JPH07238339A - Non-heat treated steel for high performance hot forging - Google Patents
Non-heat treated steel for high performance hot forgingInfo
- Publication number
- JPH07238339A JPH07238339A JP2803394A JP2803394A JPH07238339A JP H07238339 A JPH07238339 A JP H07238339A JP 2803394 A JP2803394 A JP 2803394A JP 2803394 A JP2803394 A JP 2803394A JP H07238339 A JPH07238339 A JP H07238339A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- mns
- steel
- heat treated
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【目的】 本発明は、熱間鍛造ままでも極めて高い靱性
を有する高性能熱間鍛造用非調質鋼を提供するものであ
る。
【構成】 重量%にてC:0.15〜0.60%、S
i:0.1〜3.0%、Mn:0.5〜2.0%、C
r:1.0%以下、V:0.03〜0.30%、S:
0.02〜0.10%、N:0.003〜0.020
%、Al:0.01〜0.10%を基本成分とする熱間
鍛造用非調質鋼において、MgをT.Mgとして0.0
007〜0.0280%含有させ、かつ含有される酸化
物及び硫化物が、個数比として次式を満足する。
(MgO+MgO・Al2 O3 )個数/全酸化物個数 ≧0.80…(1)
酸化物に付着したMnS個数/全MnS個数 ≧0.30 …(2)
【効果】 本発明鋼は、微細化した酸化物上にMnSが
微細分散し、結晶粒を高レベルに微細化できる。これに
より熱間鍛造ままで極めて高い靱性を有する機械構造用
部品が得られる。(57) [Summary] [Object] The present invention provides a high performance non-heat treated steel for hot forging which has extremely high toughness even as hot forged. [Composition] C: 0.15 to 0.60% by weight%, S
i: 0.1 to 3.0%, Mn: 0.5 to 2.0%, C
r: 1.0% or less, V: 0.03 to 0.30%, S:
0.02-0.10%, N: 0.003-0.020
%, Al: In the non-heat treated steel for hot forging whose basic component is 0.01 to 0.10%, Mg is added to T. 0.0 as Mg
The oxide and sulfide content of 007 to 0.0280% satisfies the following formula in terms of number ratio. (MgO + MgO.Al 2 O 3 ) number / total oxide number ≧ 0.80 (1) MnS number attached to oxide / total MnS number ≧ 0.30 (2) [Effect] The steel of the present invention is MnS is finely dispersed on the converted oxide, and the crystal grains can be refined to a high level. As a result, a mechanical structural component having extremely high toughness can be obtained as hot forged.
Description
【0001】[0001]
【産業上の利用分野】本発明は熱間鍛造のままで極めて
高い靱性を有する鋼、即ち高靱性熱間鍛造用非調質鋼に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel having extremely high toughness as hot forged, that is, a high toughness non-heat treated steel for hot forging.
【0002】[0002]
【従来の技術】一般に熱間鍛造により製造される機械構
造用部品、例えば自動車のクランクシャフト,コンロッ
ド等の部品は熱間鍛造による成型後、所定の強度、靱性
を得るため、焼き入れ、焼き戻し(調質処理)を施して
いる。この大量の熱エネルギーを必要とする調質処理を
省略して適度な強度、靱性が得られるならば、多大な製
造コスト切り下げが可能となり、近年このような非調質
鋼が求められるようになってきている。従来の熱間鍛造
用非調質鋼としては、例えばVの析出強化を利用したも
のが広く知られている。しかしこの非調質鋼は目的とす
る強度にすることは比較的容易であるが、靱性値が低い
のが欠点であった。そのため、特開昭61−19761
号公報、特開昭61−139646号公報に見られるよ
うに、オーステナイト結晶粒の粗大化を防止し、結晶粒
を微細化することで靱性値の低さを補おうとしたのがA
l,Ti等の炭窒化物形成元素を微量添加した非調質鋼
である。2. Description of the Related Art Generally, mechanical structural parts manufactured by hot forging, such as automobile crankshafts and connecting rods, are hardened and tempered in order to obtain predetermined strength and toughness after molding by hot forging. (Tempering process) is applied. If this tempering process that requires a large amount of heat energy can be omitted and appropriate strength and toughness can be obtained, a large reduction in manufacturing costs will be possible, and in recent years, such non-tempered steel has been required. Is coming. As a conventional non-heat treated steel for hot forging, for example, one using V precipitation strengthening is widely known. However, although this non-heat treated steel is relatively easy to obtain the desired strength, it has the drawback of having a low toughness value. Therefore, JP-A-61-19761
As disclosed in Japanese Patent Laid-Open No. 61-139646 and Japanese Patent Laid-Open No. 61-139646, it is attempted to prevent coarsening of austenite crystal grains and to make the crystal grains finer to compensate for the low toughness value.
