[go: up one dir, main page]

JPH07240232A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07240232A
JPH07240232A JP6151664A JP15166494A JPH07240232A JP H07240232 A JPH07240232 A JP H07240232A JP 6151664 A JP6151664 A JP 6151664A JP 15166494 A JP15166494 A JP 15166494A JP H07240232 A JPH07240232 A JP H07240232A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
electrolyte secondary
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6151664A
Other languages
Japanese (ja)
Inventor
Yoshiaki Naruse
義明 成瀬
Shigeru Fujita
茂 藤田
Tokuo Komaru
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6151664A priority Critical patent/JPH07240232A/en
Publication of JPH07240232A publication Critical patent/JPH07240232A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve cycle characteristics of a nonaqueous electrolyte secondary battery using lithium at any temperature including low temperature by containing specified annular carbonate in a nonaqueous solvent which composes the nonaqueous electrolyte. CONSTITUTION:A nonaqueous electrolyte secondary battery is composed of a negative electrode, a positive electrode, and a nonaqueous electrolyte dissolved in a nonaqueous solvent wherein the negative electrode consists of a material which can be doped with the desorb lithium together with metal lithium or a lithium alloy. The nonaqueous solvent contains a cyclic carbonate having the formula shown wherein at least one of X<1>, X<2>, X<3> stands for F, C, or Br. Moreover, in the point of improving the capacity of the battery and heightening energy density, it is preferable to use lithium and at least one kind of transition metal compounded compounded as positive electrode active materials for the positive electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、リチウムを使用する
非水電解液二次電池に関する。より詳しくは、この発明
は、特定の非水溶媒を使用することにより、サイクル特
性を向上させた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using lithium. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery having improved cycle characteristics by using a specific non-aqueous solvent.

【0002】[0002]

【従来の技術】近年のカメラ一体型VTR、電話、ラッ
プトップコンピューター等の電子機器の小型軽量化、ポ
ータブル化に伴い、軽量で高容量の二次電池が求められ
るようになっており、その開発が進められている。その
中でも、リチウム二次電池は、従来から使用されている
ニッケル−カドミウム二次電池や鉛二次電池と比較して
薄型、軽量で、高エネルギー密度が得られ、高電圧を発
生でき、安全性が高く、無公害の電池を実現できるた
め、活発に研究が進められている。そこで、種々の提案
がなされている。
2. Description of the Related Art With the recent trend toward smaller and lighter electronic devices such as camera-integrated VTRs, telephones, laptop computers, etc., and portable devices, lightweight and high-capacity secondary batteries have been demanded and developed. Is being promoted. Among them, lithium secondary batteries are thinner, lighter in weight, have higher energy density, can generate high voltage, and are safer than nickel-cadmium secondary batteries and lead secondary batteries that have been conventionally used. Highly efficient and non-polluting batteries can be realized, so research is actively underway. Therefore, various proposals have been made.

【0003】例えば、非水電解液を構成する非水溶媒と
しては、高誘電率溶媒であるプロピレンカーボネート
(PC)と、低粘度溶媒である1,2−ジメトキシエタ
ン(DME)、2−メチルテトラヒドロフラン(2−M
eTHF)、ジメチルカーボネート(DMC)、メチル
エチルカーボネート(MEC)、ジエチルカーボネート
(DEC)等との混合溶媒が、高い導電率を有し、サイ
クル特性を向上させることができる溶媒として提案され
ている。
For example, as the non-aqueous solvent constituting the non-aqueous electrolytic solution, propylene carbonate (PC) which is a high dielectric constant solvent, 1,2-dimethoxyethane (DME) and 2-methyltetrahydrofuran which are low viscosity solvents. (2-M
A mixed solvent with eTHF), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), etc. has been proposed as a solvent having high conductivity and capable of improving cycle characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ようなプロピレンカーボネート系の溶媒を使用しても、
リチウム二次電池のサイクル特性を十分に向上させるこ
とはできず、より一層サイクル特性を向上させることが
望まれていた。
However, even if the above-mentioned propylene carbonate-based solvent is used,
The cycle characteristics of the lithium secondary battery cannot be sufficiently improved, and it has been desired to further improve the cycle characteristics.

【0005】また、サイクル特性を改善するために、負
極にリチウムをドープ、脱ドープできる炭素材料を使用
することが提案されているが(特開昭62−90863
号公報)、上述のようなプロピレンカーボネート系の溶
媒を使用した場合に、負極に炭素材料として高エネルギ
ー密度の実現が期待できるグラファイトを使用すると、
プロピレンカーボネートが分解してしまうため充電でき
ないという問題があった。このような問題に対しては、
プロピレンカーボネートに代えてエチレンカーボネート
を使用することが提案されているが、エチレンカーボネ
ートを使用すると、エチレンカーボネート自体の凝固点
が高いために低温特性が悪いという問題があった。
In order to improve the cycle characteristics, it has been proposed to use a carbon material capable of doping and dedoping lithium in the negative electrode (Japanese Patent Laid-Open No. 62-90863).
When a propylene carbonate-based solvent such as that described above is used and graphite, which can be expected to achieve high energy density, is used as the carbon material for the negative electrode,
There is a problem that charging cannot be performed because propylene carbonate decomposes. For such problems,
It has been proposed to use ethylene carbonate instead of propylene carbonate, but when ethylene carbonate is used, there is a problem that the low-temperature characteristics are poor because the freezing point of ethylene carbonate itself is high.

【0006】この発明は、このような従来技術の課題を
解決しようとするものであり、リチウムを使用する非水
電解液二次電池のサイクル特性を向上させること、特
に、低温でも凝固しない、サイクル特性に優れた非水溶
媒を使用することにより、低温時も含めてサイクル特性
を向上させることを目的とする。
The present invention is intended to solve the problems of the prior arts described above, and to improve the cycle characteristics of a non-aqueous electrolyte secondary battery using lithium, in particular, a cycle that does not solidify even at a low temperature. By using a non-aqueous solvent having excellent characteristics, it is intended to improve cycle characteristics even at low temperatures.

【0007】[0007]

【課題を解決するための手段】この発明者らは、上記の
目的を達成するために種々の検討を重ねた結果、非水電
解液に使用する非水溶媒として、特定の環状カーボネー
トが有効であることを見出し、この発明を完成させるに
至った。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors have found that a specific cyclic carbonate is effective as a non-aqueous solvent used in a non-aqueous electrolytic solution. It was discovered that there is something, and the present invention was completed.

【0008】即ち、この発明は、リチウムをドープ、脱
ドープできる材料、金属リチウム又はリチウム合金から
なる負極と、正極と、非水溶媒に電解質が溶解されてい
る非水電解液とを備える非水電解液二次電池において、
非水溶媒が、次式(1)
That is, the present invention provides a non-aqueous electrolyte comprising a negative electrode composed of a material capable of doping and de-doping lithium, metallic lithium or a lithium alloy, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. In the electrolyte secondary battery,
The non-aqueous solvent is represented by the following formula (1)

【0009】[0009]

【化2】 (式中、X、X、X及びXの少なくとも1つ
は、F、Cl又はBrを表す。)で表される環状カーボ
ネートを含むことを特徴とする非水電解液二次電池を提
供する。
[Chemical 2] (Wherein at least one of X 1 , X 2 , X 3 and X 4 represents F, Cl or Br). A non-aqueous electrolyte secondary battery comprising a cyclic carbonate represented by the formula: I will provide a.

【0010】以下、この発明を詳細に説明する。The present invention will be described in detail below.

【0011】この発明は、上述のように、リチウムを使
用する非水電解液二次電池において、非水溶媒として、
式(1)で表される特定の環状カーボネート、即ち、そ
の4位又は5位が、少なくとも1つのハロゲン原子で置
換されている1,3−ジオキソラン−2−オン類を使用
することを特徴としている。
As described above, the present invention provides a non-aqueous electrolyte secondary battery using lithium as a non-aqueous solvent.
A specific cyclic carbonate represented by the formula (1), that is, 1,3-dioxolan-2-ones whose 4-position or 5-position is substituted with at least one halogen atom is used. There is.

【0012】ここで、非水溶媒としては、式(1)で表
される環状カーボネートの1種を使用してもよく、複数
種を混合して使用してもよい。また、式(1)で表され
る環状カーボネートの他に、プロピレンカーボネート
(PC)、エチレンカーボネート(EC)、γ−ブチロ
ラクトン等や、低粘度溶媒である1,2−ジメトキシエ
タン(DME)、2−メチルテトラヒドロフラン(2−
MeTHF)、ジメチルカーボネート(DMC)、メチ
ルエチルカーボネート(MEC)、ジエチルカーボネー
ト(DEC)等を混合して使用してもよい。
Here, as the non-aqueous solvent, one kind of the cyclic carbonate represented by the formula (1) may be used, or a plurality of kinds thereof may be mixed and used. In addition to the cyclic carbonate represented by the formula (1), propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone, etc., and 1,2-dimethoxyethane (DME), which is a low-viscosity solvent, 2 -Methyltetrahydrofuran (2-
MeTHF), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC) and the like may be mixed and used.

【0013】非水電解液を調製するにあたり、上記のよ
うな非水溶媒に溶解させる電解質としては特に限定はな
く、従来のリチウム二次電池と同様にすることができ
る。例えば、LiClO、LiAsF、LiP
、LiBF、LiCFSO、LiN(CF
SO等を使用でき、このうち特にLiPFやL
iBFを使用することが好ましい。
In preparing the non-aqueous electrolytic solution, the electrolyte to be dissolved in the non-aqueous solvent as described above is not particularly limited and may be the same as the conventional lithium secondary battery. For example, LiClO 4 , LiAsF 6 , LiP
F 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3
SO 2 ) 2 or the like can be used, among which LiPF 6 or L
It is preferred to use iBF 4 .

【0014】この発明において、正極には、電池容量を
向上させ、エネルギー密度を高める点から、正極活物質
として、リチウムと1種以上の遷移金属の複合酸化物を
使用することが好ましい。例えば、LiMO(式
中、Mは1種以上の遷移金属を表し、xは電池の充放電
状態によって異なり、通常0.05≦x≦1.10であ
る)を主体とする活物質からなるものを好ましく使用す
ることができる。この場合、特に遷移金属Mとして、C
o、Ni、Mnの少なくとも1種を使用することが好ま
しい。ここで、遷移金属MがMnである場合、Li
、LiMnOのいずれも使用することがで
きる。なお、このような複合酸化物から正極を形成する
に際しては、公知の導電剤や結着材等を添加することが
できる。
In the present invention, it is preferable to use a composite oxide of lithium and one or more kinds of transition metals as the positive electrode active material for the positive electrode from the viewpoint of improving battery capacity and energy density. For example, an active material mainly composed of Li x MO 2 (wherein M represents one or more kinds of transition metals, x varies depending on the charge / discharge state of the battery, and usually 0.05 ≦ x ≦ 1.10). Those consisting of can be preferably used. In this case, especially as the transition metal M, C
It is preferable to use at least one of o, Ni, and Mn. Here, when the transition metal M is Mn, Li x M
Both n 2 O 4 and Li x MnO 2 can be used. When forming a positive electrode from such a composite oxide, a known conductive agent, a binder or the like can be added.

【0015】一方、負極は、リチウムをドープ、脱ドー
プできる材料、金属リチウム又はリチウム合金を使用し
て構成する。このような負極を形成する材料または負極
活物質のうちリチウムをドープ、脱ドープできる材料と
しては、例えば、熱分解炭素類、コークス類(ピッチコ
ークス、ニードルコークス、石油コークス等)、グラフ
ァイト類、ガラス状炭素類、有機高分子化合物焼成体
(フェノール樹脂、フラン樹脂等を適当な温度で焼成し
炭素化したもの)、炭素繊維、活性炭等の炭素材料、あ
るいはポリアセチレン、ポリピロール等のポリマー等を
使用することができる。また、リチウム合金としては、
リチウム−アルミニウム合金等を使用することができ
る。
On the other hand, the negative electrode is made of a material capable of being doped or dedoped with lithium, metallic lithium or a lithium alloy. Examples of the material forming the negative electrode or the negative electrode active material capable of being doped and dedoped with lithium include, for example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glass. Carbon, organic polymer compound fired product (phenolic resin, furan resin, etc. fired at a suitable temperature to carbonize), carbon fiber, carbon material such as activated carbon, or polymer such as polyacetylene or polypyrrole be able to. Also, as a lithium alloy,
A lithium-aluminum alloy or the like can be used.

【0016】このうちサイクル特性を向上させる点から
炭素材料を使用することが好ましく、炭素材料の中で
も、(002)面の面間隔が0.340nm以下である
グラファイト類を使用することが、エネルギー密度を向
上させることもできるので好ましい。特に、(002)
面の面間隔が0.340nm以下、C軸方向の結晶子厚
みが16.0nm以上、ラマンスペクトルにおけるG値
が2.5以上、真密度が2.1g/cm以上の結晶構
造を有するものが好ましい。なお、ここでG値とは、ラ
マンスペクトルにおいて炭素材料の黒鉛構造に由来する
シグナル強度と非晶質構造に由来するシグナル強度との
比を表すものであり、ミクロな結晶構造欠陥の指標とな
るものである。
Among these, it is preferable to use a carbon material from the viewpoint of improving cycle characteristics. Among the carbon materials, it is preferable to use graphites having a (002) plane spacing of 0.340 nm or less. Can be improved, which is preferable. In particular, (002)
Those having a crystal structure in which the interplanar spacing is 0.340 nm or less, the crystallite thickness in the C-axis direction is 16.0 nm or more, the G value in the Raman spectrum is 2.5 or more, and the true density is 2.1 g / cm 3 or more. Is preferred. Here, the G value represents the ratio of the signal intensity derived from the graphite structure of the carbon material to the signal intensity derived from the amorphous structure in the Raman spectrum, and is an index of microscopic crystal structure defects. It is a thing.

【0017】また、このような炭素材料から負極を形成
するに際しては、公知の結着材等を添加することができ
る。
In forming the negative electrode from such a carbon material, a known binder or the like can be added.

【0018】この発明の電池は、電池形状については特
に限定されることはない。円筒型、角型、コイン型、ボ
タン型等の種々の形状にすることができる。
The shape of the battery of the present invention is not particularly limited. Various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape can be used.

【0019】[0019]

【作用】この発明の非水電解液二次電池によれば、非水
電解液を構成する非水溶媒に、式(1)で表される特定
の環状カーボネートを含有させるので、リチウム二次電
池のサイクル特性が向上する。特に、この式(1)で表
される特定の環状カーボネートは0℃程度の低温でも凝
固しないので、電池の低温におけるサイクル特性が向上
したものとなる。
According to the non-aqueous electrolyte secondary battery of the present invention, since the non-aqueous solvent constituting the non-aqueous electrolyte contains the specific cyclic carbonate represented by the formula (1), the lithium secondary battery The cycle characteristics of are improved. In particular, the specific cyclic carbonate represented by the formula (1) does not solidify even at a low temperature of about 0 ° C., so that the cycle characteristics at a low temperature of the battery are improved.

【0020】また、この発明で使用する非水電解液は、
負極にグラファイトを使用してリチウム二次電池を構成
した場合でも分解しない。従って、この発明の非水電解
液二次電池によれば、電池のエネルギー密度を向上させ
るために、負極にグラファイトを使用することが可能と
なる。
Further, the non-aqueous electrolyte used in the present invention is
Even if a lithium secondary battery is constructed using graphite for the negative electrode, it will not decompose. Therefore, according to the non-aqueous electrolyte secondary battery of the present invention, graphite can be used for the negative electrode in order to improve the energy density of the battery.

【0021】[0021]

【実施例】以下、この発明を実施例により具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0022】実施例1 図1は、この実施例及び後述するその他の実施例及び比
較例において作製したコイン型の非水電解液二次電池
(外径20mm、高さ2.5mm)の断面図である。同
図の電池は、負極(負極活物質)1と正極(正極活物
質)2とを、ポリプロピレンからなる多孔質セパレータ
3を介してそれぞれ負極缶4及び正極缶5に収納し、封
口ガスケット6を介してかしめることにより作製したも
のである。
Example 1 FIG. 1 is a sectional view of a coin type non-aqueous electrolyte secondary battery (outer diameter 20 mm, height 2.5 mm) produced in this example and other examples and comparative examples described later. Is. In the battery shown in the figure, a negative electrode (negative electrode active material) 1 and a positive electrode (positive electrode active material) 2 are respectively housed in a negative electrode can 4 and a positive electrode can 5 via a porous separator 3 made of polypropylene, and a sealing gasket 6 is provided. It was produced by caulking through.

【0023】実施例1においては、このようなコイン型
電池を作製するにあたり、負極活物質1として、金属リ
チウムを使用した。一方、正極活物質2を形成するに際
しては、まず、炭酸リチウムと炭酸コバルトを0.5:
1.0のmol比で混合し、空気中で900℃、5時間
焼成してLiCoOを得た。そして、このLiCoO
を90重量部、導電剤としてグラファイトを7重量
部、結着材としてフッ素樹脂を3重量部を加えて混合
し、加圧成型したものを正極活物質2とした。また、電
解液としては、4,5−ジクロロ−1,3−ジオキソラ
ン−2−オンとジメチルカーボネート(DMC)とを体
積比で1:1の割合で混合した非水溶媒に、LiPF
を1.0mol/lの割合で溶解させたものを使用し
た。
In Example 1, metallic lithium was used as the negative electrode active material 1 in manufacturing such a coin-type battery. On the other hand, when forming the positive electrode active material 2, first, 0.5% of lithium carbonate and cobalt carbonate was used.
LiCoO 2 was obtained by mixing in a molar ratio of 1.0 and firing in air at 900 ° C. for 5 hours. And this LiCoO
90 parts by weight of 2 , 2 parts by weight of graphite as a conductive agent, and 3 parts by weight of fluororesin as a binder were mixed and pressure-molded to obtain a positive electrode active material 2. Further, as the electrolytic solution, LiPF 6 was added to a non-aqueous solvent prepared by mixing 4,5-dichloro-1,3-dioxolan-2-one and dimethyl carbonate (DMC) at a volume ratio of 1: 1.
Was used at a ratio of 1.0 mol / l.

【0024】実施例2〜4 非水溶媒に関し、4,5−ジクロロ−1,3−ジオキソ
ラン−2−オンに代えて、4,5−ジフルオロ−1,3
−ジオキソラン−2−オン(実施例2)、4,4−ジク
ロロ−1,3−ジオキソラン−2−オン(実施例3)、
4−クロロ−1,3−ジオキソラン−2−オン(実施例
4)を使用する以外は実施例1と同様にして非水電解液
二次電池を作製した。
Examples 2 to 4 With respect to the non-aqueous solvent, 4,5-difluoro-1,3 was used in place of 4,5-dichloro-1,3-dioxolan-2-one.
-Dioxolan-2-one (Example 2), 4,4-dichloro-1,3-dioxolan-2-one (Example 3),
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 4-chloro-1,3-dioxolan-2-one (Example 4) was used.

【0025】比較例1 非水溶媒に関し、4,5−ジクロロ−1,3−ジオキソ
ラン−2−オンに代えて、プロピレンカーボネート(P
C)を使用する以外は実施例1と同様にして非水電解液
二次電池を作製した。
COMPARATIVE EXAMPLE 1 Regarding the non-aqueous solvent, propylene carbonate (P was used instead of 4,5-dichloro-1,3-dioxolan-2-one).
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that C) was used.

【0026】(評価1)以上の実施例1〜4及び比較例
1の非水電解液二次電池に対し、次のようにサイクル特
性を評価した。
(Evaluation 1) The cycle characteristics of the non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Example 1 were evaluated as follows.

【0027】まず、23℃で上限電圧を4.2Vに設定
して1mAで10時間定電流、定電圧充電し、続いて1
mAの定電流で終止電圧3.0Vまで放電し、これを充
放電の1サイクルとしてこのような充放電を所定サイク
ル数繰り返し、そのときの充放電効率をサイクル数に対
してプロットした。この結果を図2に示す。
First, the upper limit voltage was set to 4.2 V at 23 ° C., constant current and constant voltage charging was performed at 1 mA for 10 hours, and then 1
The battery was discharged to a final voltage of 3.0 V with a constant current of mA, and this charging / discharging was repeated as a predetermined number of cycles, and the charging / discharging efficiency at that time was plotted against the number of cycles. The result is shown in FIG.

【0028】図2から、実施例1〜4の非水電解液二次
電池は、比較例1の非水電解液二次電池に対して優れた
サイクル特性を示すことがわかる。
It can be seen from FIG. 2 that the non-aqueous electrolyte secondary batteries of Examples 1 to 4 have excellent cycle characteristics as compared with the non-aqueous electrolyte secondary battery of Comparative Example 1.

【0029】実施例5 正極活性物質2の位置に以下の炭素材料を負極として使
用する以外は実施例1と同様にして負極評価用試験セル
を作製した。
Example 5 A test cell for negative electrode evaluation was prepared in the same manner as in Example 1 except that the following carbon material was used as the negative electrode at the position of the positive electrode active substance 2.

【0030】即ち、出発原料として石油ピッチを使用
し、これに酸素を含む官能基を10〜20%導入し(所
謂、酸素架橋)、その後不活性ガス気流中1000℃で
焼成することにより、ガラス状炭素に近い性質の難黒鉛
化性炭素材料を得た。この難黒鉛化性炭素材料のX線回
折を行ったところ、(002)面の面間隔は0.376
nmであった。また、真密度は1.58g/cmであ
った。この難黒鉛化性炭素材料を粉砕して平均粒径10
μmの粉末とし、この粉末90重量部と結着剤としてフ
ッ素樹脂10重量部とを混合し、これを加圧成形して負
極とした。
That is, by using petroleum pitch as a starting material, introducing 10 to 20% of a functional group containing oxygen into this (so-called oxygen crosslinking), and then calcining at 1000 ° C. in an inert gas stream, glass A non-graphitizable carbon material having properties close to those of linear carbon was obtained. When this non-graphitizable carbon material was subjected to X-ray diffraction, the (002) plane spacing was 0.376.
was nm. The true density was 1.58 g / cm 3 . This non-graphitizable carbon material is crushed to obtain an average particle size of 10
A powder having a diameter of μm was mixed, and 90 parts by weight of this powder and 10 parts by weight of a fluororesin as a binder were mixed, and this was pressure-molded to obtain a negative electrode.

【0031】実施例6〜8 非水溶媒に関し、4,5−ジクロロ−1,3−ジオキソ
ラン−2−オンに代えて、4,5−ジフルオロ−1,3
−ジオキソラン−2−オン(実施例6)、4,4−ジク
ロロ−1,3−ジオキソラン−2−オン(実施例7)、
4−クロロ−1,3−ジオキソラン−2−オン(実施例
8)を使用する以外は実施例5と同様にして負極評価用
試験セルを作製した。
Examples 6 to 8 Regarding the non-aqueous solvent, 4,5-difluoro-1,3 was used in place of 4,5-dichloro-1,3-dioxolan-2-one.
-Dioxolan-2-one (Example 6), 4,4-dichloro-1,3-dioxolan-2-one (Example 7),
A test cell for negative electrode evaluation was prepared in the same manner as in Example 5 except that 4-chloro-1,3-dioxolan-2-one (Example 8) was used.

【0032】比較例2 非水溶媒に関し、4,5−ジクロロ−1,3−ジオキソ
ラン−2−オンに代えて、プロピレンカーボネート(P
C)を使用する以外は実施例5と同様にして負極評価用
試験セルを作製した。
COMPARATIVE EXAMPLE 2 Regarding the non-aqueous solvent, propylene carbonate (P was used instead of 4,5-dichloro-1,3-dioxolan-2-one).
A test cell for negative electrode evaluation was prepared in the same manner as in Example 5 except that C) was used.

【0033】(評価2)以上の実施例5〜8及び比較例
2の負極評価用試験セルに対し、次のようにサイクル特
性を評価した。
(Evaluation 2) With respect to the negative electrode evaluation test cells of Examples 5 to 8 and Comparative Example 2, the cycle characteristics were evaluated as follows.

【0034】まず、23℃、1mAで10時間定電流充
電し、続いて1mAの定電流で終止電圧1.5Vまで放
電し、これを充放電の1サイクルとしてこのような充放
電を所定サイクル数繰り返し、そのときの充放電効率を
サイクル数に対してプロットした。この結果を図3に示
す。
First, constant current charging was performed at 23 ° C. and 1 mA for 10 hours, and then discharging was performed at a constant current of 1 mA to a final voltage of 1.5 V. This charging / discharging was regarded as one cycle, and such charging / discharging was performed for a predetermined number of cycles. Repeatedly, the charging / discharging efficiency at that time was plotted against the number of cycles. The result is shown in FIG.

【0035】図3から、実施例5〜8の負極評価用試験
セルは、比較例2の負極評価用試験セルに対して優れた
サイクル特性を示すことがわかる。
From FIG. 3, it can be seen that the negative electrode evaluation test cells of Examples 5 to 8 exhibit excellent cycle characteristics as compared with the negative electrode evaluation test cell of Comparative Example 2.

【0036】実施例9 正極活性物質2の位置に以下の炭素材料を負極として使
用する以外は実施例1と同様にして負極評価用試験セル
を作製した。
Example 9 A test cell for negative electrode evaluation was prepared in the same manner as in Example 1 except that the following carbon material was used as the negative electrode at the position of the positive electrode active substance 2.

【0037】即ち、グラファイト((002)面の面間
隔=0.3358nm、C軸結晶子厚み=25.4n
m、ラマンスペクトルG値=8.82、真密度=2.2
3g/cm、平均粒径=28.4μm)(ロンザ社
製、KS−75)90重量部と結着剤としてフッ素樹脂
10重量部とを混合し、これを加圧成形して負極とし
た。 実施例10〜12 非水溶媒に関し、4,5−ジクロロ−1,3−ジオキソ
ラン−2−オンに代えて、4,5−ジフルオロ−1,3
−ジオキソラン−2−オン(実施例10)、4,4−ジ
クロロ−1,3−ジオキソラン−2−オン(実施例1
1)、4−クロロ−1,3−ジオキソラン−2−オン
(実施例12)を使用する以外は実施例9と同様にして
負極評価用試験セルを作製した。
That is, graphite ((002) plane spacing = 0.3358 nm, C-axis crystallite thickness = 25.4 n)
m, Raman spectrum G value = 8.82, true density = 2.2
90 parts by weight of 3 g / cm 3 and average particle size = 28.4 μm (KS-75 manufactured by Lonza Co., Ltd.) and 10 parts by weight of a fluororesin as a binder were mixed, and this was pressure-molded to obtain a negative electrode. . Examples 10-12 Regarding non-aqueous solvents, 4,5-difluoro-1,3 is used instead of 4,5-dichloro-1,3-dioxolan-2-one.
-Dioxolan-2-one (Example 10), 4,4-dichloro-1,3-dioxolan-2-one (Example 1)
A test cell for negative electrode evaluation was prepared in the same manner as in Example 9 except that 1) and 4-chloro-1,3-dioxolan-2-one (Example 12) were used.

【0038】比較例3 非水溶媒に関し、4,5−ジクロロ−1,3−ジオキソ
ラン−2−オンに代えて、プロピレンカーボネート(P
C)を使用する以外は実施例9と同様にして負極評価用
試験セルを作製した。
Comparative Example 3 Regarding the non-aqueous solvent, propylene carbonate (P was used instead of 4,5-dichloro-1,3-dioxolan-2-one).
A test cell for negative electrode evaluation was prepared in the same manner as in Example 9 except that C) was used.

【0039】(評価3)以上の実施例9〜12及び比較
例3の負極評価用試験セルに対し、次のようにサイクル
特性を評価した。
(Evaluation 3) With respect to the negative electrode evaluation test cells of Examples 9 to 12 and Comparative Example 3, the cycle characteristics were evaluated as follows.

【0040】まず、23℃で下限電圧を0Vに設定して
1mAで10時間定電流、定電圧充電し、続いて1mA
の定電流で終止電圧1.0Vまで放電し、このときの電
位変化を時間に対してプロットした。この結果を図4に
示す。
First, the lower limit voltage was set to 0 V at 23 ° C., constant current and constant voltage charging were performed at 1 mA for 10 hours, and then 1 mA.
Was discharged to a final voltage of 1.0 V with a constant current of, and the potential change at this time was plotted against time. The result is shown in FIG.

【0041】図4から、比較例3の負極評価用試験セル
は放電しないのに対し、実施例9〜12の負極評価用試
験セルは優れた放電特性を示していることがわかる。し
たがって、この実施例で使用した非水電解液は、リチウ
ム二次電池の負極にグラファイトを使用した場合でも良
好に使用できることがわかる。
It can be seen from FIG. 4 that the negative electrode evaluation test cells of Comparative Example 3 did not discharge, whereas the negative electrode evaluation test cells of Examples 9 to 12 showed excellent discharge characteristics. Therefore, it can be seen that the non-aqueous electrolytic solution used in this example can be favorably used even when graphite is used for the negative electrode of the lithium secondary battery.

【0042】(評価4)非水電解液の低温特性と、その
非水電解液を構成する非水溶媒との関係を調べるため
に、表1のように、上述の実施例1〜12で非水溶媒に
使用した環状カーボネートにLiPFを1.0mol
/lの割合で溶解したものを調製した(溶液a〜d)。
また、エチレンカーボネートにLiPFを1.0mo
l/lの割合で溶解したものを調製した(溶液e)。な
お、このエチレンカーボネートを溶媒とした溶液eは、
室温では、グラファイトを負極に使用したリチウム電池
の非水電解液として使用し得るものである。
(Evaluation 4) In order to investigate the relationship between the low temperature characteristics of the non-aqueous electrolyte solution and the non-aqueous solvent which constitutes the non-aqueous electrolyte solution, as shown in Table 1, the non-aqueous electrolyte solutions were tested in Examples 1 to 12 above. 1.0 mol of LiPF 6 was added to the cyclic carbonate used as the water solvent.
What was melt | dissolved in the ratio of / l was prepared (solution ad).
Also, LiPF 6 was added to ethylene carbonate at 1.0mo
What was melt | dissolved in the ratio of 1 / l was prepared (solution e). The solution e using this ethylene carbonate as a solvent is
At room temperature, it can be used as a non-aqueous electrolyte of a lithium battery using graphite for the negative electrode.

【0043】そして、これらをそれぞれサンプル瓶に入
れ、温度0℃に保持した恒温槽に2時間放置し、その後
の状態を観察した。この結果を表1に示す。
Then, each of them was put in a sample bottle and left for 2 hours in a constant temperature bath kept at a temperature of 0 ° C., and the state after that was observed. The results are shown in Table 1.

【0044】表1に示したように、溶液a〜dはいずれ
も凝固しないが、溶液eは凝固した。したがって、溶液
eを非水電解液とした場合には電池の低温特性は阻害さ
れるが、溶液a〜dを非水電解液とした場合には電池の
低温特性が阻害されないことがわかる。
As shown in Table 1, the solutions ad did not coagulate, but the solution e coagulated. Therefore, it can be seen that when the solution e is a non-aqueous electrolyte, the low temperature characteristics of the battery are impaired, but when the solutions a to d are non-aqueous electrolytes, the low temperature characteristics of the battery are not impaired.

【0045】[0045]

【表1】 溶液 非水溶媒 0℃での状態 a 4,5−ジクロロ−1,3−ジオキソラン−2−オン 液体 b 4,5−ジフルオロ−1,3−ジオキソラン−2−オン 液体 c 4,4−ジクロロ−1,3−ジオキソラン−2−オン 液体 d 4−クロロ−1,3−ジオキソラン−2−オン 液体 …………………………………………………………………………………………… e エチレンカーボネート 固体 また、実施例1〜12で非水溶媒に使用した環状カーボ
ネートと低粘度溶媒との混合溶媒と、エチレンカーボネ
ートと低粘度溶媒との混合溶媒についても両者の凝固温
度を比較したところ、エチレンカーボネートと低粘度溶
媒との混合溶媒が凝固した温度で環状カーボネートと低
粘度溶媒との混合溶媒は凝固しなかった。従って、電池
の非水溶媒として、環状カーボネートと低粘度溶媒との
混合溶媒を使用した方が、エチレンカーボネートと低粘
度溶媒との混合溶媒を使用するよりも低温特性が良好と
なることがわかる。
[Table 1] Solution Non-aqueous solvent State at 0 ° C. a 4,5-Dichloro-1,3-dioxolan-2-one liquid b 4,5-Difluoro-1,3-dioxolan-2-one liquid c 4,4-dichloro- 1,3-dioxolan-2-one liquid d 4-chloro-1,3-dioxolan-2-one liquid …………………………………………………………………… ……………………………… e Ethylene carbonate solid Further, when the coagulation temperature of the mixed solvent of the cyclic carbonate and the low viscosity solvent used as the non-aqueous solvent in Examples 1 to 12 and the mixed solvent of the ethylene carbonate and the low viscosity solvent were compared, it was found that The mixed solvent of the cyclic carbonate and the low viscosity solvent did not solidify at the temperature at which the mixed solvent of the low viscosity solvent solidified. Therefore, it is understood that the use of the mixed solvent of the cyclic carbonate and the low-viscosity solvent as the non-aqueous solvent of the battery provides better low-temperature characteristics than the use of the mixed solvent of the ethylene carbonate and the low-viscosity solvent.

【0046】[0046]

【発明の効果】この発明によれば、リチウムを使用する
非水電解液二次電池のサイクル特性を低温時も含めて向
上させることが可能となる。
According to the present invention, it becomes possible to improve the cycle characteristics of a non-aqueous electrolyte secondary battery using lithium, including at low temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例で作製した電池及び負極評価
用試験セルの断面図である。
FIG. 1 is a cross-sectional view of a battery and a test cell for negative electrode evaluation manufactured in Examples and Comparative Examples.

【図2】実施例及び比較例で作製した電池のサイクル数
と充放電効率との関係図である。
FIG. 2 is a relationship diagram between the number of cycles and charge / discharge efficiency of the batteries manufactured in Examples and Comparative Examples.

【図3】実施例及び比較例で作製した負極評価用試験セ
ルのサイクル数と充放電効率との関係図である。
FIG. 3 is a relationship diagram between the number of cycles and charge / discharge efficiency of the test cell for negative electrode evaluation manufactured in Examples and Comparative Examples.

【図4】実施例及び比較例で作製した負極評価用試験セ
ルの充電又は放電時間と電圧との関係図である。
FIG. 4 is a diagram showing the relationship between charge or discharge time and voltage of the negative-electrode evaluation test cells manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 負極(負極活物質) 2 正極(正極活物質) 3 多孔質セパレータ 4 負極缶 5 正極缶 6 封口ガスケット DESCRIPTION OF SYMBOLS 1 Negative electrode (negative electrode active material) 2 Positive electrode (positive electrode active material) 3 Porous separator 4 Negative electrode can 5 Positive electrode can 6 Sealing gasket

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年10月12日[Submission date] October 12, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】実施例5 正極活物質2の位置に以下の炭素材料を負極として使用
する以外は実施例1と同様にして負極評価用試験セルを
作製した。
[0029] was prepared in Example 5 positive Katsubutsu quality 2 Similarly negative evaluation test cell as in Example 1 but using the following carbon material as a negative electrode in position.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】実施例9 正極活物質2の位置に以下の炭素材料を負極として使用
する以外は実施例1と同様にして負極評価用試験セルを
作製した。
[0036] was prepared in Example 9 positive Katsubutsu quality 2 Similarly negative evaluation test cell as in Example 1 but using the following carbon material as a negative electrode in position.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムをドープ、脱ドープできる材
料、金属リチウム又はリチウム合金からなる負極と、正
極と、非水溶媒に電解質が溶解されている非水電解液と
を備える非水電解液二次電池において、非水溶媒が、次
式(1) 【化1】 (式中、X、X、X及びXの少なくとも1つ
は、F、Cl又はBrを表す。)で表される環状カーボ
ネートを含むことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolytic solution secondary comprising a negative electrode made of a material capable of doping and de-doping lithium, metallic lithium or a lithium alloy, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. In the battery, the non-aqueous solvent is represented by the following formula (1): (Wherein at least one of X 1 , X 2 , X 3 and X 4 represents F, Cl or Br). A non-aqueous electrolyte secondary battery comprising a cyclic carbonate represented by the formula: .
【請求項2】 正極が、Liと1種以上の遷移金属との
複合酸化物からなる請求項1記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode comprises a composite oxide of Li and one or more transition metals.
【請求項3】 負極が炭素材料からなる請求項1又は2
記載の非水電解液二次電池。
3. The negative electrode is made of a carbon material.
The non-aqueous electrolyte secondary battery described.
【請求項4】 炭素材料の(002)面の面間隔が0.
340nm以下である請求項3記載の非水電解液二次電
池。
4. A carbon material having a (002) plane spacing of 0.
The non-aqueous electrolyte secondary battery according to claim 3, which has a thickness of 340 nm or less.
JP6151664A 1994-01-07 1994-06-08 Nonaqueous electrolyte secondary battery Pending JPH07240232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6151664A JPH07240232A (en) 1994-01-07 1994-06-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-12148 1994-01-07
JP1214894 1994-01-07
JP6151664A JPH07240232A (en) 1994-01-07 1994-06-08 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07240232A true JPH07240232A (en) 1995-09-12

Family

ID=26347726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151664A Pending JPH07240232A (en) 1994-01-07 1994-06-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07240232A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823744A2 (en) * 1996-08-07 1998-02-11 Mitsui Petrochemical Industries, Ltd. Ionically conductive polymeric gel electrolyte and solid battery containing the same
US5750730A (en) * 1996-01-10 1998-05-12 Sanyo Chemical Industries, Ltd. Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
WO2001038319A1 (en) * 1999-11-24 2001-05-31 Solvay Fluor Und Derivate Gmbh Dioxolone and its use as electrolytes
EP1150374A1 (en) * 2000-04-27 2001-10-31 Sony Corporation Gel electrolyte and gel electrolyte battery
WO2006033358A1 (en) * 2004-09-22 2006-03-30 Sony Corporation Electrolyte solution and battery
JP2006156331A (en) * 2004-11-05 2006-06-15 Sony Corp Battery
JP2006261072A (en) * 2005-03-18 2006-09-28 Sony Corp Anode activator and battery
JP2006294519A (en) * 2005-04-13 2006-10-26 Sony Corp Electrolyte and battery
JP2008027837A (en) * 2006-07-25 2008-02-07 Sony Corp Electrolyte and battery
JPWO2007043624A1 (en) * 2005-10-12 2009-04-16 三井化学株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
US7718311B2 (en) 2004-11-05 2010-05-18 Sony Corporation Electrolytic solution and battery
EP2216844A2 (en) 2009-02-04 2010-08-11 Sony Corporation Electrolyte and secondary battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
WO2012105404A1 (en) 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
US8349500B2 (en) 2008-01-29 2013-01-08 Daikin Industries, Ltd. Solvent for dissolving electrolyte salt of lithium secondary battery
US8609286B2 (en) 2007-11-13 2013-12-17 Sony Corporation Nonaqueous electrolyte secondary battery
US8980483B2 (en) 2009-01-23 2015-03-17 Sony Corporation Electrolyte and secondary battery
US9130243B2 (en) 2008-08-06 2015-09-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution and lithium secondary battery
US9240616B2 (en) 2008-01-29 2016-01-19 Daikin Industries, Ltd. Solvent including 1,2-dialkyl-1,2-difluoroethylene carbonate for non-aqueous electrolytic solution of lithium secondary battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750730A (en) * 1996-01-10 1998-05-12 Sanyo Chemical Industries, Ltd. Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor
EP0823744A3 (en) * 1996-08-07 2000-01-12 Mitsui Chemicals, Inc. Ionically conductive polymeric gel electrolyte and solid battery containing the same
EP0823744A2 (en) * 1996-08-07 1998-02-11 Mitsui Petrochemical Industries, Ltd. Ionically conductive polymeric gel electrolyte and solid battery containing the same
WO2001038319A1 (en) * 1999-11-24 2001-05-31 Solvay Fluor Und Derivate Gmbh Dioxolone and its use as electrolytes
EP1150374A1 (en) * 2000-04-27 2001-10-31 Sony Corporation Gel electrolyte and gel electrolyte battery
JP2011258582A (en) * 2004-09-22 2011-12-22 Sony Corp Secondary battery
WO2006033358A1 (en) * 2004-09-22 2006-03-30 Sony Corporation Electrolyte solution and battery
US9548516B2 (en) 2004-09-22 2017-01-17 Sony Corporation Electrolytic solution and battery
US8715864B2 (en) 2004-09-22 2014-05-06 Sony Corporation Electrolytic solution and battery
KR101283180B1 (en) * 2004-09-22 2013-07-05 소니 주식회사 Electrolyte solution and battery
JPWO2006033358A1 (en) * 2004-09-22 2008-05-15 ソニー株式会社 Electrolyte and battery
JP5103903B2 (en) * 2004-09-22 2012-12-19 ソニー株式会社 Secondary battery electrolyte and secondary battery
JP2006156331A (en) * 2004-11-05 2006-06-15 Sony Corp Battery
US7718311B2 (en) 2004-11-05 2010-05-18 Sony Corporation Electrolytic solution and battery
US8586245B2 (en) 2004-11-05 2013-11-19 Sony Corporation Battery
USRE44489E1 (en) * 2004-11-05 2013-09-10 Sony Corporation Electrolytic solution and battery
JP2006261072A (en) * 2005-03-18 2006-09-28 Sony Corp Anode activator and battery
JP2006294519A (en) * 2005-04-13 2006-10-26 Sony Corp Electrolyte and battery
JP5192237B2 (en) * 2005-10-12 2013-05-08 三井化学株式会社 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
JPWO2007043624A1 (en) * 2005-10-12 2009-04-16 三井化学株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
US9209479B2 (en) 2005-10-12 2015-12-08 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2008027837A (en) * 2006-07-25 2008-02-07 Sony Corp Electrolyte and battery
US10707539B2 (en) 2007-11-13 2020-07-07 Murata Manufacturing Co., Ltd. Battery
US9831532B2 (en) 2007-11-13 2017-11-28 Sony Corporation Nonaqueous electrolyte secondary battery
US8609286B2 (en) 2007-11-13 2013-12-17 Sony Corporation Nonaqueous electrolyte secondary battery
US9647298B2 (en) 2007-11-13 2017-05-09 Sony Corporation Nonaqueous electrolyte battery and electrical apparatus
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
US8349500B2 (en) 2008-01-29 2013-01-08 Daikin Industries, Ltd. Solvent for dissolving electrolyte salt of lithium secondary battery
US9240616B2 (en) 2008-01-29 2016-01-19 Daikin Industries, Ltd. Solvent including 1,2-dialkyl-1,2-difluoroethylene carbonate for non-aqueous electrolytic solution of lithium secondary battery
US9130243B2 (en) 2008-08-06 2015-09-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution and lithium secondary battery
US8980483B2 (en) 2009-01-23 2015-03-17 Sony Corporation Electrolyte and secondary battery
US9455476B2 (en) 2009-02-04 2016-09-27 Sony Corporation Electrolyte and secondary battery
EP2216844A2 (en) 2009-02-04 2010-08-11 Sony Corporation Electrolyte and secondary battery
KR20140040284A (en) 2011-01-31 2014-04-02 미쓰비시 가가꾸 가부시키가이샤 Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US9653753B2 (en) 2011-01-31 2017-05-16 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
WO2012105404A1 (en) 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same

Similar Documents

Publication Publication Date Title
EP0565273B1 (en) Secondary battery and manufacturing method therefor
US5714281A (en) Non-aqueous liquid electrolyte secondary cell
JPH07240232A (en) Nonaqueous electrolyte secondary battery
EP1936731A1 (en) Rechargeable lithium battery
JPH11102705A (en) Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP3692547B2 (en) Charging method
JP2004047131A (en) Nonaqueous electrolyte battery
JP2008021517A (en) Nonaqueous secondary battery
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2007335170A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
JPH08115742A (en) Lithium secondary battery
KR20040025600A (en) Anode material and battery using the same
JP2001023690A (en) Nonaqueous electrolyte for secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP2004014472A (en) Nonaqueous secondary battery
JPH08213014A (en) Non-aqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JPH1050314A (en) Nonaqueous electrolyte second ary battery
KR100766981B1 (en) Cathode active material for lithium secondary battery, lithium secondary battery comprising the same, and method for preparing lithium secondary battery
JP2004063270A (en) Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP2008071623A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
JPH0896852A (en) Non-aqueous electrolyte secondary battery
US6503663B1 (en) Organic electrolyte and lithium secondary battery
JP3475480B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4145391B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316