードに負電圧を印加して、異常放電を防止す
る方法が提案されている。
2. Description of the Related Art Conventionally, in the DC magnetron type reactive sputtering method, an insulator target is treated by introducing a reactive gas into the film forming chamber during sputtering. Due to the film formation on the material, a thin insulator is created on the target surface, which is a conductor, in a short time, which causes a charge-up phenomenon, and abnormal discharge (arc discharge) occurs due to this charge-up phenomenon. However, there is a problem that sputtering cannot be performed stably. Therefore, JP-A-64-153
No. 70 publication, a DC voltage is intermittently applied to the cathode,
That is, a method has been proposed in which a DC power supply is provided with a circuit for turning power on and off and a negative voltage is applied to the cathode to prevent abnormal discharge.

【0003】しかしながら、間欠的に印加するピーク電
圧は、零V(接地レベル)であるため、前記チャージア
ップを十分に解消できず、長時間にわたって安定放電を
維持することが困難であることが判明した。一方、直流
マグネトロン型反応性スパッタ法における、ターゲット
に対する平行磁場成分の小さいターゲットの非エロージ
ョン領域においては、絶縁物である反応物生成層が形成
され、これが経時的に増大し、これも放電の安定化を阻
止する一原因となることを知見した。
However, since the peak voltage applied intermittently is 0 V (ground level), the charge-up cannot be sufficiently canceled, and it is difficult to maintain stable discharge for a long time. did. On the other hand, in the DC magnetron-type reactive sputtering method, in the non-erosion region of the target with a small parallel magnetic field component to the target, a reactant generation layer that is an insulator is formed and increases over time, which also stabilizes the discharge. It has been found that this is one of the causes that prevent the conversion.

【0004】[0004]

【課題を解決するための手段】本発明は、前記課題を解
決するために、直流マグネトロン型反応性スパッタ法に
おいて、ターゲット裏面側に配設した磁石の磁場を移動
させて、エロージョン領域をターゲットの全表面に形成
させながら、マグネトロンカソードにピーク電圧が正電
圧となるパルスを含む負の直流電圧を印加するものであ
る。
In order to solve the above problems, the present invention is directed to a direct current magnetron type reactive sputtering method in which the magnetic field of a magnet disposed on the back surface side of the target is moved so that the erosion region of the target is changed. A negative DC voltage including a pulse having a positive peak voltage is applied to the magnetron cathode while being formed on the entire surface.

【0005】[0005]

【作用】前記のように、本発明によれば、エロージョン
領域がターゲット表面を移動し、全表面がエロージョン
領域となるため、ターゲット上において経時的に増大す
る反応物生成層が形成されない。また、ピーク電圧が正
電圧を有するパルス状直流電圧であるため、ターゲット
表面に極く短時間において作製される極く薄い絶縁物に
よるターゲット表面でのチャージアップが抑制されるこ
とになる。
As described above, according to the present invention, the erosion region moves on the surface of the target, and the entire surface becomes the erosion region, so that the reactant generation layer that increases with time is not formed on the target. Moreover, since the peak voltage is a pulsed DC voltage having a positive voltage, charge-up on the target surface due to an extremely thin insulator formed on the target surface in an extremely short time is suppressed.

【0006】[0006]

【実施例】つぎに、本発明の実施例を図にしたがって説
明する。図1は、本発明を適用する直流マグネトロン型
反応性スパッタリング装置の概略を示し、真空成膜室1
には、放電用ガスが供給されるとともに、排気手段に接
続されて、真空成膜室1内は所定圧となっている。2は
前記真空成膜室1に取り付けられたマグネトロンカソー
ドで、このマグネトロンカソード2内には、ターゲット
4の表面に磁界を与える下記する永久磁石3が配設され
ている。なお、5は基板である。また、前記マグネトロ
ンカソード2には、直流電源6が接続されているととも
に、この直流電源6には前記マグネトロンカソード2に
下記するピーク電圧を印加する回路が設けてある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an outline of a DC magnetron type reactive sputtering apparatus to which the present invention is applied.
Is supplied with a discharge gas and is connected to an exhaust means so that the inside of the vacuum film forming chamber 1 has a predetermined pressure. Reference numeral 2 is a magnetron cathode attached to the vacuum film forming chamber 1. Inside the magnetron cathode 2, a permanent magnet 3 described below is arranged to apply a magnetic field to the surface of the target 4. In addition, 5 is a board | substrate. A direct current power supply 6 is connected to the magnetron cathode 2 and a circuit for applying the following peak voltage to the magnetron cathode 2 is provided in the direct current power supply 6.

【0007】つぎに、前記マグネトロンカソード2とタ
ーゲット4とについて詳述する。まず、マグネトロンカ
ソード2とターゲット4とが丸型の場合、前記永久磁石
3は図2に示すように配設され、この永久磁石3はター
ゲット4の中心を軸としてモータ等により回転する。つ
まり、図2の永久磁石3が図示の場合、永久磁石3によ
って生じるターゲット4上でのエロージョン領域は、図
3の斜線で示す通りであり、永久磁石3が前述のように
回転すると、エロージョン領域はターゲット4の全面に
形成されることになる。
Next, the magnetron cathode 2 and the target 4 will be described in detail. First, when the magnetron cathode 2 and the target 4 are round, the permanent magnet 3 is arranged as shown in FIG. 2, and the permanent magnet 3 is rotated by a motor or the like with the center of the target 4 as an axis. That is, when the permanent magnet 3 of FIG. 2 is illustrated, the erosion area on the target 4 generated by the permanent magnet 3 is as indicated by the diagonal lines of FIG. 3, and when the permanent magnet 3 rotates as described above, the erosion area is generated. Will be formed on the entire surface of the target 4.

【0008】図4は、マグネトロンカソード2とターゲ
ット4とが方形の場合を示し、永久磁石3を長円状と
し、この永久磁石3を図5に示すように図上左右に移動
することにより、ターゲット4の全面をエロージョン領
域とするものである。なお、図2,図4において、水平
方向、垂直方向とあるのは紙面に対してである。また、
永久磁石3の配列も図2,図4に示すものの他、各種の
ものが適用される。
FIG. 4 shows a case where the magnetron cathode 2 and the target 4 are rectangular. The permanent magnet 3 has an oval shape, and by moving the permanent magnet 3 left and right as shown in FIG. The entire surface of the target 4 is used as an erosion area. In FIGS. 2 and 4, the horizontal direction and the vertical direction refer to the paper surface. Also,
As the arrangement of the permanent magnets 3, various arrangements other than those shown in FIGS. 2 and 4 are applied.

【0009】つぎに、前記構成からなるスパッタリング
装置のスパッタ法を説明する。基板5を図示しないホル
ダに取り付け、真空成膜室1内に放電ガスを供給すると
ともに所定圧とし、永久磁石3を回転あるいは往復移動
させながら、直流電源6によってマグネトロンカソード
2に、−200≦V≦−1500(V)のカソード電位
を印加するとともに、正電位側ピークがアノード(アー
ス)電位より正電位側となる0<V≦300(V)のピ
ーク電圧を印加する。この場合、パルス周波数は100
Hz〜100kHz程度とする(図6参照)。
Next, the sputtering method of the sputtering apparatus having the above structure will be described. The substrate 5 is attached to a holder (not shown), the discharge gas is supplied into the vacuum film forming chamber 1 and a predetermined pressure is set, and the permanent magnet 3 is rotated or reciprocated while the DC power source 6 is applied to the magnetron cathode 2 to -200 ≦ V. A cathode potential of ≦ −1500 (V) is applied, and a peak voltage of 0 <V ≦ 300 (V) in which the positive potential peak is on the positive potential side of the anode (earth) potential is applied. In this case, the pulse frequency is 100
Hz to 100 kHz (see FIG. 6).

【0010】前記ピーク電圧の印加によって、スパッタ
リング時に、ターゲット4の表面に局所的に発生した極
く薄い表面絶縁層およびそれを取り囲む空間にチャージ
アップされた電荷を定期的に中和して、異常放電の発生
を防止する。
The peak voltage is applied to periodically neutralize the extremely thin surface insulating layer locally generated on the surface of the target 4 during sputtering, and the electric charge charged up in the space surrounding the surface insulating layer, thereby causing abnormalities. Prevent the occurrence of discharge.

【0011】なお、前記ピーク電圧は、マグネトロンカ
ソード2の電位が瞬間的に少なくともアノード(アー
ス)電位よりプラス側にならなければ、電荷中和の効果
がなく、上げ過ぎると、成膜効率の低下や、逆に異常放
電の発生を招くため、前記範囲であることが好ましい。
The peak voltage has no effect of charge neutralization unless the potential of the magnetron cathode 2 is instantaneously at least on the plus side of the anode (earth) potential. On the contrary, the above range is preferable because abnormal discharge is caused.

【0012】また、パルス周波数は、小さ過ぎると電荷
中和が間に合わず異常放電が生じ、逆に大き過ぎると、
成膜効率の低下や基板5の温度上昇を招くため、前記範
囲であることが好ましい。
If the pulse frequency is too low, charge neutralization will not be in time and abnormal discharge will occur. On the contrary, if the pulse frequency is too high,
The above range is preferable because the film forming efficiency is lowered and the temperature of the substrate 5 is increased.

【0013】一方、ターゲット4においては、永久磁石
3の移動とともに、その磁場も移動し、ターゲット4の
全表面をエロージョン領域としているため、ターゲット
4での恒久非エロージョン領域がなくなり、ターゲット
4の表面での反応物生成層の成長が抑制され、放電安定
化を図ることができる。例えば、導電性Siターゲット
を用いたSiN膜の直流マグネトロン型反応性スパッタ
においては、パルス電圧印加のみだと、成膜開始初期の
30分から1時間程度は安定した放電が可能であるが、
それ以上になるとターゲット表面での反応物生成層の成
長量が大きくなり、放電不安定となった。磁石移動のみ
だとターゲット表面での反応物生成層の経時的成長は防
げるが、磁石移動の間の極く短時間で生じる薄い絶縁物
による異常放電の要因は残り、経時的増加傾向は伴わな
いものの、放電の初期段階から幾分かの異常放電の発生
が見られた。本発明は、前述のように、パルス電圧印加
と磁場の移動との組み合わせにより7時間以上の安定放
電を達成したものである。
On the other hand, in the target 4, as the permanent magnet 3 moves, its magnetic field also moves, and the entire surface of the target 4 is set as an erosion region. Therefore, the permanent non-erosion region in the target 4 disappears, and the surface of the target 4 disappears. The growth of the reactant generation layer in the above is suppressed, and the discharge can be stabilized. For example, in DC magnetron type reactive sputtering of a SiN film using a conductive Si target, stable discharge is possible for about 30 minutes to 1 hour at the initial stage of film formation when only a pulse voltage is applied.
Above that, the amount of growth of the reactant generation layer on the target surface increased and discharge became unstable. If only the magnet is moved, growth of the reaction product generation layer on the target surface can be prevented, but the cause of abnormal discharge due to the thin insulator that occurs in a very short time during the movement of the magnet remains, and there is no tendency to increase with time. However, some abnormal discharge was observed from the initial stage of discharge. As described above, the present invention achieves stable discharge for 7 hours or more by combining pulse voltage application and magnetic field movement.

【0014】前記実施例では、磁石として永久磁石3を
使用したが、これに限らず、電磁石とし、その電流を変
化させるようにしてもよい。
Although the permanent magnet 3 is used as the magnet in the above embodiment, the present invention is not limited to this, and an electromagnet may be used to change the current.

【0015】[0015]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、エロージョン領域がターゲット全表面を移動す
るため、ターゲット表面での反応生成層の成長が抑制さ
れ、放電の安定化を図ることができる。また、ピーク電
圧が正電圧を有するパルス状直流電圧を印加するため、
ターゲット表面でのチャージアップを抑制して異常放電
を防止する。このように、本発明によれば、前記両効果
が相俟って、長時間(7時間以上)にわたって安定成膜
操業を可能とすることができた。
As is clear from the above description, according to the present invention, the erosion region moves over the entire surface of the target, so that the growth of the reaction product layer on the target surface is suppressed and the discharge is stabilized. be able to. In addition, since a pulsed DC voltage having a positive peak voltage is applied,
Prevents abnormal discharge by suppressing charge-up on the target surface. As described above, according to the present invention, the above-described effects are combined, and the stable film formation operation can be performed for a long time (7 hours or more).

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を適用する直流マグネトロン型反応性
スパッタリング装置の概略図。
FIG. 1 is a schematic diagram of a DC magnetron type reactive sputtering apparatus to which the present invention is applied.

【図2】 ターゲットと永久磁石の関係を示す図。FIG. 2 is a diagram showing a relationship between a target and a permanent magnet.

【図3】 図2の状態におけるターゲットのエロージョ
ン領域を示す図。
FIG. 3 is a diagram showing an erosion region of a target in the state of FIG.

【図4】 図2の他の実施例を示す図。FIG. 4 is a diagram showing another embodiment of FIG.

【図5】 図4の状態におけるターゲットのエロージョ
ン領域を示す図。
FIG. 5 is a diagram showing an erosion region of a target in the state of FIG.

【図6】 マグネトロンカソード(ターゲット)への印
加電圧を示す波形図。
FIG. 6 is a waveform diagram showing a voltage applied to a magnetron cathode (target).

【符号の説明】[Explanation of symbols]

1…真空成膜室、2…マグネトロンカソード、3…磁
石、4…ターゲット、5…基板。
1 ... Vacuum film forming chamber, 2 ... Magnetron cathode, 3 ... Magnet, 4 ... Target, 5 ... Substrate.

フロントページの続き (72)発明者 古屋 英二 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内Front page continuation (72) Inventor Eiji Furuya 2-4-7 Kyomachibori, Nishi-ku, Osaka-shi, Osaka Chugai Furnace Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直流マグネトロン型反応性スパッタ法に
おいて、ターゲット裏面側に配設した磁石の磁場を移動
させて、エロージョン領域をターゲットの全表面に形成
させるとともに、マグネトロンカソードにピーク電圧が
正電圧となるパルスを含む負の直流電圧を印加すること
を特徴とする直流マグネトロン型反応性スパッタ法。
1. In the direct current magnetron type reactive sputtering method, the magnetic field of a magnet disposed on the back surface side of the target is moved to form an erosion region on the entire surface of the target, and the peak voltage of the magnetron cathode is a positive voltage. DC magnetron-type reactive sputtering method characterized in that a negative DC voltage including a pulse is applied.
JP6032190A 1994-03-02 1994-03-02 Dc-magnetron reactive sputtering method Pending JPH07243039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032190A JPH07243039A (en) 1994-03-02 1994-03-02 Dc-magnetron reactive sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032190A JPH07243039A (en) 1994-03-02 1994-03-02 Dc-magnetron reactive sputtering method

Publications (1)

Publication Number Publication Date
JPH07243039A true JPH07243039A (en) 1995-09-19

Family

ID=12351991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032190A Pending JPH07243039A (en) 1994-03-02 1994-03-02 Dc-magnetron reactive sputtering method

Country Status (1)

Country Link
JP (1) JPH07243039A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365009B1 (en) 1997-06-17 2002-04-02 Anelva Corporation Combined RF-DC magnetron sputtering method
DE10222909A1 (en) * 2002-05-22 2003-12-04 Unaxis Balzers Ag Sputtering process or device for the production of coatings optimized for residual stress
KR100890080B1 (en) * 2000-02-11 2009-03-24 루센트 테크놀러지스 인크 Method for producing piezoelectric films with rotating magnetron sputtering system
JP2009191340A (en) * 2008-02-18 2009-08-27 Seiko Epson Corp Film forming apparatus and film forming method
JP2010255052A (en) * 2009-04-24 2010-11-11 Ulvac Japan Ltd Sputtering method
JP2011137205A (en) * 2009-12-28 2011-07-14 Canon Anelva Corp Sputtering film deposition apparatus and method for manufacturing film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305960A (en) * 1989-05-18 1990-12-19 Sony Corp Reactive magnetron sputtering device
JPH0480358A (en) * 1990-07-19 1992-03-13 Sony Corp Rotary magnet-type cathode for reactive magnetron sputtering system
JPH05311433A (en) * 1992-01-29 1993-11-22 Leybold Ag Method and device for coating substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305960A (en) * 1989-05-18 1990-12-19 Sony Corp Reactive magnetron sputtering device
JPH0480358A (en) * 1990-07-19 1992-03-13 Sony Corp Rotary magnet-type cathode for reactive magnetron sputtering system
JPH05311433A (en) * 1992-01-29 1993-11-22 Leybold Ag Method and device for coating substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365009B1 (en) 1997-06-17 2002-04-02 Anelva Corporation Combined RF-DC magnetron sputtering method
KR100890080B1 (en) * 2000-02-11 2009-03-24 루센트 테크놀러지스 인크 Method for producing piezoelectric films with rotating magnetron sputtering system
DE10222909A1 (en) * 2002-05-22 2003-12-04 Unaxis Balzers Ag Sputtering process or device for the production of coatings optimized for residual stress
JP2009191340A (en) * 2008-02-18 2009-08-27 Seiko Epson Corp Film forming apparatus and film forming method
JP2010255052A (en) * 2009-04-24 2010-11-11 Ulvac Japan Ltd Sputtering method
JP2011137205A (en) * 2009-12-28 2011-07-14 Canon Anelva Corp Sputtering film deposition apparatus and method for manufacturing film

Similar Documents

Publication Publication Date Title
KR100887820B1 (en) System and method for controlling ion density and energy using modulated power signals
JP4120974B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JP2007046152A (en) System and method for modulating power signals to control sputtering
JP3269834B2 (en) Sputtering apparatus and sputtering method
JPH0627323B2 (en) Sputtering method and apparatus
KR20010013110A (en) Continuous deposition of insulating material using multiple anodes alternated between positive and negative voltages
JP5322234B2 (en) Sputtering method and sputtering apparatus
GB2191787A (en) Process and arrangement for sputtering a material by means of high frequency
JPH07243039A (en) Dc-magnetron reactive sputtering method
KR100200009B1 (en) How to make ITO transparent film
KR100273326B1 (en) High frequency sputtering apparatus
JP2902822B2 (en) Planar magnetron sputter electrode
KR20040005406A (en) Film deposition apparatus having dual magnetron sputtering system and ion beam source which are synchronized
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
JPH05331634A (en) Sputtering device
JP2006083459A (en) Sputtering system and sputtering method
JP2732281B2 (en) Thin film formation method
JPH01240645A (en) Vacuum deposition apparatus
JP2003073824A (en) Method for forming thin film
KR100421249B1 (en) sputtering magnetic circuit production
KR0138905B1 (en) Coating Method of Insulation Thin Film
JP2006037119A (en) Film-forming apparatus and film-forming method using the same
JPH05239641A (en) Conductive film formation and device therefor and magnetron sputtering method and device therefor and in-line magnetron sputtering device
JPH02310367A (en) Magnetron sputtering device
JPS6335771A (en) sputtering device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090410

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100410

EXPY Cancellation because of completion of term