It is a non-heat treated steel to which a trace amount of carbonitride forming elements such as 1 and Ti are added.
【0003】[0003]
【発明が解決しようとする課題】強度、靱性を改善する
手段の一つは、鋼の組織を微細化することであるのは公
知であり、前述の炭窒化物形成元素もオーステナイト結
晶粒の粗大化を防止し、結果として変態後のフェライト
・パーライト組織を微細化する目的で使われる。しかし
ながら、通常の熱間鍛造温度域は、これら炭窒化物自身
の溶解温度を超えており、鍛造の条件によってはオース
テナイト結晶粒の粗大化を防止し得ない。その結果、通
常の熱間鍛造温度1100〜1300℃にて鍛造された
鋼の組織は粗大であり、靱性、特に低温靱性は著しく低
くなるのが普通である。本発明はこのような問題点を解
決し、熱間鍛造ままでも極めて高い靱性を有する鋼、高
靱性熱間鍛造用非調質鋼を提供するものである。即ち、
本発明者らがすでに特開昭63−57742号及び特開
平1−198450号公報にて提案した、Mg以外の鋼
中成分を適正化した鋼に、さらにMgを添加し、さらに
含有される酸化物及び硫化物個数を適正に制御すること
により、靱性を飛躍的に向上させた鋼の提供が可能とな
った。It is well known that one of the means for improving the strength and toughness is to refine the structure of steel, and the carbonitride forming element mentioned above also has a coarse austenite crystal grain. It is used for the purpose of preventing grain formation and, as a result, refining the ferrite-pearlite structure after transformation. However, the normal hot forging temperature range exceeds the melting temperature of these carbonitrides themselves, and depending on the forging conditions, coarsening of austenite crystal grains cannot be prevented. As a result, the structure of the steel forged at a normal hot forging temperature of 1100 to 1300 ° C. is coarse, and the toughness, especially the low temperature toughness, is usually extremely low. The present invention solves such problems and provides a steel having extremely high toughness even in the as-hot-forged state, and a high-toughness non-heat treated steel for hot-forging. That is,
The present inventors have already proposed JP-A-63-57742 and JP-A-1-198450, and have added Mg to the steel in which the components in the steel other than Mg have been optimized, and further include the oxidation. By properly controlling the number of alloys and sulfides, it has become possible to provide steel with dramatically improved toughness.
【0004】[0004]
【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。重量%で、 C :0.15〜0.60% Si:0.1〜3.0% Mn:0.5〜2.0% Cr:1.0%以下 V :0.03〜0.30% S :0.02〜0.10% N :0.003〜0.020% Al:0.01〜0.10% あるいは、上記組成に加えて Ti:0.005〜0.025% Nb:0.005〜0.100% を含む鋼に TotalMg:0.0007〜0.0280% を含有させ、残部がFe及び不可避不純物よりなり、か
つ、含有される酸化物及び硫化物が、個数比として次式
を満足することを特徴とする高性能熱間鍛造用非調質鋼
を提供するものである。 (MgO+MgO・Al2 O3 )個数/全酸化物個数 ≧0.80…(1) 酸化物に付着したMnS個数/全MnS個数 ≧0.30 …(2)The gist of the present invention is as follows. % By weight, C: 0.15 to 0.60% Si: 0.1 to 3.0% Mn: 0.5 to 2.0% Cr: 1.0% or less V: 0.03 to 0.30 % S: 0.02 to 0.10% N: 0.003 to 0.020% Al: 0.01 to 0.10% Alternatively, in addition to the above composition, Ti: 0.005 to 0.025% Nb: Steel containing 0.005 to 0.100% contains TotalMg: 0.0007 to 0.0280%, the balance being Fe and unavoidable impurities, and the oxides and sulfides contained as a number ratio. The present invention provides a non-heat treated steel for high performance hot forging characterized by satisfying the following formula. (MgO + MgO.Al 2 O 3 ) number / total oxide number ≧ 0.80 ... (1) MnS number attached to oxide / total MnS number ≧ 0.30 (2)
【0005】[0005]
【作用】本発明鋼の最大の技術的ポイントは鋼材中にM
gを含有させることにある。これにより酸化物系介在物
(主にアルミナ)のサイズが微細化され、この微細酸化
物にMnSが凝固過程で付着することによりMnSの微
細分散も達成され、さらに微細MnSへのVN等窒化物
の付着が誘発される。この作用によりフェライト変態が
促進され、結晶粒が飛躍的に微細化され、靱性が大幅に
向上する。The greatest technical point of the steel of the present invention is that M
g is included. As a result, the size of oxide-based inclusions (mainly alumina) is miniaturized, and MnS adheres to the fine oxides during the solidification process to achieve fine dispersion of MnS. Adhesion is induced. By this action, ferrite transformation is promoted, crystal grains are dramatically refined, and toughness is significantly improved.
【0006】溶鋼中に酸化物系介在物としてAl2 O3
が存在する状況下でMgを添加すると、酸化物の組成は
Al2 O3 からMgO・Al2 O3 あるいはMgOへと
改質される。この際、MgO・Al2 O3 あるいはMg
OはAl2 O3 と比較して、溶鋼との界面エネルギーが
小さいために凝集合体しにくく、微細化が達成される。
鋼材中の酸化物系介在物はそのサイズが大きいほど、そ
の部分に応力が集中しやすくなり、疲労破壊に起点とな
りやすい。それゆえ酸化物系介在物のサイズを微細化す
ることにより、この問題は大幅に改善される。非調質鋼
においても疲労強度が大幅に向上する。Al 2 O 3 as an oxide inclusion in molten steel
When Mg is added in the presence of the above, the composition of the oxide is modified from Al 2 O 3 to MgO.Al 2 O 3 or MgO. At this time, MgO.Al 2 O 3 or Mg
Compared with Al 2 O 3 , O has a smaller interfacial energy with molten steel, so that it is less likely to aggregate and coalesce, and miniaturization is achieved.
As the size of the oxide inclusions in the steel material is larger, stress is more likely to be concentrated on that portion, which easily causes fatigue fracture. Therefore, by reducing the size of the oxide-based inclusions, this problem is greatly improved. Even in non-heat treated steel, the fatigue strength is greatly improved.
【0007】このように酸化物が微細化された鋼を詳細
に調査した結果、凝固過程においてMnSが酸化物を
核として晶出するためMnSの微細分散が達成され、
この微細MnSにVN等の窒化物の付着しやすいことが
明らかとなった。その結果、フェライト変態が促進さ
れ、結晶粒が飛躍的に微細化し、靱性が大幅に向上す
る。MnSが酸化物に付着しやすい理由は、MnS及び
酸化物にMgが複合していることによる。即ち、MnS
は(Mn・Mg)Sとして存在するものが多数あり、ま
た酸化物も前述の通りMgO・Al2 O3 あるいはMg
Oであるから、Mgを媒体として両者が付着する。また
MnSにVN等の窒化物の付着しやすいことも同様の理
由による。MgはMg3 N2 の窒化物を形成することか
ら、(V・Mg)Nも存在する。As a result of detailed examination of the steel in which the oxides have been refined in this way, MnS is crystallized with the oxides as nuclei in the solidification process, so that fine dispersion of MnS is achieved.
It has been clarified that a nitride such as VN is easily attached to the fine MnS. As a result, ferrite transformation is promoted, crystal grains are dramatically refined, and toughness is significantly improved. The reason why MnS tends to adhere to the oxide is that Mg is combined with MnS and the oxide. That is, MnS
Is present as (Mn.Mg) S, and the oxide is MgO.Al 2 O 3 or Mg as described above.
Since it is O, both are attached using Mg as a medium. Further, the reason why nitride such as VN is easily attached to MnS is also due to the same reason. Since Mg forms a nitride of Mg 3 N 2 , (V · Mg) N is also present.
【0008】以上を考慮した最適Mg含有量は、Tot
alMg(=T.Mg)で表示すると、0.0007〜
0.0280重量%となる。T.Mgが0.0007重
量%未満では、アルミナの微細化が不十分であり、その
ためMnSの微細分散、VN付着が不十分となり結晶粒
微細化効果が出現しない。T.Mgが0.0280重量
%を越えると、結晶粒微細化効果が飽和し、それ以上の
効果が期待できない。The optimum Mg content considering the above is Tot
Displayed as alMg (= T.Mg), 0.0007-
It becomes 0.0280% by weight. T. If the Mg content is less than 0.0007% by weight, the fineness of the alumina is insufficient, so that the fine dispersion of MnS and the VN adhesion are insufficient, and the grain refinement effect does not appear. T. When Mg exceeds 0.0280% by weight, the grain refining effect is saturated, and no further effect can be expected.
【0009】次に、酸化物個数の規定理由を述べる。鋼
の精錬工程では一部不可避的な混入により、本発明範囲
外、即ちMgO及びMgO・Al2 O3 以外の酸化物が
存在する。この量を個数割合で全体の20%未満とする
ことにより、酸化物系介在物の微細分散が高位安定化さ
れ、さらなる材質向上効果が認められたため、(MgO
+MgO・Al2 O3 )個数/全酸化物個数≧0.80
と規定した。なお、酸化物は一定面積に存在する個数比
であり、そのサイズは円相当直径で1.0μ以上を対象
とした。また酸化物組成の定量分析はX線マイクロアナ
ライザーによった。Next, the reasons for defining the number of oxides will be described. Oxides other than MgO and MgO.Al 2 O 3 exist outside the scope of the present invention due to unavoidable mixing in the steel refining process. By setting this amount to be less than 20% of the total number, the fine dispersion of oxide-based inclusions was stabilized at a higher level, and a further material improvement effect was observed.
+ MgO.Al 2 O 3 ) number / total oxide number ≧ 0.80
Stipulated. The oxide is a number ratio existing in a certain area, and its size is 1.0 μ or more in equivalent circle diameter. Quantitative analysis of oxide composition was performed by an X-ray microanalyzer.
【0010】次に、酸化物個数の規定理由を述べる。前
述の通り、酸化物を核として晶出したMnSはフェライ
ト変態を促進し、結晶粒微細化さらには鋼材靱性の大幅
向上を可能ならしめる。そこでフェライト変態促進に関
して適正範囲を検討した結果、全MnS個数のうち酸化
物に付着したMnS個数が30%以上になるとフェライ
ト変態が高位安定化することが明らかになったため、酸
化物に付着したMnS個数/全MnS個数≧0.30と
規定した。ここに、酸化物に付着したMnS個数/全M
nS個数≧0.30とするための具体的手法は特定する
ものではないが、酸化物個数条件を本発明範囲に整え、
さらに鋼の凝固条件を適正に制御すること等によって達
成できる。なお、MnSも酸化物同様一定面積に存在す
る個数比であり、そのサイズは円相当直径で0.2μ以
上を対象とした。また組成的にはMgを複合したMnS
も対象とした。Next, the reasons for defining the number of oxides will be described. As described above, MnS crystallized with the oxide as the nucleus promotes the ferrite transformation, and enables the grain refinement and the steel material toughness to be significantly improved. Therefore, as a result of investigating an appropriate range for accelerating the ferrite transformation, it was revealed that the ferrite transformation is highly stabilized when the number of MnS attached to the oxide is 30% or more of the total number of MnS. Number / total MnS number ≧ 0.30. Here, the number of MnS attached to the oxide / total M
The specific method for satisfying the number of nS ≧ 0.30 is not specified, but the number of oxides condition is adjusted within the range of the present invention.
Further, it can be achieved by appropriately controlling the solidification conditions of steel. Like MnS, MnS is also a number ratio existing in a certain area, and its size is 0.2 μm or more in equivalent circle diameter. In terms of composition, MnS that is a composite of Mg
Also targeted.
【0011】次に、本発明鋼の製造方法について述べ
る。本発明鋼の製造方法は特に限定するものではない。
即ち、母溶鋼の溶製は高炉−転炉法あるいは電気炉法の
いずれでもよい。また、溶鋼へのMg添加方法も特定す
るものではなく、Mg源を自然落下による添加法、不活
性ガスを用い吹込む方法、Mg源を充填した鉄製ワイヤ
ーを溶鋼中へ供給する方法等を採用してよい。添加場所
も溶鋼取鍋、連続鋳造タンディッシュ、連続鋳造モール
ド等を自由に選定してよい。Mg源としては金属Mg、
Mg−Coke,Mg−Al合金、Mg−Si合金、M
g−Si−Mn合金等の粒状品を使用でき、これらとF
e,Al,Fe−Si合金の粒状品を混合して使用する
ことも可能である。さらに、母溶鋼から鋼塊あるいは鋳
片を製造し、圧延する方法も限定するものではない。Next, a method for producing the steel of the present invention will be described. The method for producing the steel of the present invention is not particularly limited.
That is, melting of the mother molten steel may be performed by either the blast furnace-converter method or the electric furnace method. Also, the method of adding Mg to the molten steel is not specified, and the method of adding the Mg source by free fall, the method of blowing with an inert gas, the method of supplying the iron wire filled with the Mg source into the molten steel, etc. are adopted. You can do it. As for the addition place, a molten steel ladle, a continuous casting tundish, a continuous casting mold, etc. may be freely selected. Metal Mg as a Mg source,
Mg-Coke, Mg-Al alloy, Mg-Si alloy, M
Granular products such as g-Si-Mn alloys can be used and these and F
It is also possible to mix and use granular products of e, Al, and Fe-Si alloy. Further, the method for producing a steel ingot or a slab from the molten steel and rolling it is not limited.
【0012】次に、Mg以外の成分の規定理由について
述べる。Cは機械構造用部品としての強度を確保するた
め必要不可欠な元素として添加されるが、その含有量が
0.15重量%未満では所定の強度、硬度を得るために
合金元素量が多くなり不経済であると同時に過度の合金
元素の添加は焼き入れ性を必要以上に上昇させ好ましく
ないので、下限を0.15重量%とした。またC含有量
が0.60重量%を超えて添加された場合には靱性が著
しく低下し好ましくないため上限を0.60重量%とし
た。Next, the reasons for defining the components other than Mg will be described. C is added as an indispensable element for securing the strength as a machine structural part, but if its content is less than 0.15% by weight, the amount of alloying elements becomes large in order to obtain a predetermined strength and hardness. At the same time as being economical, excessive addition of alloying elements undesirably increases the hardenability more than necessary, so the lower limit was made 0.15% by weight. Further, when the C content exceeds 0.60% by weight, the toughness is remarkably lowered, which is not preferable, so the upper limit was made 0.60% by weight.
【0013】Siは脱酸剤として働き、固溶強化元素と
して使われる。0.1重量%に満たないときには脱酸剤
としての作用が不足する。3.0重量%以上では必要以
上に硬度を高め、靱性を劣化させる。Mnは強度の調整
と脱酸のために添加される。0.5重量%未満では強度
が低下し、2.0重量%を超えると靱性が低下すると共
に、製造が困難となる。Si acts as a deoxidizer and is used as a solid solution strengthening element. If it is less than 0.1% by weight, the action as a deoxidizing agent is insufficient. If it is 3.0% by weight or more, hardness is increased more than necessary and toughness is deteriorated. Mn is added for adjusting strength and deoxidizing. If it is less than 0.5% by weight, the strength is lowered, and if it exceeds 2.0% by weight, the toughness is lowered and the production becomes difficult.
【0014】CrはMnと同様に強度を補うため1重量
%まで添加することができるが、1.0重量%を超えた
場合には靱性を劣化させる。Vは固溶強化、析出強化に
より靱性を向上させる。この効果を得るためには、0.
03重量%以上の添加が必要である。しかし、0.30
重量%以上を添加しても効果は飽和する。Cr, like Mn, can be added up to 1% by weight in order to supplement strength, but if it exceeds 1.0% by weight, toughness deteriorates. V improves toughness by solid solution strengthening and precipitation strengthening. To obtain this effect, 0.
It is necessary to add more than 03% by weight. However, 0.30
The effect is saturated even if more than wt% is added.
【0015】Sは鋼の切削性向上、及びMnS生成のた
めに不可欠な元素である。この効果は0.02重量%以
上で可能となる。しかし、0.10重量%を超えると、
靱性が低下し好ましくない。NはVと結合しVNとして
析出強化作用を発揮し、靱性を向上させる。0.003
重量%未満のN量では十分な効果が期待できず、0.0
20重量%を超えると、固溶したNが多くなりすぎ靱性
が低下する。Alは脱酸のために添加されるが、同時に
AlNを形成し結晶粒を微細化する。0.10重量%を
超えると靱性を劣化させ好ましくなく、0.01重量%
未満ではAlNの細粒効果が期待できない。S is an essential element for improving the machinability of steel and forming MnS. This effect is possible with 0.02% by weight or more. However, if it exceeds 0.10% by weight,
It is not preferable because the toughness decreases. N combines with V to exert a precipitation strengthening action as VN and improves toughness. 0.003
If the amount of N is less than wt%, no sufficient effect can be expected.
When it exceeds 20% by weight, the amount of solid solution N is too much and the toughness decreases. Al is added for deoxidation, but at the same time AlN is formed and the crystal grains are refined. If it exceeds 0.10% by weight, the toughness deteriorates, which is not preferable, and 0.01% by weight
If it is less than the above, the fine grain effect of AlN cannot be expected.
【0016】Ti及びNbは結晶粒度をさらに微細化す
るために添加されるものである。Tiが0.005重量
%未満、Nbが0.005重量%ではその効果が発揮さ
れない。一方、Tiが0.025重量%、Nbでは0.
100重量%を超えると、結晶粒微細化効果は飽和し、
むしろ靱性を劣化させるので好ましくない。なお本発明
鋼においてはNi,Mo,Cuを添加することもでき
る。これらの元素の添加により鍛造品の強度向上が可能
となる。以下に本発明の実施例を述べ、本発明の効果に
ついて記載する。Ti and Nb are added to further refine the crystal grain size. If Ti is less than 0.005% by weight and Nb is 0.005% by weight, the effect is not exhibited. On the other hand, Ti is 0.025% by weight and Nb is 0.
If it exceeds 100% by weight, the grain refining effect is saturated,
Rather, it deteriorates toughness, which is not preferable. In addition, Ni, Mo, and Cu can be added to the steel of the present invention. By adding these elements, the strength of the forged product can be improved. Examples of the present invention will be described below, and effects of the present invention will be described.
【0017】[0017]
【実施例】高炉−転炉−連続鋳造法により表1に示す化
学成分の鋳片を製造した。Mg添加は、転炉から排出さ
れた取鍋内溶鋼に、金属Mg粒及びFe−Si合金粒の
混合物を充填した鉄製ワイヤーを供給する方法によっ
た。次に分塊圧延、棒鋼圧延して直径85mmの丸棒を
製造した後、1250℃に加熱して自動車用前車軸に鍛
造し、大気中で放冷した。この前車軸からUノッチシャ
ルピー試験片、引っ張り試験片、硬さ試験片を切出し、
衝撃値、強度、ビッカース硬度を測定した。表2には各
試験材の試験結果を示すが、本発明鋼は熱鍛ままで高い
靱性を有していることがわかる。Example A slab having the chemical composition shown in Table 1 was produced by a blast furnace-converter-continuous casting method. Mg was added by a method of supplying an iron wire filled with a mixture of metallic Mg particles and Fe-Si alloy particles to the molten steel in the ladle discharged from the converter. Next, slab rolling and bar steel rolling were performed to manufacture a round bar having a diameter of 85 mm, which was then heated to 1250 ° C., forged into a front axle for automobiles, and allowed to cool in the atmosphere. Cut out a U-notch Charpy test piece, a tensile test piece, and a hardness test piece from this front axle,
The impact value, strength and Vickers hardness were measured. Table 2 shows the test results of each test material, and it can be seen that the steel of the present invention has high toughness in the as-forged state.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【発明の効果】以上、詳細に述べてきたように、本発明
鋼は熱間鍛造ままで極めて高い靱性を有し、機械構造用
部品として有用であり、その産業上の波及効果は極めて
顕著なものがある。As described above in detail, the steel of the present invention has extremely high toughness as hot forged and is useful as a machine structural component, and its industrial ripple effect is extremely remarkable. There is something.
Claims (2)
式を満足することを特徴とする高性能熱間鍛造用非調質
鋼。 (MgO+MgO・Al2 O3 )個数/全酸化物個数 ≧0.80…(1) 酸化物に付着したMnS個数/全MnS個数 ≧0.30 …(2)1. By weight%, C: 0.15 to 0.60% Si: 0.1 to 3.0% Mn: 0.5 to 2.0% Cr: 1.0% or less V: 0.0. 03-0.30% S: 0.02-0.10% N: 0.003-0.020% Al: 0.01-0.10% TotalMg: 0.0007-0.0280%, and the balance. Of Fe and unavoidable impurities, and the oxides and sulfides contained therein satisfy the following expression in terms of number ratio: high-performance hot-forged non-heat treated steel. (MgO + MgO.Al 2 O 3 ) number / total oxide number ≧ 0.80 ... (1) MnS number attached to oxide / total MnS number ≧ 0.30 (2)
式を満足することを特徴とする高性能熱間鍛造用非調質
鋼。 (MgO+MgO・Al2 O3 )個数/全酸化物個数 ≧0.80…(1) 酸化物に付着したMnS個数/全MnS個数 ≧0.30 …(2)2. In% by weight, C: 0.15 to 0.60% Si: 0.1 to 3.0% Mn: 0.5 to 2.0% Cr: 1.0% or less V: 0.0. 03-0.30% S: 0.02-0.10% N: 0.003-0.020% Al: 0.01-0.10% Ti: 0.005-0.025% Nb: 0. 005 to 0.100% TotalMg: 0.0007 to 0.0280%, the balance consisting of Fe and inevitable impurities, and the oxides and sulfides contained therein satisfy the following formula as a number ratio. High performance non-heat treated steel for hot forging. (MgO + MgO.Al 2 O 3 ) number / total oxide number ≧ 0.80 ... (1) MnS number attached to oxide / total MnS number ≧ 0.30 (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02803394A JP3391537B2 (en) | 1994-02-25 | 1994-02-25 | Non-heat treated steel for high performance hot forging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02803394A JP3391537B2 (en) | 1994-02-25 | 1994-02-25 | Non-heat treated steel for high performance hot forging |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07238339A true JPH07238339A (en) | 1995-09-12 |
JP3391537B2 JP3391537B2 (en) | 2003-03-31 |
Family
ID=12237437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02803394A Expired - Fee Related JP3391537B2 (en) | 1994-02-25 | 1994-02-25 | Non-heat treated steel for high performance hot forging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3391537B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184477A1 (en) * | 2000-08-31 | 2002-03-06 | Kabushiki Kaisha Kobe Seiko Sho | Free machining steel for use in machine structure of excellent mechanical characteristics |
-
1994
- 1994-02-25 JP JP02803394A patent/JP3391537B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184477A1 (en) * | 2000-08-31 | 2002-03-06 | Kabushiki Kaisha Kobe Seiko Sho | Free machining steel for use in machine structure of excellent mechanical characteristics |
US6579385B2 (en) | 2000-08-31 | 2003-06-17 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Free machining steel for use in machine structure of excellent mechanical characteristics |
Also Published As
Publication number | Publication date |
---|---|
JP3391537B2 (en) | 2003-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100400679C (en) | High-strength non-quenched and tempered seamless steel pipe and its manufacturing method | |
EP3768868B1 (en) | Forged part of bainitic steel and a method of manufacturing thereof | |
US5648044A (en) | Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance | |
CN111433381A (en) | High Mn steel and method for producing same | |
JP3706560B2 (en) | Mechanical structural steel with excellent chip control and mechanical properties | |
US5415711A (en) | High-strength spring steels and method of producing the same | |
CN112143970B (en) | High-strength high-toughness non-quenched and tempered front axle steel and production method thereof | |
JPH0892687A (en) | High strength and high toughness non-heattreated steel for hot forging and its production | |
CN115896634B (en) | High-temperature-resistant nonferrous metal die-casting forming die steel material and preparation method thereof | |
JP4041413B2 (en) | Machine structural steel having excellent chip disposal and manufacturing method thereof | |
JP3570712B2 (en) | Pre-hardened steel for die casting mold | |
JP2001303172A (en) | Case hardening boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method | |
JP5974380B2 (en) | Precipitation hardening type stainless steel and stainless steel parts, and method for producing precipitation hardening type stainless steel | |
JP3391537B2 (en) | Non-heat treated steel for high performance hot forging | |
JP6593111B2 (en) | Zr-containing forging steel | |
JPH07188875A (en) | Non-heat treated steel for high toughness hot forging | |
US20230323493A1 (en) | Forged part of steel and a method of manufacturing thereof | |
JPH0472886B2 (en) | ||
JPH05279788A (en) | Non-heat treated steel for hot forging with excellent strength and toughness | |
JP4564189B2 (en) | High toughness non-tempered steel for hot forging | |
JP2003055743A (en) | Steel for cold die having excellent machinability | |
JP4334738B2 (en) | High strength high toughness cast steel | |
RU2249626C1 (en) | Round-profiled rolled iron from medium-carbon boron-containing steel for cold die forging of high-strength fastening members | |
JPH0734190A (en) | Steel for machine structure excellent in machinability and cold forgeability | |
RU2244756C1 (en) | Method for steel manufacturing, steel, and products made from the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021217 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140124 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |