[go: up one dir, main page]

JPH07235535A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPH07235535A
JPH07235535A JP6263807A JP26380794A JPH07235535A JP H07235535 A JPH07235535 A JP H07235535A JP 6263807 A JP6263807 A JP 6263807A JP 26380794 A JP26380794 A JP 26380794A JP H07235535 A JPH07235535 A JP H07235535A
Authority
JP
Japan
Prior art keywords
insulating film
film
gas
sin
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6263807A
Other languages
Japanese (ja)
Other versions
JP3336770B2 (en
Inventor
Hideyoshi Kitou
英至 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26380794A priority Critical patent/JP3336770B2/en
Publication of JPH07235535A publication Critical patent/JPH07235535A/en
Application granted granted Critical
Publication of JP3336770B2 publication Critical patent/JP3336770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film, which is superior in step coverage and of which the content of a hydrocarbon radical component is reduced. CONSTITUTION:A plasma CDV method is conducted using organic Si compound gas having an Si-N bond, an SiN insulating film 4 is formed and thereafter, a plasma treatment is conducted in an atmosphere of post-treatment gas consisting of molecules having N atoms, such as N2 gas and NH3 gas, and hydrocarbon group components contained in the film 4 are removed. Or the plasma CDV method is conducted using the mixed gas of the organic Si compound gas having the Si-N bond and organic nitrogen compound gas, such as dimethylhidrazine gas and phenylhydrazine gas, and the film 4 is formed while the hydrocarbon group components contained in the film 4 are removed. When this film formation is applied to the formation of a passivation film and an interlayer insulating film, the insulation properties of the passivation and interlayer insulation is ensured and the passivation and the interlayer insulating film is superior also in water resistance and corrosion resistance. As a result, a highly reliable semiconductor device can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体装置にお
いてウェハの最終保護膜あるいは層間絶縁膜として用い
られる窒化シリコン(SiN)系絶縁膜あるいは酸窒化
シリコン(SiON)系絶縁膜を有機シリコン化合物
(以下、有機Si化合物と記す。)を原料ガスに用いて
化学的気相成長(以下、CVDと記す。)法により成膜
する絶縁膜の形成方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a silicon nitride (SiN) type insulating film or a silicon oxynitride (SiON) type insulating film used as a final protective film or an interlayer insulating film of a wafer in a semiconductor device, for example. The present invention relates to a method for forming an insulating film, which is formed by a chemical vapor deposition (hereinafter referred to as CVD) method using an organic Si compound as a source gas.

【0002】[0002]

【従来の技術】従来より、ウェハの最終保護膜、いわゆ
るパッシベーション膜には、SiN系絶縁膜が広く用い
られている。このSiN系絶縁膜を成膜するに際して
は、既に形成されたアルミニウム(Al)系配線等の低
融点材料層にダメージを与えないように、プラズマCV
D法によって低温での成膜が行われている。原料ガスと
しては、従来、シラン(SiH4 )/アンモニア(NH
3 )混合ガス、SiH4 /窒素(N2 )混合ガス等が用
いられてきた。
2. Description of the Related Art Conventionally, a SiN-based insulating film has been widely used as a final protective film of a wafer, that is, a so-called passivation film. When forming this SiN-based insulating film, plasma CV is used so as not to damage the low-melting-point material layer such as aluminum (Al) -based wiring already formed.
Film formation is performed at a low temperature by the D method. As a source gas, conventionally, silane (SiH 4 ) / ammonia (NH
3 ) Mixed gas, SiH 4 / nitrogen (N 2 ) mixed gas, etc. have been used.

【0003】しかし、このようにして成膜されるSiN
系絶縁膜のカバレージは、半導体装置の微細化あるいは
多層配線化に伴う基板の表面段差の増大に追従できなく
なっている。図3に、Si基板1上にSiO系層間絶縁
膜2およびAl系配線3が形成され、この上にSiN系
絶縁膜14を成膜したウェハを示すが、SiN系絶縁膜
14のステップカバレージ(段差被覆性)が悪いため
に、ボイド15が形成されてしまっている。また、この
ようなSiN系絶縁膜14にはクラックも発生しやすく
なる。
However, the SiN film thus formed
The coverage of the system insulating film cannot follow the increase in the surface step of the substrate due to the miniaturization of the semiconductor device or the multi-layer wiring. FIG. 3 shows a wafer in which the SiO-based interlayer insulating film 2 and the Al-based wiring 3 are formed on the Si substrate 1, and the SiN-based insulating film 14 is formed thereon. Since the step coverage is poor, the void 15 is formed. Also, cracks are likely to occur in such a SiN-based insulating film 14.

【0004】上記ステップカバレージを改善する方法と
しては、2周波法によってプラズマ状態を制御すること
が提案されている。これは、プラズマCVD装置の平行
平板電極において、ウェハを載置する側の電極には数百
kHzの低周波RF電圧を印加し、他の電極にはMHz
オーダーの高周波RF電圧を印加するものであり、低エ
ネルギーのイオンボンバードメントを増加させて、カバ
レージを向上させようとするものである。しかし、この
方法によっても、パターンの微細化や表面段差の増大化
に十分に対応できるわけではなく、コンフォーマル成膜
を達成するには至っていない。
As a method for improving the above step coverage, it has been proposed to control the plasma state by the dual frequency method. This is because, in a parallel plate electrode of a plasma CVD apparatus, a low frequency RF voltage of several hundred kHz is applied to the electrode on the side where the wafer is placed, and MHz is applied to the other electrodes.
A high-frequency RF voltage of the order is applied, and an attempt is made to increase low-energy ion bombardment and improve coverage. However, even with this method, it is not possible to sufficiently cope with the miniaturization of the pattern and the increase of the surface step, and the conformal film formation has not been achieved yet.

【0005】そこで、さらにカバレージに優れたSiN
系絶縁膜を成膜する方法として、原料ガスに有機Si化
合物を用いてCVDを行うことが提案された。ここで、
有機Si化合物とは、[(CH3 2 N]4 Si、
[(CH3 2 N]3 SiH、[(CH3 2 N]2
iH2 といった、Si原子,N原子,C原子,H原子を
主な構成要素とし、シリコン原子と窒素原子との結合
(Si−N結合)を有する化合物である。これを原料ガ
スとして成膜を行うと、上記Si−N結合の存在によ
り、効率のよいSiN系絶縁膜の成膜が可能となる。ま
た、成膜時に、有機Si化合物から炭化水素基が切断さ
れることにより、Si−N結合を存続した中間生成物が
高分子化されやすく、流動性が高くなるために、カバレ
ージに優れたSiN系絶縁膜が成膜できると考えられて
いる。
Therefore, SiN which is more excellent in coverage
As a method of forming a system insulating film, it has been proposed to perform CVD using an organic Si compound as a source gas. here,
The organic Si compound means [(CH 3 ) 2 N] 4 Si,
[(CH 3 ) 2 N] 3 SiH, [(CH 3 ) 2 N] 2 S
It is a compound such as iH 2 having Si atoms, N atoms, C atoms, and H atoms as main constituent elements and having a bond between a silicon atom and a nitrogen atom (Si—N bond). When a film is formed using this as a raw material gas, the existence of the above Si—N bond makes it possible to efficiently form a SiN-based insulating film. In addition, since the hydrocarbon group is cleaved from the organic Si compound during the film formation, the intermediate product that retains the Si—N bond is easily polymerized, and the fluidity becomes high. It is believed that a system insulating film can be formed.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述のよう
に有機Si化合物を用いて成膜されたSiN系絶縁膜に
おいては、炭化水素基の残留によって絶縁耐性が劣化し
たり、耐水性や耐腐蝕性が劣化することが懸念される。
そして、このようなSiN系絶縁膜をパッシベーション
膜および層間絶縁膜として適用すると、半導体装置の信
頼性を低下させることにもなりかねない。
However, in the SiN type insulating film formed by using the organic Si compound as described above, the insulation resistance is deteriorated due to the residual hydrocarbon groups, and the water resistance and the corrosion resistance are deteriorated. There is concern that the property may deteriorate.
If such a SiN-based insulating film is applied as a passivation film and an interlayer insulating film, the reliability of the semiconductor device may be reduced.

【0007】そこで、本発明はかかる従来の実情に鑑み
て提案されたものであり、優れたカバレージを確保しつ
つ、炭化水素基の取り込みを抑制することができる絶縁
膜の形成方法を提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and provides a method for forming an insulating film capable of suppressing the incorporation of a hydrocarbon group while ensuring excellent coverage. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意検討を重ねた結果、以下に示す
ような2つの方法を提案するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above-mentioned object, and as a result, have proposed the following two methods.

【0009】1つ目の発明は、Si−N結合を有する有
機Si化合物を用い、CVD法により基板上に絶縁膜を
成膜する成膜工程と、分子内に少なくともN原子を含む
後処理ガスの雰囲気下にて、前記絶縁膜のプラズマ処理
を行う後処理工程とを有するものである。
A first invention is a film forming step of forming an insulating film on a substrate by a CVD method using an organic Si compound having a Si--N bond, and a post-treatment gas containing at least N atom in the molecule. And a post-treatment step of performing plasma treatment on the insulating film in the atmosphere.

【0010】前記分子内に少なくともN原子を含む後処
理ガスは、絶縁膜中に取り込まれた炭化水素基成分を引
き抜く働きをするものである。この後処理ガスとして
は、N2 の他に、アジ化水素(N3 H),NH3 ,アン
モニア誘導体,ヒドラジン(N2 4 ),メチルヒドラ
ジン等のヒドラジン誘導体等、分子内にH原子をも含有
する化合物が使用できる。なお、N2 ガスよりも後者の
化合物ガスの方がプラズマ中で分解されやすいため、絶
縁膜から炭化水素基成分を引き抜く働きがさらに強いと
考えられる。
The post-treatment gas containing at least N atoms in the molecule functions to remove the hydrocarbon group component taken into the insulating film. As the post-treatment gas, in addition to N 2 , hydrogen azide (N 3 H), NH 3 , an ammonia derivative, a hydrazine (N 2 H 4 ), a hydrazine derivative such as methylhydrazine, or the like having H atoms in the molecule. Compounds also containing can be used. Since the latter compound gas is more easily decomposed in plasma than the N 2 gas, it is considered that the action of extracting the hydrocarbon group component from the insulating film is stronger.

【0011】炭化水素基成分をさらに低減させるために
は、成膜工程と後処理工程とを交互に複数回繰り返しな
がら絶縁膜を所望の膜厚に形成するとよい。これによ
り、絶縁膜の表層部のみならず、深層部に亘って十分に
炭化水素基成分を除去できる。
In order to further reduce the hydrocarbon group component, the insulating film may be formed to a desired film thickness by alternately repeating the film forming process and the post-treatment process a plurality of times. As a result, the hydrocarbon group component can be sufficiently removed not only in the surface layer portion of the insulating film but also in the deep layer portion.

【0012】一方、2つ目の発明は、Si−N結合を有
する有機Si化合物と有機窒素化合物とを含む混合ガス
を用いて、CVD法により基板上に絶縁膜を成膜するも
のである。
On the other hand, the second invention is to form an insulating film on a substrate by a CVD method using a mixed gas containing an organic Si compound having a Si--N bond and an organic nitrogen compound.

【0013】もちろん、前述した1つ目の発明と組み合
わせて、上述のような有機窒素化合物を用いた成膜によ
り炭化水素基成分の取り込みの少ない絶縁膜をカバレー
ジよく成膜した後、分子内に少なくともN原子を含む後
処理ガスの雰囲気下でのプラズマ処理によって、さらに
絶縁膜表層部の炭化水素基成分を低減させてもよい。ま
た、上述のような有機窒素化合物を用いた成膜と、分子
内に少なくともN原子を含む後処理ガスの雰囲気下での
プラズマ処理とを繰り返しながら絶縁膜を形成してもよ
い。
Of course, in combination with the above-mentioned first invention, after forming an insulating film with a small incorporation of hydrocarbon group components by film formation using the organic nitrogen compound as described above, it is possible to The hydrocarbon group component in the surface layer portion of the insulating film may be further reduced by plasma treatment in an atmosphere of a post-treatment gas containing at least N atoms. Further, the insulating film may be formed by repeating the film formation using the organic nitrogen compound as described above and the plasma treatment under the atmosphere of the post-treatment gas containing at least N atoms in the molecule.

【0014】ここで、前記有機窒素化合物としては、少
なくとも1つ以上のアルキル基またはフェニル基を有す
るヒドラジン誘導体を用いて好適である。
The organic nitrogen compound is preferably a hydrazine derivative having at least one alkyl group or phenyl group.

【0015】以上に示した絶縁膜の形成方法のいずれに
おいても、成膜時にはSi−N結合を有する有機Si化
合物を原料ガスとして用いるが、この有機Si化合物と
しては、アジド基(以下、−N3 基とする。)や、−N
2 (但し、Rは炭素数1以上の炭化水素基である。)
基をSi原子に結合させた構成のものが好適である。特
に、−NR2 がSi原子に結合したものは、成膜時に炭
化水素基が切断されて生成される中間生成物が高分子化
されやすくなり、流動性が高まるために、カバレージを
向上させる効果に優れる。
In any of the above-described methods for forming an insulating film, an organic Si compound having a Si--N bond is used as a source gas during film formation. As the organic Si compound, an azide group (hereinafter, -N) is used. 3 units) and -N
R 2 (However, R is a hydrocarbon group having 1 or more carbon atoms.)
A structure in which a group is bonded to a Si atom is preferable. In particular, when -NR 2 is bonded to the Si atom, the intermediate product produced by the cleavage of the hydrocarbon group during film formation is likely to be polymerized, and the fluidity is enhanced, so that the effect of improving the coverage is obtained. Excellent in.

【0016】さらに、上記Si原子にアルキル基(以
下、−R’基とする。)および/またはアルコキシル基
(以下、−OR''基とする。)が結合していると、成膜
時にこれら−R’基や−OR''基が切断されることによ
り、生成される中間生成物の流動性が高くなり、カバレ
ージが向上する。
Further, when an alkyl group (hereinafter referred to as -R 'group) and / or an alkoxyl group (hereinafter referred to as -OR "group) is bonded to the above Si atom, these are formed at the time of film formation. Cleavage of the —R ′ group and the —OR ″ group increases the fluidity of the intermediate product to be produced and improves the coverage.

【0017】また、上記Si−N結合を有する有機Si
化合物は、Si原子にフッ素(F)原子が結合した構造
であってもよい。該F原子が結合していると、成膜時の
重合反応が促進されてカバレージが向上したり、成膜さ
れた絶縁膜の低誘電率化を図ることができる。
The organic Si having the above Si--N bond
The compound may have a structure in which a fluorine (F) atom is bonded to a Si atom. When the F atoms are bonded, the polymerization reaction at the time of film formation is promoted, the coverage is improved, and the dielectric constant of the formed insulating film can be reduced.

【0018】なお、Si原子に直接結合するH原子は、
上述した−NR2 基,−N3 基,−R' 基,−OR''基
のように、Si−N結合を存続させて成膜効率を向上さ
せる効果やカバレージを改善する効果を示さないので、
Si原子に1つも結合させないか、結合させても少数と
した方がよい。
The H atom directly bonded to the Si atom is
Unlike the above-mentioned —NR 2 group, —N 3 group, —R ′ group, and —OR ″ group, it does not exhibit the effect of maintaining the Si—N bond to improve the film formation efficiency and the effect of improving the coverage. So
It is better not to bond even one Si atom, or to make a small number even if bonded.

【0019】さらにまた、成膜速度を向上させるため
に、Si−Si結合を有する有機Si化合物を用いても
よい。これにより、成膜時に供給する原料ガスの流量を
増加したり、プラズマCVD装置の電極に印加する電力
を増大することなく成膜速度を向上させることができる
ため、不純物の取り込みが増大したり、カバレージが劣
化したりといった問題を生じさせることなく、スループ
ットを向上させることが可能となる。
Furthermore, an organic Si compound having a Si--Si bond may be used to improve the film formation rate. This makes it possible to increase the flow rate of the source gas supplied during film formation and to increase the film formation rate without increasing the power applied to the electrodes of the plasma CVD apparatus, thus increasing the uptake of impurities, Throughput can be improved without causing a problem such as deterioration of coverage.

【0020】したがって、原料ガスとして使用可能な有
機Si化合物のうち、最も望ましい構造を有するもの
は、下記の一般式(1)にて示すことができる。
Therefore, among the organic Si compounds that can be used as the source gas, those having the most desirable structure can be represented by the following general formula (1).

【0021】 Sin (NR2w (N3 x (R' )y (OR'')z v ・・・(1) (但し、v,w,x,y,zは、v+w+x+y+z=
2n+2、0≦w≦2n+2、0≦x≦2n+2、1≦
w+x≦2n+2、0≦y≦2n+1、0≦z≦2n+
1、0≦v≦2n+1を満たす整数であり、nは1以上
の整数である。また、R、R' 、R''は炭素数1以上の
炭化水素基を示す。) なお、上記R、R' 、R''で示される炭化水素基の炭素
骨格は特に限定されず、飽和炭化水素であっても不飽和
炭化水素であってもよい。そして、それぞれの場合につ
いて、直鎖状,分枝状,環状の炭素骨格が考えられる
が、これらのいずれであってもよく、例えば、メチル
基,エチル基,シクロペンタジエニル基等が挙げられ
る。
Si n (NR 2 ) w (N 3 ) x (R ′) y (OR ″) z F v (1) (where v, w, x, y, z are v + w + x + y + z =
2n + 2, 0 ≦ w ≦ 2n + 2, 0 ≦ x ≦ 2n + 2, 1 ≦
w + x ≦ 2n + 2, 0 ≦ y ≦ 2n + 1, 0 ≦ z ≦ 2n +
1, an integer satisfying 0 ≦ v ≦ 2n + 1, and n is an integer of 1 or more. Further, R, R'and R '' represent a hydrocarbon group having 1 or more carbon atoms. The carbon skeleton of the hydrocarbon group represented by R, R ′ and R ″ is not particularly limited, and may be saturated hydrocarbon or unsaturated hydrocarbon. In each case, a linear, branched, or cyclic carbon skeleton is conceivable, but any of these may be used, and examples thereof include a methyl group, an ethyl group, and a cyclopentadienyl group. .

【0022】上記一般式(1)において、z=0のと
き、即ち、−OR''基が結合されていない有機Si化合
物であるとき、これを原料ガスとし、且つ、これに酸素
系ガスを混合しなければ、SiN系薄膜が成膜されるこ
ととなる。一方、x≧1のとき、即ち−OR''基が結合
されている有機Si化合物であるとき、これを原料ガス
として用いると、成膜中に微量のO原子が取り込まれる
ので、酸素系ガスを併用しなくともSiON系薄膜が成
膜されることとなる。
In the above general formula (1), when z = 0, that is, when the organic Si compound is one in which the --OR '' group is not bonded, this is used as a source gas, and an oxygen-based gas is added to this. If they are not mixed, a SiN-based thin film will be formed. On the other hand, when x ≧ 1, that is, when the compound is an organic Si compound having an —OR ″ group bonded, when this is used as a source gas, a trace amount of O atoms is taken in during film formation, so that an oxygen-based gas is used. The SiON-based thin film can be formed without using the above.

【0023】また、成膜を行うに際しては、既に形成さ
れたAl系配線等の低融点材料層にダメージを与えな
い、低温での処理が可能となることから、反応室内にプ
ラズマを発生させながらCVDを行って好適である。用
いるプラズマCVD装置としては、平行平板型プラズマ
CVD装置であってもよいし、低圧力下で高密度のプラ
ズマを発生できる有磁場マイクロ波プラズマCVD(E
CR−CVD)装置や、誘導結合プラズマCVD(IC
P−CVD)装置、ヘリコン波プラズマCVD装置、T
CP−CVD装置であってもよい。
Further, when the film is formed, it is possible to perform the process at a low temperature without damaging the already formed low melting point material layer such as the Al-based wiring, so that plasma is generated in the reaction chamber. It is suitable to perform CVD. The plasma CVD apparatus used may be a parallel plate type plasma CVD apparatus, or a magnetic field microwave plasma CVD (E which can generate high density plasma under low pressure).
CR-CVD equipment and inductively coupled plasma CVD (IC
P-CVD) equipment, helicon wave plasma CVD equipment, T
It may be a CP-CVD apparatus.

【0024】なお、プラズマCVDによる成膜時には、
所望の絶縁膜成分以外に中間生成物、副生成物、原料ガ
スの未解離成分等も基板表面の近傍に存在することか
ら、これら不純物成分やパーティクルが膜中に取り込ま
れるのを防止するために、前記プラズマを間欠的に発生
させてもよい。
When forming a film by plasma CVD,
In addition to the desired insulating film components, intermediate products, by-products, undissociated components of the raw material gas, etc. are also present in the vicinity of the substrate surface, so to prevent these impurity components and particles from being taken into the film. The plasma may be generated intermittently.

【0025】[0025]

【作用】本発明を適用して、原料ガスとしてSi−N結
合を有する有機Si化合物を用いると、成膜時に上記有
機Si化合物から炭化水素基成分が優先的に切断され、
Si−N結合が存続された化学種同士が結合するため、
中間生成物が高分子化して流動性を発揮する。そして、
これにより、絶縁膜のステップカバレージが向上する。
When the present invention is applied and an organic Si compound having a Si-N bond is used as a source gas, a hydrocarbon group component is preferentially cleaved from the organic Si compound during film formation,
Since the chemical species in which the Si-N bond is retained are bonded to each other,
The intermediate product is polymerized and exhibits fluidity. And
This improves the step coverage of the insulating film.

【0026】さらに、成膜後、分子内にN原子を含む後
処理ガスの雰囲気下にてプラズマ処理を行うと、絶縁膜
中に取り込まれた炭化水素基成分がN原子によって引き
抜かれる。この後処理ガスとして分子内にさらにH原子
を含有するものを用いると、このH原子も絶縁膜中の炭
化水素基成分を引き抜く役割を果たすため、絶縁膜中に
取り込まれた炭化水素基成分を一層低減させることが可
能となる。
Further, after the film formation, when the plasma treatment is performed in the atmosphere of the post-treatment gas containing N atoms in the molecule, the hydrocarbon group component taken into the insulating film is extracted by the N atoms. If a gas containing further H atoms in the molecule is used as this post-treatment gas, the H atoms also play a role of extracting the hydrocarbon group component in the insulating film, so that the hydrocarbon group component taken into the insulating film is removed. It becomes possible to further reduce.

【0027】また、成膜工程と後処理工程とを交互に複
数回繰り返しながら絶縁膜を形成すると、絶縁膜の表層
部のみならず、深層部までに亘って炭化水素基成分が十
分に除去された絶縁膜となる。
When the insulating film is formed by alternately repeating the film forming step and the post-treatment step a plurality of times, the hydrocarbon group component is sufficiently removed not only in the surface layer portion of the insulating film but also in the deep layer portion. Becomes an insulating film.

【0028】前記分子内に少なくともN原子を含むガス
は、絶縁膜の成膜時に供給されても、炭化水素基成分を
引き抜く働きをするが、N2 ガスやNH3 ガスといった
無機ガスを多量に供給すると、有機Si化合物より生成
される中間生成物が高分子化する前に炭化水素基成分を
引き抜いて流動性を低減させる虞れがある。これに対
し、有機窒素化合物ガスを用いた場合には、流動性を良
好に保ちつつ、炭化水素基成分を引き抜くことができ
る。
The gas containing at least N atoms in the molecule functions to extract the hydrocarbon group component even when supplied at the time of forming the insulating film, but a large amount of inorganic gas such as N 2 gas or NH 3 gas is used. When supplied, the hydrocarbon group component may be extracted before the intermediate product produced from the organic Si compound is polymerized to reduce the fluidity. On the other hand, when the organic nitrogen compound gas is used, the hydrocarbon group component can be extracted while maintaining good fluidity.

【0029】特に、アルキル基またはフェニル基を有す
るヒドラジン誘導体は、中間生成物の重合反応を促進す
る触媒作用、この生成物にN原子を導入する効果、炭化
水素基成分を引き抜く効果等に優れているのみならず、
アルキル基やフェニル基の存在によって中間生成物の基
板への付着確率を低減させる効果をも有するため、ステ
ップカバレージを良好に維持させることもできる。
Particularly, the hydrazine derivative having an alkyl group or a phenyl group is excellent in a catalytic action for promoting a polymerization reaction of an intermediate product, an effect of introducing an N atom into this product, an effect of extracting a hydrocarbon group component and the like. Not only
The presence of the alkyl group and the phenyl group also has the effect of reducing the probability of attachment of the intermediate product to the substrate, and therefore, good step coverage can be maintained.

【0030】[0030]

【実施例】以下、本発明に係る絶縁膜の形成方法を具体
的な実施例を挙げて説明する。ここでは、Al系配線上
のパッシベーション膜としてSiN系絶縁膜あるいはS
iON系絶縁膜を成膜した例について説明する。
EXAMPLES The method for forming an insulating film according to the present invention will be described below with reference to specific examples. Here, a SiN-based insulating film or S is used as a passivation film on the Al-based wiring.
An example of forming an iON-based insulating film will be described.

【0031】なお、以下の各実施例ではCVD装置とし
て、平行平板型プラズマCVD装置を用いた。このプラ
ズマCVD装置においては、下部電極にウェハを載置
し、上部電極にRF電力を印加するようになされてい
る。また、下部電極にはヒータが設けられることによ
り、ウェハ温度が調整可能とされている。一方、上部電
極は原料ガスを基板上に均一に供給するためのシャワー
電極となされている。
In each of the following examples, a parallel plate type plasma CVD apparatus was used as the CVD apparatus. In this plasma CVD apparatus, a wafer is placed on the lower electrode and RF power is applied to the upper electrode. In addition, the temperature of the wafer can be adjusted by providing a heater on the lower electrode. On the other hand, the upper electrode is a shower electrode for uniformly supplying the source gas onto the substrate.

【0032】実施例1 本実施例においては、有機Si化合物としてトリスジメ
チルアミノシリルアジド[(CH3 2 N]3 SiN3
を用いて成膜した後、N2 を用いて後処理を行ってSi
N系絶縁膜を形成した。
Example 1 In this example, trisdimethylaminosilylazide [(CH 3 ) 2 N] 3 SiN 3 was used as the organic Si compound.
After forming a film using Si, a post-treatment is performed using N 2 to form Si.
An N type insulating film was formed.

【0033】具体的には、先ず、図1に示されるような
Si基板1上にSiO系層間絶縁膜2およびAl系配線
3が形成されたウェハ上に、以下の条件のプラズマCV
DによってSiN系絶縁膜4を1μmなる膜厚に成膜し
た。
Specifically, first, a plasma CV under the following conditions is formed on a wafer having a SiO type interlayer insulating film 2 and an Al type wiring 3 formed on a Si substrate 1 as shown in FIG.
The SiN insulating film 4 was formed by D to a film thickness of 1 μm.

【0034】プラズマCVD条件 原料ガス : [(CH3 2 N]3 SiN3
量100sccm RF電力 : 350W(13.56MHz)(上部
電極に印加) 圧力 : 1200Pa ウェハ温度 : 200℃ 電極間距離 : 10mm 成膜時間 : 60秒 得られたSiN系絶縁膜4は、図2に示されるように、
ボイドやクラックを有さない、ステップカバレージに優
れたものであった。
Plasma CVD conditions Source gas: [(CH 3 ) 2 N] 3 SiN 3 Flow rate 100 sccm RF power: 350 W (13.56 MHz) (applied to the upper electrode) Pressure: 1200 Pa Wafer temperature: 200 ° C. Electrode distance: 10 mm Film-forming time: 60 seconds The obtained SiN-based insulating film 4 was formed as shown in FIG.
It had excellent step coverage with no voids or cracks.

【0035】続いて、後処理として下記の条件のプラズ
マ処理を行った。
Subsequently, a plasma treatment under the following conditions was performed as a post treatment.

【0036】プラズマ処理条件 後処理ガス : N2 流量100sccm RF電力 : 350W(13.56MHz) 圧力 : 1330Pa ウェハ温度 : 400℃ 電極間距離 : 10mm この処理により、SiN系絶縁膜4中に含有される炭化
水素基成分が低減された。
Plasma processing conditions Post-processing gas: N 2 flow rate 100 sccm RF power: 350 W (13.56 MHz) Pressure: 1330 Pa Wafer temperature: 400 ° C. Electrode distance: 10 mm By this processing, SiN-based insulating film 4 is contained. The hydrocarbon group component was reduced.

【0037】さらに、下記の条件のアニール処理を行っ
た。
Further, an annealing treatment was performed under the following conditions.

【0038】アニール条件 導入ガス : 上記原料ガスを3%H2 含有N2
スにて希釈したもの流量8000sccm アニール時間 : 60分 圧力 : 大気圧 アニール温度 : 400℃ 以上のようにして、SiN系絶縁膜4よりなるパッシベ
ーション膜が完成した。
Annealing conditions Introduced gas: The above raw material gas diluted with N 2 gas containing 3% H 2 Flow rate 8000 sccm Annealing time: 60 minutes Pressure: Atmospheric pressure Annealing temperature: 400 ° C. The passivation film made of the film 4 is completed.

【0039】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して腐蝕試
験を行った。この腐蝕試験の条件を下記に示す。
Here, a corrosion test was conducted on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed. The conditions of this corrosion test are shown below.

【0040】腐蝕試験条件 塩酸濃度 : 5% 試験時間 : 5分 溶液温度 : 25℃ この腐蝕試験の結果、Al系配線3には腐蝕が見られな
かった。これより、上述のようにして形成されたSiN
系絶縁膜4は良好な耐水性,耐腐蝕性を示すものである
ことがわかった。
Corrosion Test Conditions Hydrochloric acid concentration: 5% Test time: 5 minutes Solution temperature: 25 ° C. As a result of this corrosion test, no corrosion was observed on the Al-based wiring 3. From this, the SiN formed as described above
It was found that the system insulating film 4 has good water resistance and corrosion resistance.

【0041】実施例2 本実施例では、有機Si化合物としてビスジメチルアミ
ノシリルジアジド[(CH3 2 N]2 Si(N3 2
とNH3 の混合ガスを用いて成膜を行った後、NH3
用いて後処理を行ってSiN系絶縁膜を形成した。
Example 2 In this example, bisdimethylaminosilyldiazide [(CH 3 ) 2 N] 2 Si (N 3 ) 2 was used as the organic Si compound.
And after film formation using a mixed gas of NH 3, to form the SiN-based insulating film by performing a post-treatment using NH 3.

【0042】具体的には、実施例1と同様のウェハ上
に、原料ガスを[(CH3 2 N]2Si(N3 2
流量100sccm、NH3 :流量50sccmのよう
に変更した以外は実施例1と同様の条件のプラズマCV
DによってSiN系絶縁膜4を1μmなる膜厚にて成膜
した。このようにして成膜されたSiN系絶縁膜4は、
ボイドやクラックを有さない、ステップカバレージに優
れたものであった。
Specifically, a raw material gas of [(CH 3 ) 2 N] 2 Si (N 3 ) 2 :
Plasma CV under the same conditions as in Example 1 except that the flow rate was changed to 100 sccm and NH 3 was changed to 50 sccm.
The SiN insulating film 4 was formed by D to a film thickness of 1 μm. The SiN-based insulating film 4 thus formed is
It had excellent step coverage with no voids or cracks.

【0043】続いて、後処理ガスをNH3 :流量100
sccmに変更し、ウェハ温度を150℃に変更した以
外は実施例1と同様にしてプラズマ処理を行った。この
処理によって、SiN系絶縁膜4に含有される炭化水素
基成分が低減できた。
Then, the post-treatment gas is NH 3 at a flow rate of 100.
Plasma processing was performed in the same manner as in Example 1 except that the sccm was changed and the wafer temperature was changed to 150 ° C. By this treatment, the hydrocarbon group component contained in the SiN-based insulating film 4 could be reduced.

【0044】さらに、上記原料ガスを3%H2 含有N2
ガスにて希釈したガスを用いた以外は実施例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0044] Further, the raw material gas 3% H 2 containing N 2
An annealing process was performed in the same manner as in Example 1 except that a gas diluted with a gas was used to complete the passivation film made of the SiN-based insulating film 4.

【0045】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して実施例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, when a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in Example 1, the Al-based wiring 3
No corrosion was found on the. From this, it was found that the SiN-based insulating film 4 exhibits good water resistance and corrosion resistance.

【0046】実施例3 本実施例においては、成膜工程とN2 4 による後処理
工程とを交互に繰り返してSiN系絶縁膜を形成した。
Example 3 In this example, a film-forming process and a post-treatment process with N 2 H 4 were alternately repeated to form a SiN-based insulating film.

【0047】具体的には、実施例1と同様のウェハ上
に、成膜時間を6秒間に変更した以外は実施例2と同様
の条件のプラズマCVDによってSiN系絶縁膜4を1
00nmなる膜厚にて成膜した。このようにして成膜さ
れたSiN系絶縁膜4は、ボイドやクラックを有さな
い、ステップカバレージに優れたものであった。
Specifically, the SiN insulating film 4 was formed on the same wafer as in Example 1 by plasma CVD under the same conditions as in Example 2 except that the film formation time was changed to 6 seconds.
The film was formed to a film thickness of 00 nm. The SiN-based insulating film 4 thus formed had no step or void and was excellent in step coverage.

【0048】続いて、後処理ガスをN2 4 :流量10
0sccmに変更し、処理時間を60秒に設定した以外
は実施例2と同様にしてプラズマ処理を行った。この処
理によって、SiN系絶縁膜4に含有される炭化水素基
成分が低減できた。
Subsequently, the post-treatment gas was N 2 H 4 with a flow rate of 10
Plasma treatment was performed in the same manner as in Example 2 except that the treatment time was changed to 0 sccm and the treatment time was set to 60 seconds. By this treatment, the hydrocarbon group component contained in the SiN-based insulating film 4 could be reduced.

【0049】その後、上記成膜工程と後処理工程とを交
互に9回ずつ繰り返し、最終的に1μmの膜厚のSiN
系絶縁膜4を形成した。この結果、表層部から深層部に
亘って炭化水素基成分が低減されたSiN系絶縁膜4が
形成された。
After that, the film forming process and the post-treatment process are alternately repeated 9 times, and finally the SiN film having a film thickness of 1 μm is formed.
The system insulating film 4 was formed. As a result, the SiN-based insulating film 4 in which the hydrocarbon group component was reduced was formed from the surface layer portion to the deep layer portion.

【0050】さらに、上記原料ガスを3%H2 含有N2
ガスにて希釈したガスを用いた以外は実施例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0050] Further, the raw material gas 3% H 2 containing N 2
An annealing process was performed in the same manner as in Example 1 except that a gas diluted with a gas was used to complete the passivation film made of the SiN-based insulating film 4.

【0051】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して実施例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, when a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in Example 1, the Al-based wiring 3
No corrosion was found on the. From this, it was found that the SiN-based insulating film 4 exhibits good water resistance and corrosion resistance.

【0052】実施例4 本実施例では、有機Si化合物としてテトラジメチルア
ミノジフロロジシラン[(CH3 2 N]4 Si2 2
とジメチルヒドラジン(CH3 2 2 2 との混合ガ
スを用いてSiN系絶縁膜を成膜した。
Example 4 In this example, tetradimethylaminodiflorodisilane [(CH 3 ) 2 N] 4 Si 2 F 2 was used as the organic Si compound.
And a dimethylhydrazine (CH 3 ) 2 N 2 H 2 mixed gas were used to form a SiN-based insulating film.

【0053】具体的には、実施例1と同様のウェハ上
に、原料ガスを[(CH3 2 N]4Si2 2 :流量
100sccm、(CH3 2 2 2 :流量50sc
cmのように変更した以外は実施例2と同様の条件のプ
ラズマCVDによって、SiN系絶縁膜4を1μmなる
膜厚にて成膜した。
Concretely, on the same wafer as in Example 1, the raw material gas was [(CH 3 ) 2 N] 4 Si 2 F 2 at a flow rate of 100 sccm, and (CH 3 ) 2 N 2 H 2 at a flow rate of 50 sc.
The SiN insulating film 4 was formed to a thickness of 1 μm by plasma CVD under the same conditions as in Example 2 except that the thickness was changed to cm.

【0054】このようにして成膜されたSiN系絶縁膜
4は、ボイドやクラックを有さない、ステップカバレー
ジに優れたものであったと共に、炭化水素基成分も低減
されたものであった。
The SiN-based insulating film 4 thus formed had no voids or cracks, was excellent in step coverage, and had a reduced hydrocarbon group component.

【0055】さらに、上記原料ガスを3%H2 含有N2
ガスにて希釈したガスを用いた以外は実施例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0055] Further, the raw material gas 3% H 2 containing N 2
An annealing process was performed in the same manner as in Example 1 except that a gas diluted with a gas was used to complete the passivation film made of the SiN-based insulating film 4.

【0056】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して実施例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, when a corrosion test was conducted on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in Example 1, the Al-based wiring 3
No corrosion was found on the. From this, it was found that the SiN-based insulating film 4 exhibits good water resistance and corrosion resistance.

【0057】実施例5 本実施例では、有機Si化合物としてビスジメチルアミ
ノビスエトキシジフロロジシラン[(CH3 2 N]2
Si2 (OC2 5 )F2 とジエチルヒドラジン(C2
5 2 2 2 との混合ガスを用いてSiON系絶縁
膜を成膜した。
Example 5 In this example, bisdimethylaminobisethoxydiflorodisilane [(CH 3 ) 2 N] 2 was used as the organic Si compound.
Si 2 (OC 2 H 5 ) F 2 and diethyl hydrazine (C 2
A SiON-based insulating film was formed using a mixed gas of H 5 ) 2 N 2 H 2 .

【0058】具体的には、実施例1と同様のウェハ上
に、原料ガスを[(CH3 2 N]2Si2 (OC2
5 )F2 :流量100sccm、(C2 5 2 2
2 :流量50sccmのように変更した以外は実施例1
と同様の条件のプラズマCVDによって、SiON系絶
縁膜5を1μmなる膜厚にて成膜した。
Specifically, a raw material gas of [(CH 3 ) 2 N] 2 Si 2 (OC 2 H) was placed on the same wafer as in Example 1.
5 ) F 2 : Flow rate 100 sccm, (C 2 H 5 ) 2 N 2 H
2 : Example 1 except that the flow rate was changed to 50 sccm
A SiON-based insulating film 5 was formed to a thickness of 1 μm by plasma CVD under the same conditions as described above.

【0059】このようにして成膜されたSiON系絶縁
膜5は、ボイドやクラックを有さない、ステップカバレ
ージに優れたものであったと共に、炭化水素基成分も低
減されたものであった。
The SiON-based insulating film 5 thus formed was free of voids and cracks, excellent in step coverage, and reduced in hydrocarbon group component.

【0060】さらに、上記原料ガスを3%H2 含有N2
ガスにて希釈したガスを用いた以外は実施例1と同様に
してアニール処理を行って、SiON系絶縁膜5よりな
るパッシベーション膜を完成した。
[0060] Further, the raw material gas 3% H 2 containing N 2
An annealing process was performed in the same manner as in Example 1 except that a gas diluted with a gas was used to complete the passivation film made of the SiON-based insulating film 5.

【0061】ここで、上述のSiON系絶縁膜5よりな
るパッシベーション膜が形成されたウェハに対して実施
例1と同様にして腐蝕試験を行ったところ、Al系配線
3には腐蝕が見られなかった。これより、SiON系絶
縁膜5は良好な耐水性,耐腐蝕性を示すものであること
がわかった。
Here, when a corrosion test was conducted on the wafer on which the passivation film made of the SiON type insulating film 5 was formed in the same manner as in Example 1, no corrosion was found on the Al type wiring 3. It was From this, it was found that the SiON-based insulating film 5 has good water resistance and corrosion resistance.

【0062】実施例6 本実施例では、有機Si化合物としてテトラジメチルア
ミノシラン[(CH32 N]4 Siとフェニルヒドラ
ジンC6 5 NHNH2 との混合ガスを用いてSiN系
絶縁膜を成膜した。
Example 6 In this example, a SiN insulating film was formed using a mixed gas of tetradimethylaminosilane [(CH 3 ) 2 N] 4 Si and phenylhydrazine C 6 H 5 NHNH 2 as an organic Si compound. Filmed

【0063】具体的には、実施例1と同様のウェハ上
に、原料ガスを[(CH3 2 N]4Si:流量100
sccm、C6 5 NHNH2 :流量50sccmのよ
うに変更した以外は実施例1と同様の条件のプラズマC
VDによって、SiN系絶縁膜4を1μmなる膜厚にて
成膜した。
Specifically, a raw material gas of [(CH 3 ) 2 N] 4 Si and a flow rate of 100 was placed on the same wafer as in Example 1.
sccm, C 6 H 5 NHNH 2 : plasma C under the same conditions as in Example 1 except that the flow rate was changed to 50 sccm.
The SiN insulating film 4 was formed by VD to a film thickness of 1 μm.

【0064】このようにして成膜されたSiN系絶縁膜
4は、ボイドやクラックを有さない、ステップカバレー
ジに優れたものであったと共に、炭化水素基成分も低減
されたものであった。
The SiN-based insulating film 4 thus formed had no voids or cracks, was excellent in step coverage, and had a reduced hydrocarbon group component.

【0065】さらに、上記原料ガスを3%H2 含有N2
ガスにて希釈したガスを用いた以外は実施例1と同様に
してアニール処理を行って、SiN系絶縁膜4よりなる
パッシベーション膜を完成した。
[0065] Further, the raw material gas 3% H 2 containing N 2
An annealing process was performed in the same manner as in Example 1 except that a gas diluted with a gas was used to complete the passivation film made of the SiN-based insulating film 4.

【0066】ここで、上述のSiN系絶縁膜4よりなる
パッシベーション膜が形成されたウェハに対して実施例
1と同様にして腐蝕試験を行ったところ、Al系配線3
には腐蝕が見られなかった。これより、SiN系絶縁膜
4は良好な耐水性,耐腐蝕性を示すものであることがわ
かった。
Here, when a corrosion test was performed on the wafer on which the passivation film made of the SiN-based insulating film 4 was formed in the same manner as in Example 1, the Al-based wiring 3
No corrosion was found on the. From this, it was found that the SiN-based insulating film 4 exhibits good water resistance and corrosion resistance.

【0067】上述したように、実施例1〜3、実施例4
〜6に示された絶縁膜の形成方法は、後処理時に炭化水
素基成分を除去するか、成膜時に炭化水素成分を除去す
るかの違いはあるが、いずれにおいても炭化水素基成分
の含有量が抑えられたSiN系絶縁膜4あるいはSiO
N系絶縁膜5を提供できるものであった。また、これら
の絶縁膜は良好なカバレージをも示すことから、パッシ
ベーション膜として好適なものであった。
As described above, Examples 1 to 3 and Example 4
The methods of forming an insulating film shown in FIGS. 6 to 6 are different in that the hydrocarbon group component is removed during the post-treatment or the hydrocarbon component is removed during the film formation. SiN-based insulating film 4 or SiO whose amount is suppressed
The N-type insulating film 5 can be provided. Further, since these insulating films also exhibit good coverage, they were suitable as passivation films.

【0068】以上、本発明に係る絶縁膜の形成方法を適
用した例について説明したが、本発明は上述の実施例に
限定されるものではない。例えば、本発明を適用してパ
ッシベーション膜以外にも層間絶縁膜を形成することも
できる。また、実施例4〜6によるSiN系絶縁膜4あ
るいはSiON系絶縁膜5を成膜と、実施例1〜3にお
ける後処理とを組み合わせてもよい。さらに、SiN系
絶縁膜4あるいはSiON系絶縁膜5を成膜するための
原料ガスの種類や成膜条件、ウェハの構成についても適
宜変更が可能である。
Although the example in which the method for forming an insulating film according to the present invention is applied has been described above, the present invention is not limited to the above-described embodiments. For example, the present invention may be applied to form an interlayer insulating film in addition to the passivation film. Further, the formation of the SiN-based insulating film 4 or the SiON-based insulating film 5 according to Examples 4 to 6 may be combined with the post-treatment in Examples 1 to 3. Further, the type of raw material gas for forming the SiN-based insulating film 4 or the SiON-based insulating film 5, the film forming conditions, and the wafer configuration can be changed as appropriate.

【0069】[0069]

【発明の効果】以上の説明から明かなように、本発明を
適用すると、ステップカバレージに優れ、且つ、炭化水
素基成分の含有量が低減された絶縁膜が形成できる。
As is apparent from the above description, application of the present invention makes it possible to form an insulating film having excellent step coverage and a reduced content of hydrocarbon group components.

【0070】したがって、本発明を適用して成膜された
絶縁膜は、絶縁性が確保され、耐水性、耐腐蝕性に優れ
たものとなる。このため、これをパッシベーション膜あ
るいは層間絶縁膜として用いると、デバイス特性の劣化
が防止された信頼性の高い半導体装置を形成できる。
Therefore, the insulating film formed by applying the present invention ensures the insulating property and is excellent in water resistance and corrosion resistance. Therefore, when this is used as a passivation film or an interlayer insulating film, it is possible to form a highly reliable semiconductor device in which deterioration of device characteristics is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用して半導体装置を製造する工程を
示すものであり、Si基板上にSiO系層間絶縁膜とA
l系配線が形成されたウェハの断面を示す模式図であ
る。
FIG. 1 shows a process of manufacturing a semiconductor device to which the present invention is applied, in which a SiO-based interlayer insulating film and A are formed on a Si substrate.
It is a schematic diagram which shows the cross section of the wafer in which 1 type | system | group wiring was formed.

【図2】図1のウェハに対して絶縁膜が成膜された状態
を示す模式図である。
FIG. 2 is a schematic diagram showing a state in which an insulating film is formed on the wafer of FIG.

【図3】従来法によりSiN系絶縁膜が成膜されたウェ
ハの断面を示す模式図である。
FIG. 3 is a schematic view showing a cross section of a wafer on which a SiN-based insulating film is formed by a conventional method.

【符号の説明】[Explanation of symbols]

1 Si基板 2 SiO系層間絶縁膜 3 Al系配線 4 SiN系絶縁膜 5 SiON系絶縁膜 1 Si substrate 2 SiO-based interlayer insulating film 3 Al-based wiring 4 SiN-based insulating film 5 SiON-based insulating film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコン原子と窒素原子との結合を有す
る有機シリコン化合物を用い、化学的気相成長法により
基板上に絶縁膜を成膜する成膜工程と、 分子内に少なくとも窒素原子を含む後処理ガスの雰囲気
下にて、前記絶縁膜のプラズマ処理を行う後処理工程と
を有することを特徴とする絶縁膜の形成方法。
1. A film forming step of forming an insulating film on a substrate by a chemical vapor deposition method using an organic silicon compound having a bond between a silicon atom and a nitrogen atom, and containing at least a nitrogen atom in the molecule. And a post-treatment step of performing a plasma treatment of the insulation film in an atmosphere of a post-treatment gas.
【請求項2】 前記後処理ガスが、分子内に水素原子を
含むことを特徴とする請求項1記載の絶縁膜の形成方
法。
2. The method for forming an insulating film according to claim 1, wherein the post-treatment gas contains hydrogen atoms in its molecule.
【請求項3】 前記成膜工程と前記後処理工程とを交互
に複数回繰り返すことを特徴とする請求項1または請求
項2に記載の絶縁膜の形成方法。
3. The method for forming an insulating film according to claim 1, wherein the film forming step and the post-treatment step are alternately repeated a plurality of times.
【請求項4】 シリコン原子と窒素原子との結合を有す
る有機シリコン化合物と有機窒素化合物とを含む混合ガ
スを用いて、化学的気相成長法により基板上に絶縁膜を
成膜することを特徴とする絶縁膜の形成方法。
4. An insulating film is formed on a substrate by chemical vapor deposition using a mixed gas containing an organic silicon compound having a bond between a silicon atom and a nitrogen atom and an organic nitrogen compound. And a method for forming an insulating film.
【請求項5】 前記有機窒素化合物として、少なくとも
1つ以上のアルキル基またはフェニル基を有するヒドラ
ジン誘導体を用いることを特徴とする請求項4に記載の
絶縁膜の形成方法。
5. The method for forming an insulating film according to claim 4, wherein a hydrazine derivative having at least one alkyl group or phenyl group is used as the organic nitrogen compound.
【請求項6】 前記成膜は、プラズマを発生させながら
行うことを特徴とする請求項1ないし請求項5のいずれ
か1項に記載の絶縁膜の形成方法。
6. The method for forming an insulating film according to claim 1, wherein the film formation is performed while generating plasma.
JP26380794A 1993-12-27 1994-10-27 Method of forming insulating film Expired - Fee Related JP3336770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26380794A JP3336770B2 (en) 1993-12-27 1994-10-27 Method of forming insulating film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33298393 1993-12-27
JP5-332983 1993-12-27
JP26380794A JP3336770B2 (en) 1993-12-27 1994-10-27 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPH07235535A true JPH07235535A (en) 1995-09-05
JP3336770B2 JP3336770B2 (en) 2002-10-21

Family

ID=26546203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26380794A Expired - Fee Related JP3336770B2 (en) 1993-12-27 1994-10-27 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP3336770B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127287A (en) * 1996-05-30 2000-10-03 Micron Technology, Inc. Silicon nitride deposition method for use in forming a memory cell dielectric
US6187662B1 (en) 1998-01-19 2001-02-13 Nec Corporation Semiconductor device with low permittivity interlayer insulating film and method of manufacturing the same
JP2005268798A (en) * 2004-03-15 2005-09-29 Sharp Corp Method for producing oxide thin film
WO2005080628A3 (en) * 2004-02-02 2006-04-20 Seil De Surveillance Pour L Et Method for producing silicon nitride films and silicon oxynitride films by chemical vapor deposition
JP2007221165A (en) * 2001-08-30 2007-08-30 Tokyo Electron Ltd Plasma-cvd film forming method and apparatus
JP2008010881A (en) * 2007-07-13 2008-01-17 Fujitsu Ltd Manufacturing method of semiconductor device
US7875312B2 (en) 2006-05-23 2011-01-25 Air Products And Chemicals, Inc. Process for producing silicon oxide films for organoaminosilane precursors
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
JP2012216631A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Plasma nitriding method
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
US8771807B2 (en) 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
WO2023167031A1 (en) * 2022-03-04 2023-09-07 東京エレクトロン株式会社 Method for forming insulating film, and substrate processing system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127287A (en) * 1996-05-30 2000-10-03 Micron Technology, Inc. Silicon nitride deposition method for use in forming a memory cell dielectric
US6204206B1 (en) 1996-05-30 2001-03-20 Micron Technology, Inc. Silicon nitride deposition method
US6350708B1 (en) 1996-05-30 2002-02-26 Micron Technology, Inc. Silicon nitride deposition method
US6187662B1 (en) 1998-01-19 2001-02-13 Nec Corporation Semiconductor device with low permittivity interlayer insulating film and method of manufacturing the same
JP2007221165A (en) * 2001-08-30 2007-08-30 Tokyo Electron Ltd Plasma-cvd film forming method and apparatus
WO2005080628A3 (en) * 2004-02-02 2006-04-20 Seil De Surveillance Pour L Et Method for producing silicon nitride films and silicon oxynitride films by chemical vapor deposition
JP2005268798A (en) * 2004-03-15 2005-09-29 Sharp Corp Method for producing oxide thin film
US7932413B2 (en) 2005-05-16 2011-04-26 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride films
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
US8383849B2 (en) 2005-05-16 2013-02-26 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride films
US8932675B2 (en) 2005-05-16 2015-01-13 Air Products And Chemicals, Inc. Methods for depositing silicon carbo-nitride film
US9640386B2 (en) 2005-05-16 2017-05-02 Versum Materials Us, Llc Precursors for CVD silicon carbo-nitride films
US7875312B2 (en) 2006-05-23 2011-01-25 Air Products And Chemicals, Inc. Process for producing silicon oxide films for organoaminosilane precursors
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
US8940648B2 (en) 2006-05-23 2015-01-27 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
JP2008010881A (en) * 2007-07-13 2008-01-17 Fujitsu Ltd Manufacturing method of semiconductor device
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
JP2012216631A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Plasma nitriding method
US8771807B2 (en) 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
WO2023167031A1 (en) * 2022-03-04 2023-09-07 東京エレクトロン株式会社 Method for forming insulating film, and substrate processing system

Also Published As

Publication number Publication date
JP3336770B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US7718553B2 (en) Method for forming insulation film having high density
US7923386B2 (en) Method to improve the step coverage and pattern loading for dielectric films
TW202111148A (en) Structures including dielectric layers,methods of forming the same and reactor system forperforming forming methods
JP2641385B2 (en) Film formation method
CN102491990B (en) Based on the precursor of amino vinylsilane
JP3336770B2 (en) Method of forming insulating film
US20040115876A1 (en) Method of manufacturing silicon carbide film
JP2005079254A (en) Deposition method of silicon nitride film
JPH098032A (en) Formation of insulation film
US6436822B1 (en) Method for making a carbon doped oxide dielectric material
JP2001267310A (en) Plasma film forming method and apparatus therefor
US20190172704A1 (en) ROBUST HIGH PERFORMANCE LOW HYDROGEN SILICON CARBON NITRIDE (SiCNH) DIELECTRICS FOR NANO ELECTRONIC DEVICES
JPH0822986A (en) Method of forming insulating film
JP3282769B2 (en) Method for manufacturing semiconductor device
JP3348509B2 (en) Method of forming insulating film
JP2837087B2 (en) Thin film formation method
JP3287124B2 (en) Method for forming SiN-based insulating film
JPWO2006043432A1 (en) Film manufacturing method and semiconductor device using film manufactured by the method
JPH08167601A (en) Method for manufacturing semiconductor device
CN108713243B (en) Method for producing silicon nitride film and silicon nitride film
JPH07254599A (en) Formation of insulating film
JPH08227890A (en) Forming method of protective insulation film on semiconductor substrate
JP3284719B2 (en) Method of forming SiN-based insulating film
JPH07300680A (en) Formation of silicon nitride type insulating film
JPH098033A (en) Formation of insulation film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees