[go: up one dir, main page]

JPH07234252A - Optical current measuring device - Google Patents

Optical current measuring device

Info

Publication number
JPH07234252A
JPH07234252A JP6027108A JP2710894A JPH07234252A JP H07234252 A JPH07234252 A JP H07234252A JP 6027108 A JP6027108 A JP 6027108A JP 2710894 A JP2710894 A JP 2710894A JP H07234252 A JPH07234252 A JP H07234252A
Authority
JP
Japan
Prior art keywords
current
tank
optical fiber
optical
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6027108A
Other languages
Japanese (ja)
Other versions
JP3270234B2 (en
Inventor
Hiroshi Miura
宏 三浦
Toru Tamagawa
徹 玉川
Sakae Ikuta
栄 生田
Kiyohisa Terai
清寿 寺井
Masao Takahashi
正雄 高橋
Keiko Niwa
景子 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02710894A priority Critical patent/JP3270234B2/en
Publication of JPH07234252A publication Critical patent/JPH07234252A/en
Application granted granted Critical
Publication of JP3270234B2 publication Critical patent/JP3270234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To provide an optical current measuring device whose measuring accuracy is enhanced. CONSTITUTION:A plurality of cylindrical, metallic tanks 1 are joined together via flanges provided at the end of each tank 1, and a current-carrying conductor 2 is disposed along the axis of the metallic tanks l, and the tanks 1 are each filled with an insulating gas and a current that the current-carrying conductor 2 carries is measured by detecting the polarized state of light passing through an optical fiber 11 going around the current-carrying conductor 2. A cylindrical shield 17, disposed in such a way as to allow the current-carrying conductor 2 to pass through it, and having a flange at its end that is joined between the metallic tank flanges, is provided inside each metallic tank 1, and an insulating or nonmagnetic ring-shaped member is disposed between the outer surface of the cylindrical shield 17 and the inner surface of each metallic tank 1 via a cushioning material 18 in such a way as to surround the current- carrying conductor 2. A groove circling the outer peripheral surface of the ring-shaped member is provided and the optical fiber 11 is secured in the groove, with the end of the optical fiber 11 connected to predetermined optical equipment provided outside the tanks 1, and the ring-shaped member is held in place via an elastic member 20 disposed between the ring-shaped member and the inner surface of each metallic tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガス絶縁電気機器の電流
計測装置に係り、特に光ファイバを用いた光学式電流計
測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current measuring device for gas insulated electrical equipment, and more particularly to an optical current measuring device using an optical fiber.

【0002】[0002]

【従来の技術】図2に従来の光学式電流計測装置の断面
構成図を示す。GISまたはガス絶縁母線は、絶縁性ガ
スを充填したタンク1と、絶縁スペ―サ3で支持された
導体2により構成される。導体2を流れる電流検出のた
め、鉛ガラスやファラデ―効果のある光ファイバのよう
なファラデ―素子4を、導体2の通電電流を取り囲むよ
うに周回させて光路を形成する。図2では、ファラデ―
効果のある光ファイバ4を保持材5、絶縁材6によりタ
ンク1に固定し、タンク1を貫通する気密端子8のタン
ク外に光電変換部9と演算出力部10を設置している。光
ファイバ4の端部は偏光子12、検光子13と接続して光の
受け渡しを行っている。なお、光ファイバ4は複数回巻
いたものをまとめて、おさえ7で保持材5に支持する。
2. Description of the Related Art FIG. 2 shows a cross-sectional configuration diagram of a conventional optical current measuring device. The GIS or gas-insulated busbar is composed of a tank 1 filled with an insulating gas and a conductor 2 supported by an insulating spacer 3. In order to detect the current flowing through the conductor 2, a Faraday element 4 such as lead glass or an optical fiber having the Faraday effect is circulated so as to surround the current flowing through the conductor 2 to form an optical path. In Figure 2, Faraday
The effective optical fiber 4 is fixed to the tank 1 by the holding material 5 and the insulating material 6, and the photoelectric conversion unit 9 and the operation output unit 10 are installed outside the tank of the airtight terminal 8 penetrating the tank 1. The end portion of the optical fiber 4 is connected to a polarizer 12 and an analyzer 13 to transfer light. It should be noted that the optical fiber 4 is collected by winding a plurality of times and is supported by the holding material 5 by the retainer 7.

【0003】次に、図3に示した光路図により、動作を
説明する。光電変換部9の発光ダイオ―ド14から出射さ
れた光は、送・受光用の光ファイバ11で気密端子8を経
由し、タンク1内部に配置した偏光子12に入って直線偏
光にされる。この光が、光ファイバ4に入り、導体2の
通電電流が作る磁界によって偏光面が回転した光は、検
光子13に入射する。検光子13で直角2成分(X、Y成
分)のベクトル光に分光された光が、光量信号となって
再び光電変換部9に戻り、フォトダイオ―ド15により電
気信号に変換した後、演算出力部10により演算を行って
電流値を求める。
Next, the operation will be described with reference to the optical path diagram shown in FIG. The light emitted from the light emitting diode 14 of the photoelectric conversion unit 9 passes through the airtight terminal 8 through the optical fiber 11 for transmitting and receiving light and enters the polarizer 12 arranged inside the tank 1 to be linearly polarized. . This light enters the optical fiber 4, and the light whose polarization plane is rotated by the magnetic field created by the current flowing through the conductor 2 is incident on the analyzer 13. The light that is split into vector light of two right-angled components (X, Y components) by the analyzer 13 becomes a light amount signal and returns to the photoelectric conversion unit 9 again, and is converted into an electric signal by the photodiode 15 and then calculated. The output unit 10 calculates to obtain a current value.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、GIS
相またはガス絶縁母線に適用した従来の光学式電流計測
装置では、ファラデ―素子として光ファイバ4を使用す
ると、以下に説明するような本質的問題があって測定誤
差を生じる。
[Problems to be Solved by the Invention] However, GIS
In the conventional optical current measuring device applied to the phase or gas insulated bus, when the optical fiber 4 is used as the Faraday element, there is an essential problem as described below, which causes a measurement error.

【0005】ファラデ―素子に直線偏光を入射すると、
ファラデ―効果によって磁界に比例した偏光面の回転が
起こる。光学式計測装置の1種である光CTは、この回
転角から電流を測定するから、偏光の乱れは誤差を招
く。偏光の乱れ具合いを表す1つの尺度として消光比が
あり、直線偏光に対する円偏光・非偏光成分の比で示さ
れる。また、一般に異方性の媒質は屈折率の異なる二つ
の光学軸を持ち、これを複屈折と呼ぶ。ガラスのような
光学的に等方性な媒質も、応力が加わると異方性となり
複屈折を発生する。この複屈折は媒質の消光比を悪化さ
せる主要因となるため、光CTの測定精度に影響する。
When linearly polarized light is incident on the Faraday element,
The Faraday effect causes the plane of polarization to rotate in proportion to the magnetic field. The optical CT, which is one type of optical measuring device, measures the current from this rotation angle, so that the disorder of the polarization causes an error. An extinction ratio is one measure of the degree of polarization disorder, and is indicated by the ratio of circularly polarized light / non-polarized light components to linearly polarized light. In general, an anisotropic medium has two optical axes with different refractive indexes, which is called birefringence. An optically isotropic medium such as glass also becomes anisotropic when stress is applied to generate birefringence. This birefringence is a main factor that deteriorates the extinction ratio of the medium, and thus affects the measurement accuracy of the optical CT.

【0006】従来の構成例と対比して述べると、ファラ
デ―素子の鉛ガラスを光ファイバ4にそのまま置き換え
た図2では、おさえ7により光ファイバ4に部分的に応
力がかかって複屈折が増す。この保持方法では、伝わっ
てくる振動・衝撃による応力の発生も回避できない。ま
た、光ファイバ4と接続される偏光子・検光子に納める
光学箱と光路も、振動等で光軸ずれを発生したり、光フ
ァイバ4が振れて曲げ応力を発生する危険性がある。一
方、光ファイバ4等の光学系がタンク1内で露出してい
ると、導体2等の発する熱等で、光ファイバ4が熱応力
を受ける問題がある。
In comparison with the conventional configuration example, in FIG. 2 in which the lead glass of the Faraday element is replaced with the optical fiber 4 as it is, the optical fiber 4 is partially stressed by the retainer 7 to increase the birefringence. . With this holding method, the generation of stress due to the transmitted vibration and impact cannot be avoided. Further, there is a risk that the optical box and the optical path that are housed in the polarizer / analyzer connected to the optical fiber 4 may cause optical axis shift due to vibration or the like, or the optical fiber 4 may shake to generate bending stress. On the other hand, if the optical system such as the optical fiber 4 is exposed in the tank 1, there is a problem that the optical fiber 4 is subjected to thermal stress due to heat generated by the conductor 2 or the like.

【0007】本発明は、上記のような従来技術の問題点
を解決するために提案されたもので、その目的はガス絶
縁機器の通電導体の通電電流の測定精度を向上させた光
学式電流計測装置を提供することにある。
The present invention has been proposed in order to solve the above-mentioned problems of the prior art, and its object is to provide an optical current measuring method which improves the measurement accuracy of the current flowing through the current-carrying conductor of the gas-insulated equipment. To provide a device.

【0008】[0008]

【課題を解決するための手段】本発明は、複数の筒状の
金属性タンクを、それらタンクの端部端に設けたフラン
ジを介して接合し、前記金属性タンクの軸方向に通電導
体を配設するとともに、このタンク内部に絶縁性ガスを
充填し、前記通電導体の通電電流をこの通電導体の周囲
を周回する光ファイバ内を通光する光の偏光状態を検出
することにより計測する光学式電流計測装置において、
前記金属性タンク内部に前記通電導体を内部に挿通可能
に配設され端部端に前記金属性タンクフランジ間に接合
されるフランジを有する筒状シ―ルドを設け、この筒状
シ―ルドの外側面と前記金属性タンク内側面間に前記通
電導体を周回するように緩衝材を介して絶縁性あるいは
非磁性環状部材を配設するとともに、この環状部材の外
周面を周回する溝を設け、この溝内に光ファイバを配設
固定するとともにこの光ファイバの端部端を前記タンク
外部に設けた所定の光学機器に接続し、前記環状部材は
前記金属性タンク内側面との間に配設された弾性部材を
介して固定されて成ることを特徴とする。
According to the present invention, a plurality of cylindrical metallic tanks are joined via flanges provided at the end portions of the tanks, and a current-carrying conductor is provided in the axial direction of the metallic tanks. An optical system in which the tank is filled with an insulating gas and the energizing current of the energizing conductor is measured by detecting the polarization state of the light passing through the optical fiber that surrounds the energizing conductor. Type current measuring device,
A tubular shield having a flange joined to the metallic tank flange at the end is disposed inside the metallic tank so that the current-carrying conductor can be inserted therethrough. An insulating or non-magnetic annular member is disposed between the outer side surface and the inner side surface of the metallic tank so as to circulate the current-carrying conductor, and a groove is provided around the outer peripheral surface of the annular member. An optical fiber is arranged and fixed in the groove, and the end of the optical fiber is connected to a predetermined optical device provided outside the tank, and the annular member is arranged between the inner surface of the metallic tank and the annular member. It is characterized by being fixed via an elastic member.

【0009】[0009]

【作用】以上の構成により、ファラデ―効果を有する光
ファイバを、円周面に巻き溝を持つ絶縁性あるいは非磁
性環状部材に巻いて固定する方法を採用したため、光フ
ァイバは部分的に応力を受ける事がない。また、筒状シ
―ルドと環状部材を緩衝材を介して固定してあるため、
タンクから伝わる振動・衝撃で光ファイバに応力を発生
する危険性がなくなった。又、内部に弾性材を充填した
事により、タンク内の光路全体に対して耐震効果が生ず
ると共に、熱遮蔽材として働くため、温度変化による光
ファイバの熱応力を抑える効果がある。従って、応力に
より複屈折が増して、測定精度が低下するという問題点
を克服することが可能となる。
With the above configuration, the optical fiber having the Faraday effect is wound and fixed on the insulating or non-magnetic annular member having the winding groove on the circumferential surface. There is nothing to receive. Moreover, since the cylindrical shield and the annular member are fixed via the cushioning material,
There is no longer any risk of stress on the optical fiber due to vibration or shock transmitted from the tank. In addition, by filling the inside with an elastic material, a seismic resistance effect is produced for the entire optical path in the tank, and since it functions as a heat shielding material, there is an effect of suppressing thermal stress of the optical fiber due to temperature change. Therefore, it is possible to overcome the problem that the birefringence increases due to the stress and the measurement accuracy is lowered.

【0010】[0010]

【実施例】以下に本発明の実施例を図面を参照して説明
する。図1は、ファラデ―素子に光ファイバ4を用い
て、GIS用光学式電流計測装置を構成したものであ
る。光ファイバ4は、リング形状をしたボビン16の円周
面に収納溝を設けて、らせん状に複数回巻き付け固定さ
れている。図1の実施例では、光ファイバ4は溝内でシ
リコンゴムにより接着、あるいは充填保持を行い、保護
カバ―21で覆うとともに、その一端に偏光子12、検光子
13等を収納した光学箱を固定して、ボビン16と一体に組
み立てている。ボビン16は、非磁性体のアルミまたは絶
縁物を用いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an optical current measuring device for GIS constructed by using an optical fiber 4 as a Faraday element. The optical fiber 4 is provided with a storage groove on the circumferential surface of a ring-shaped bobbin 16 and is spirally wound and fixed a plurality of times. In the embodiment shown in FIG. 1, the optical fiber 4 is bonded or filled and held with silicon rubber in the groove, and is covered with a protective cover 21, and a polarizer 12 and an analyzer are provided at one end thereof.
The optical box containing 13 etc. is fixed and assembled with the bobbin 16. The bobbin 16 uses nonmagnetic aluminum or an insulator.

【0011】ボビン16金属性のタンク1への固定は、ま
ず電界緩和に用いる筒状シ―ルド17に緩衝材18を挿入
し、その段差部までボビン16を挿入した後、分割してい
た緩衝材18とシ―ルド17を組み上げ、更にタンク1へシ
―ルド17を取り付ける事によってなされる。
The bobbin 16 is fixed to the metallic tank 1 by first inserting a cushioning material 18 into a cylindrical shield 17 used for electric field relaxation, inserting the bobbin 16 up to the stepped portion, and then dividing the cushion. This is done by assembling the material 18 and the shield 17 and then attaching the shield 17 to the tank 1.

【0012】光ファイバ4には、ファラデ―効果のある
シングルモ―ド光ファイバを用い、検出感度に適合させ
た巻数を持つコイルを形成する。光ファイバ4の端部は
前記の光学箱に接続され、光学箱と気密端子8との間
を、伝送用の光ファイバ11と光コネクタを用いて接続す
る。図1の断面図は、ちょうど光学箱と気密端子8を配
置した場所を図示しているが、ボビン16のこの位置は光
ファイバ4、11の引き回しが多いため、その一部分を囲
い材19で区画して弾性材20、例えばシリコン発泡体を充
填して保持している。
As the optical fiber 4, a single mode optical fiber having the Faraday effect is used, and a coil having a number of turns adapted to the detection sensitivity is formed. The end of the optical fiber 4 is connected to the above-mentioned optical box, and the optical box and the airtight terminal 8 are connected to each other by using an optical fiber 11 for transmission and an optical connector. The cross-sectional view of FIG. 1 shows just the location where the optical box and the airtight terminal 8 are arranged. However, at this position of the bobbin 16, the optical fibers 4 and 11 are often routed, so a part of the bobbin 16 is divided by the enclosing material 19. The elastic material 20, for example, silicon foam is filled and held.

【0013】図1の光路構成は図3で述べた従来の光路
図と変わらない。次に、この実施例がもたらす作用と効
果について述べる。光ファイバ4をボビン16に納めて、
溝内に弾力のあるシリコンゴムで接着したため、部分的
に応力が掛かる問題を解決した。また、タンク1からの
振動・衝撃が光ファイバ4や光学箱に影響しないよう、
シ―ルド17と緩衝材18を介して固定した。また、光学箱
と気密端子8周辺の一部を区画して、発泡材を充填した
事により、振動等の耐震効果と断熱効果が得られる。通
電時に発熱源となる導体2や、外気温・日照等の影響を
伝えるタンク1から、光学部品を遮蔽出来るため、光フ
ァイバ4に影響する温度差を軽減して応力の発生を抑え
ると共に、光学部品の温度差による光軸ずれや複屈折の
問題を解決する。
The optical path configuration of FIG. 1 is the same as the conventional optical path diagram described in FIG. Next, the operation and effect brought about by this embodiment will be described. Put the optical fiber 4 in the bobbin 16,
The problem of partial stress was solved because it was bonded in the groove with elastic silicone rubber. Also, make sure that the vibration and shock from the tank 1 do not affect the optical fiber 4 and the optical box.
It was fixed via a shield 17 and a cushioning material 18. Further, by partitioning the optical box and a part of the periphery of the airtight terminal 8 and filling them with a foam material, a seismic resistance effect such as vibration and a heat insulating effect can be obtained. Since the optical components can be shielded from the conductor 2 that is a heat source when energized and the tank 1 that transmits the influence of the outside air temperature and sunshine, the temperature difference that affects the optical fiber 4 can be reduced and the generation of stress can be suppressed. The problems of optical axis shift and birefringence due to the temperature difference of parts are solved.

【0014】この結果、応力により複屈折が増して精度
が低下する問題を解決できる。本発明の上記趣旨は図1
に示した緩衝材18を、硬さ(バネ定数)の異なる物を組
合せた構成、ボビン16に金属性部材を用いタンク1と同
電位にせしめた構成にも適用可能である。
As a result, it is possible to solve the problem that the birefringence is increased by the stress and the accuracy is lowered. The above-mentioned gist of the present invention is shown in FIG.
It is also applicable to the configuration in which the cushioning material 18 shown in 1 is combined with those having different hardnesses (spring constants) and the bobbin 16 is made to have the same electric potential as the tank 1 by using a metallic member.

【0015】[0015]

【発明の効果】以上説明した様に、本発明によればガス
絶縁機器の通電導体の通電電流の測定精度を向上させた
光学式電流計測装置を提供できる。
As described above, according to the present invention, it is possible to provide an optical current measuring device in which the measurement accuracy of the current flowing through the current-carrying conductor of the gas-insulated equipment is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の光学式電流計測装置の要部
断面構成図。
FIG. 1 is a cross-sectional configuration diagram of a main part of an optical current measuring device according to an embodiment of the present invention.

【図2】従来の光学式電流計測装置の断面構成図。FIG. 2 is a sectional configuration diagram of a conventional optical current measuring device.

【図3】光学式電流計測装置の光路例解図。FIG. 3 is an optical path example solution diagram of an optical current measuring device.

【符号の説明】[Explanation of symbols]

1…タンク 2…導体 4…光ファイバ 5…保持材 8…気密端子 11…光ファイバ 12…偏光子 13…検光子 16…ボビン 17…シ―ルド 18…緩衝材 19…囲い材 20…弾性材 1 ... Tank 2 ... Conductor 4 ... Optical fiber 5 ... Retaining material 8 ... Airtight terminal 11 ... Optical fiber 12 ... Polarizer 13 ... Analyzer 16 ... Bobbin 17 ... Shield 18 ... Buffer material 19 ... Enclosure material 20 ... Elastic material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺井 清寿 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 高橋 正雄 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 丹羽 景子 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyotoshi Terai No. 2 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Stock Company Toshiba Hamakawasaki Plant (72) Masao Takahashi No. 2 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 in stock company Toshiba Hamakawasaki factory (72) Inventor Keiko Niwa No. 2 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Hamakawasaki factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の筒状の金属性タンクを、それらタ
ンクの端部端に設けたフランジを介して接合し、前記金
属性タンクの軸方向に通電導体を配設するとともに、こ
のタンク内部に絶縁性ガスを充填し、前記通電導体の通
電電流をこの通電導体の周囲を周回する光ファイバ内を
通光する光の偏光状態を検出することにより計測する光
学式電流計測装置において、前記金属性タンク内部に前
記通電導体を内部に挿通可能に配設され端部端に前記金
属性タンクフランジ間に接合されるフランジを有する筒
状シ―ルドを設け、この筒状シ―ルドの外側面と前記金
属性タンク内側面間に前記通電導体を周回するように緩
衝材を介して絶縁性あるいは非磁性環状部材を配設する
とともに、この環状部材の外周面を周回する溝を設け、
この溝内に光ファイバを配設固定するとともにこの光フ
ァイバの端部端を前記タンク外部に設けた所定の光学機
器に接続し、前記環状部材は前記金属性タンク内側面と
の間に配設された弾性部材を介して固定されて成ること
を特徴とする光学式電流計測装置。
1. A plurality of tubular metallic tanks are joined together through flanges provided at the end portions of the tanks, and a current-carrying conductor is arranged in the axial direction of the metallic tanks. In the optical current measuring device, which is filled with an insulating gas, and measures the energizing current of the energizing conductor by detecting the polarization state of the light passing through the optical fiber circulating around the energizing conductor, the metal A cylindrical shield having a flange joined to the metallic tank flanges at the end of the cylindrical tank, the outer surface of the cylindrical shield being provided so that the current-carrying conductor can be inserted therethrough. And an insulating or non-magnetic annular member is disposed between the inner side surface of the metallic tank so as to circulate the current-carrying conductor via a cushioning material, and a groove that circulates the outer peripheral surface of the annular member is provided.
An optical fiber is arranged and fixed in the groove, and the end of the optical fiber is connected to a predetermined optical device provided outside the tank, and the annular member is arranged between the inner surface of the metallic tank and the annular member. An optical current measuring device characterized in that it is fixed via an elastic member.
JP02710894A 1994-02-25 1994-02-25 Optical current measuring device Expired - Fee Related JP3270234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02710894A JP3270234B2 (en) 1994-02-25 1994-02-25 Optical current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02710894A JP3270234B2 (en) 1994-02-25 1994-02-25 Optical current measuring device

Publications (2)

Publication Number Publication Date
JPH07234252A true JPH07234252A (en) 1995-09-05
JP3270234B2 JP3270234B2 (en) 2002-04-02

Family

ID=12211893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02710894A Expired - Fee Related JP3270234B2 (en) 1994-02-25 1994-02-25 Optical current measuring device

Country Status (1)

Country Link
JP (1) JP3270234B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223129A1 (en) * 2007-12-21 2010-09-01 ABB Research Ltd. Gas-insulated switchgear device with optical current sensor
JP2011529675A (en) * 2008-07-30 2011-12-08 アーベーベー・リサーチ・リミテッド Generator circuit breaker with fiber optic current sensor
US8718418B2 (en) 2008-07-30 2014-05-06 Abb Research Ltd High voltage AC/DC or DC/AC converter station with fiber-optic current sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223129A1 (en) * 2007-12-21 2010-09-01 ABB Research Ltd. Gas-insulated switchgear device with optical current sensor
JP2011529675A (en) * 2008-07-30 2011-12-08 アーベーベー・リサーチ・リミテッド Generator circuit breaker with fiber optic current sensor
US8629672B2 (en) 2008-07-30 2014-01-14 Abb Research Ltd Generator circuit breaker with fiber-optic current sensor
US8718418B2 (en) 2008-07-30 2014-05-06 Abb Research Ltd High voltage AC/DC or DC/AC converter station with fiber-optic current sensor

Also Published As

Publication number Publication date
JP3270234B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP5180376B2 (en) Generator circuit breaker with fiber optic current sensor
US5136236A (en) Arrangement for voltage measurement in a gis installation
US5844410A (en) Device for optically measuring physical quantity in power equipment and method of manufacturing the same
KR20110050437A (en) High Voltage AC / DC or DC / AC Converter Station with Fiber Optic Current Sensor
US3590374A (en) Current measuring apparatus utilizing combined rotational effects of two or more faraday elements
EP0849600A1 (en) Optical current transformer
US5295207A (en) Optical apparatus for measuring current in a grounded metal-clad installation
JP3270234B2 (en) Optical current measuring device
KR20090131386A (en) Three-Phase Batch Wiss spacer Using Optical Fiber Current Sensor
JP5461260B2 (en) Insulated spacer with built-in optical fiber
US5365175A (en) Method of locating ground faults
JP3308688B2 (en) Optical current measuring device
RU2321000C2 (en) Fiber-optic current transformer
JP3347449B2 (en) Optical current measuring device
JPH0843450A (en) Light current transformer
JPH0763793A (en) Optical current measurement instrument
JP2000111586A (en) Current-measuring device
JP3302155B2 (en) Optical current measuring device
JPH03225282A (en) Photocurrent sensor
JP2003232815A (en) Optical current measuring device
JPS587947B2 (en) Denriyusokuteisouchi
JPH10142265A (en) Optical current transformer
JPH0611470Y2 (en) Optical current transformer for gas insulated switchgear
KR101366259B1 (en) Optical current transformer for electrical equipment
JPH0593741A (en) Sensor head for optical ct

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees