[go: up one dir, main page]

JPH07233415A - Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness - Google Patents

Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness

Info

Publication number
JPH07233415A
JPH07233415A JP2401494A JP2401494A JPH07233415A JP H07233415 A JPH07233415 A JP H07233415A JP 2401494 A JP2401494 A JP 2401494A JP 2401494 A JP2401494 A JP 2401494A JP H07233415 A JPH07233415 A JP H07233415A
Authority
JP
Japan
Prior art keywords
steel
toughness
resistance
temperature toughness
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2401494A
Other languages
Japanese (ja)
Inventor
Hajime Ishikawa
肇 石川
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
博 為広
Akihiro Date
昭宏 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2401494A priority Critical patent/JPH07233415A/en
Publication of JPH07233415A publication Critical patent/JPH07233415A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 本発明の目的とするところは、耐サワー性に
優れかつ、低温靭性に優れたことを特徴とする鋼板の製
造方法、特に30mm以上の極厚鋼の低温靭性の優れた製
造方法を提供することである。 【構成】 重量%でC:0.01〜0.08%、Nb:
0.005〜0.040%、Ti:0.005〜0.0
25%、Al:0.008%以下の鋼を連続鋳造方法に
よってスラブとし、これを1100〜1250℃の温度
領域で再加熱後、制御圧延し、900℃以上で焼入れ
し、500〜700℃で焼戻すことを特徴とする耐サワ
ー性および低温靭性に優れた厚板高張力鋼板の製造方
法。
(57) [Abstract] [Objective] The object of the present invention is to provide a method for producing a steel sheet characterized by excellent sour resistance and low-temperature toughness, particularly low-temperature toughness of extra-thick steel of 30 mm or more. It is to provide an excellent manufacturing method of. [Composition] C: 0.01 to 0.08% by weight, Nb:
0.005-0.040%, Ti: 0.005-0.0
Steel of 25% and Al: 0.008% or less was made into a slab by a continuous casting method, which was reheated in a temperature range of 1100 to 1250 ° C., then controlled rolling, quenched at 900 ° C. or more, and 500 to 700 ° C. A method for producing a thick high-strength steel sheet excellent in sour resistance and low-temperature toughness, which is characterized by tempering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、H2 Sを含んだ石油、
天然ガスに用いるラインパイプ用として有用な、耐サワ
ー性に優れかつ、低温靭性に優れた鋼板の製造方法にか
かわり、さらに、小入熱溶接から大入熱溶接に至るまで
熱影響部(HAZ)の低温靭性が優れ、特に30mm以上
の極厚鋼の低温靭性の優れた製造方法に関する。
This invention relates to petroleum containing H 2 S,
Involved in the method of manufacturing steel sheets with excellent sour resistance and low temperature toughness, which are useful for line pipes used for natural gas, and further, from heat input welding to heat input welding (HAZ) The present invention relates to a method for producing an extremely low-temperature toughness of, particularly, an extremely thick steel having a thickness of 30 mm or more and an excellent low-temperature toughness.

【0002】[0002]

【従来の技術】硫化水素(H2 S)を含むサワーオイル
・サワーガスを輸送するラインパイプおよびその付属設
備あるいはH2 Sを含む流体を扱う化学プラント配管等
の鋼管材に対しては、耐サワー性(耐HIC性と共に耐
SSC性)が要求される。この場合、耐HIC性につい
ては通常NACE TM−02−84に規定された人工
海水+飽和H2 S溶液(pH〜5.0)や、NACE
TM−01−77に規定された5%NaCl+0.5%
CH3 COOH+飽和H2 S溶液(pH〜3.5)が評
価に使用される。特に後者のような低pH環境における
耐HIC鋼材としては、極低S化およびCa添加によ
る介在物形態制御やMnやPを低減することによる偏
析部の硬さ制御による対策がとられてきた。
2. Description of the Related Art Steel pipe materials such as line pipes for transporting sour oil and sour gas containing hydrogen sulfide (H 2 S) and its auxiliary equipment or steel pipe materials such as chemical plant pipes handling fluids containing H 2 S are sour resistant. Property (HIC resistance and SSC resistance) is required. In this case, as for HIC resistance, artificial seawater + saturated H 2 S solution (pH ~ 5.0) usually specified in NACE TM-02-84 or NACE is used.
5% NaCl + 0.5% specified in TM-01-77
CH 3 COOH + saturated H 2 S solution (pH ~ 3.5) is used in the assessment. In particular, as a HIC resistant steel material in the low pH environment such as the latter, measures have been taken by controlling the morphology of inclusions by extremely reducing S and adding Ca, and by controlling the hardness of the segregated portion by reducing Mn and P.

【0003】しかし鋼材の強度を高強度化した場合、偏
析部への成分濃化が増し必ずしも低pH環境における耐
HIC性を満足しないこともあり、応力が付加した場合
の耐SSC性を、例えばNACE TM−01−77規
格による定荷重SSC試験(6.35mmφの丸棒試験片
を5%NaCl+0.5%CH3 COOH+飽和H2
液内である荷重で引張応力を付与し、種々の応力におけ
る破断時間を求める試験)で評価した場合、上記従来鋼
材は破断の限界応力値(720hr破断しない最大応力)
は0.5〜0.8×降伏応力(σy )程度である。
However, when the strength of the steel material is increased, the concentration of components in the segregated portion increases and the HIC resistance in a low pH environment may not always be satisfied. For example, the SSC resistance when stress is applied is, for example, Constant load SSC test according to NACE TM-01-77 standard (a round bar test piece of 6.35 mmφ is 5% NaCl + 0.5% CH 3 COOH + saturated H 2 S
When a tensile stress is applied by a certain load in the liquid and a rupture time at various stresses is evaluated), the above conventional steel materials have a critical stress value for rupture (maximum stress that does not rupture for 720 hr).
Is about 0.5 to 0.8 × yield stress (σ y ).

【0004】これに対し、鋼材を低C化しそれによる強
度低下をMn,Nb等の合金添加によって補い、ミクロ
組織を均一な低炭素ベイナイト組織にすることにより、
通常C−低Mn形の鋼に比べて比較的高強度であっても
優れた耐HIC性が低pH環境でも得られる。さらに、
30mm以下の鋼板では制御圧延(controlled rolling)、
制御冷却(controlled cooling)をも組み合わせること
によって、微細で均一なベイナイト組織が得られ、優れ
た母材の耐HIC性および耐SSC性が得られる。
On the other hand, by reducing the carbon content of the steel material and compensating for the decrease in strength by adding an alloy such as Mn and Nb, the microstructure becomes a uniform low carbon bainite structure.
Generally, excellent HIC resistance is obtained even in a low pH environment even if the strength is relatively high as compared with C-low Mn type steel. further,
Controlled rolling for steel sheets of 30 mm or less,
By combining also controlled cooling, a fine and uniform bainite structure can be obtained, and excellent HIC resistance and SSC resistance of the base material can be obtained.

【0005】一方、H2 Sガスを含む油井等、最近益々
その使用条件は過酷になり、一層の高靭化が求められる
ようになってきた。低合金鋼のHAZ靭性確保は結晶
粒サイズ、高炭素島状マルテンサイト(MA)、上部
ベイナイト(Bu)等の硬化組織の分散状態、粒界脆
化の有無、元素のミクロ偏析等の種々の冶金学的な要
因に支配される。中でもHAZの結晶粒のサイズは低温
靭性に大きな影響を与えることが知られており、HAZ
組織を微細化する数多くの技術が開発実用化されてい
る。TiN等の高温でも比較的安定な窒化物を鋼中に微
細分散させ、これによってHAZのオーステナイト
(γ)粒の粗大化を抑制する技術は特に有名である。
On the other hand, the operating conditions of oil wells and the like containing H 2 S gas have recently become more severe, and higher toughness has been demanded. To secure HAZ toughness of low alloy steel, various factors such as crystal grain size, dispersed state of hardened structure of high carbon island martensite (MA), upper bainite (Bu), presence of grain boundary embrittlement, element microsegregation, etc. Controlled by metallurgical factors. Above all, it is known that the size of the crystal grains of HAZ has a great influence on the low temperature toughness.
Many technologies for making the structure finer have been developed and put into practical use. The technology of finely dispersing a relatively stable nitride such as TiN even in a high temperature in steel and thereby suppressing coarsening of austenite (γ) grains of HAZ is particularly famous.

【0006】しかし、HAZの1400℃以上に加熱さ
れる領域では、TiNは粗大化もしくは溶解し、γ粒の
粗大化抑制能力は消失する。このため溶融線近傍での靭
性劣化が大きく、HAZ全域で安定して高靭性を得るこ
とができない。これに対して、Ti酸化物(主としてT
2 3 )を微細分散させた鋼(特開昭61−7974
5号公報)は溶融線近傍でもHAZ組織を微細化するこ
とができ、TiN鋼に比較して優れた低温靭性が得られ
る。
However, in the region where HAZ is heated to 1400 ° C. or higher, TiN coarsens or dissolves, and the ability to suppress the coarsening of γ grains disappears. For this reason, the toughness is largely deteriorated in the vicinity of the melting line, and it is not possible to stably obtain high toughness in the entire HAZ. On the other hand, Ti oxide (mainly T
i 2 O 3 ) finely dispersed steel (Japanese Patent Laid-Open No. 61-7974).
No. 5) can refine the HAZ structure even in the vicinity of the melting line, and can obtain excellent low temperature toughness as compared with TiN steel.

【0007】さらに、低S鋼にCaを添加し微細なCa
酸化物(主としてCaO)を形成、分散させ、これによ
って組織を微細化、かつ残存するCaでSを固定するこ
とによって、HAZ靭性の優れた鋼を安価に製造する技
術を確立した。この方法で製造した鋼は溶融線近傍から
HAZまで、全域のミクロ組織が微細化し、優れた低温
靭性を示す。Ca酸化物はγ粒の粗大化抑制能力は小さ
いが、γ−α変態時にγ粒内に存在するCaOを核とし
て、放射状に微細なアシキュラーフェライト(IFP)
が生成するので、HAZ組織は著しく微細化する。Ca
Oは溶融線近傍の1400℃以上に加熱される領域でも
安定であり、この領域でも組織の微細化に効果を発揮す
る。その結果、溶接部は全域にわたって微細化し、極め
て優れた低温靭性が得られる。
Further, by adding Ca to the low S steel, fine Ca
By forming and dispersing an oxide (mainly CaO), thereby refining the structure and fixing S with residual Ca, a technique for inexpensively producing steel having excellent HAZ toughness was established. The steel produced by this method has a fine microstructure in the entire region from the vicinity of the melting line to the HAZ and exhibits excellent low temperature toughness. Although Ca oxide has a small ability to suppress coarsening of γ grains, CaO existing in γ grains at the time of γ-α transformation is used as a nucleus to form radially fine acicular ferrite (IFP).
Are generated, the HAZ structure becomes extremely fine. Ca
O is also stable in a region heated to 1400 ° C. or higher in the vicinity of the melting line, and also in this region, it has an effect on making the structure fine. As a result, the welded portion is miniaturized over the entire area, and extremely excellent low temperature toughness is obtained.

【0008】酸化物によってHAZ靭性を改善する方法
には、特開昭61−79745号公報のようにTi酸化
物を利用するものもあるが、Ca酸化物とTi酸化物で
IFP生成能力に大きな差はない。CaOはTi2 3
よりも生成温度が高く、スラブ凝固時の冷却速度の影響
を受けにくいので、スラブ全域にわたって均一微細分散
が可能な点が優れている。さらに特開平3−23642
0号公報によればTi酸化物による低温靭性の向上とC
aによる介在物制御等によりHAZを含む全ての領域で
の低温靭性かつ耐サワー性の両特性に優れた鋼が可能と
なった。しかしながら、30mm以下の鋼に対しては上記
技術は有効であるが、30mm以上の極厚鋼に関しては、
板表面と板厚中心との温度差が激しく耐サワー性の確保
が困難になる。すなわち、板厚30mm以上の極厚材では
従来技術において板厚中心部と板厚表層部での組織制御
ができず耐サワー性、低温靭性を兼ね備えることはでき
ない。
As a method of improving the HAZ toughness by using an oxide, there is a method of utilizing a Ti oxide as disclosed in Japanese Patent Laid-Open No. 61-79745, but a Ca oxide and a Ti oxide have a large IFP forming ability. There is no difference. CaO is Ti 2 O 3
Since it has a higher generation temperature and is less affected by the cooling rate at the time of solidification of the slab, it is excellent in that it enables uniform fine dispersion over the entire slab. Further, JP-A-3-23642
According to Japanese Patent No. 0, the improvement of low temperature toughness due to Ti oxide and C
By controlling inclusions by a, etc., it became possible to obtain a steel excellent in both low temperature toughness and sour resistance in all regions including HAZ. However, although the above technique is effective for steel of 30 mm or less, for extremely thick steel of 30 mm or more,
There is a large temperature difference between the plate surface and the center of plate thickness, making it difficult to secure sour resistance. That is, in the case of an extremely thick material having a plate thickness of 30 mm or more, it is not possible to have both sour resistance and low temperature toughness because the structure cannot be controlled in the center part of the plate thickness and the surface layer part of the plate in the prior art.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
とするところは、板厚30mm以下同様、30mm以上でも
耐サワー性、低温靭性に優れた高張力ラインパイプ用鋼
板の製造方法を提供することである。さらに、本発明の
目的は、低C化による高炭素島状マルテンサイトの生
成、ベイナイトの硬度上昇を阻止し、低S化にTiおよ
びCa添加、実質的にAlを含有せず、制御圧延、焼入
れ焼戻しによる低温靭性、かつ耐SSC性および耐HI
C性に優れた鋼板の製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for producing a steel plate for a high-strength line pipe excellent in sour resistance and low temperature toughness even at a thickness of 30 mm or more, as well as at a thickness of 30 mm or less. That is. Further, the object of the present invention is to prevent the formation of high carbon island martensite due to the reduction of C, to prevent the hardness increase of bainite, to add Ti and Ca to the reduction of S, to contain substantially no Al, and to control rolling, Low temperature toughness by quenching and tempering, SSC resistance and HI resistance
It is to provide a method for manufacturing a steel sheet having excellent C property.

【0010】[0010]

【課題を解決するための手段】本発明は耐SSC性およ
び耐HIC性を損なうことなく、板厚の厚い高靭性ライ
ンパイプ用鋼を製造することを目的とした発明である。
本発明者らが製造条件を種々変化させ、耐SSC性およ
び耐HIC性と機械的性質とを化学成分、組織、板厚に
関して詳しく検討した結果以下のような事実が判明し
た。
SUMMARY OF THE INVENTION The present invention is intended to produce a high toughness line pipe steel having a large plate thickness without impairing SSC resistance and HIC resistance.
As a result of various examinations by the inventors of the present invention on the manufacturing conditions, the SSC resistance, the HIC resistance, and the mechanical properties with respect to the chemical composition, the structure, and the plate thickness, the following facts were found.

【0011】薄手材(以後、板厚30mm以下の材料と
する)では制御圧延+加速冷却、または制御圧延+焼入
れ焼戻し材で低C化により硬さを250Hv以下とした微
細で均一なベイナイト(第2相としてフェライトまたは
IFP)からなる組織が最も耐SSC性および耐HIC
性に優れている。しかしながら、厚手材(以後、板厚3
0mm以上とする)では、制御圧延+制御冷却材は均一な
上記組織が得られず、制御圧延(+制御冷却)+焼入れ
焼戻し材のみで耐サワー性が確保できる。低S化とC
a添加により、耐サワー性および低温靭性の両特性が向
上する。低S化しCa添加と共にAlを低減した場
合、HAZにおけるIFPの生成が多くなると共に高炭
素島状マルテンサイトの生成が減少し、低温靭性は向上
し、また、耐サワー性は劣化しない。つまり、圧延条件
+加速冷却では冷却条件を種々変化させても厚手材では
組織の均一化がはかれない。
In the case of a thin material (hereinafter referred to as a material having a plate thickness of 30 mm or less), a controlled rolling + accelerated cooling, or a controlled rolling + quenching and tempering material with a fine C and a hardness of 250 Hv or less, which is fine and uniform bainite (first The structure consisting of ferrite or IFP) as the two phases is most resistant to SSC and HIC
It has excellent properties. However, thick materials (hereinafter, thickness 3
In the case of 0 mm or more), the uniform structure described above cannot be obtained in the controlled rolling + controlled cooling material, and the sour resistance can be secured only by the controlled rolling (+ controlled cooling) + quenched and tempered material. Low S and C
Addition of a improves both sour resistance and low temperature toughness. When the S content is lowered and the Al content is reduced together with the addition of Ca, the production of IFP in the HAZ increases, the production of high carbon island martensite decreases, the low temperature toughness improves, and the sour resistance does not deteriorate. That is, in the rolling condition + accelerated cooling, even if the cooling conditions are variously changed, the structure cannot be made uniform in the thick material.

【0012】一方、制御圧延+焼入れ焼戻し材は適正に
選択することにより、250Hv以下とした微細で均一な
ベイナイト組織(第2相としてフェライト、IFPまた
は焼戻しマルテンサイト)となる。加えて、マルテンサ
イトの生成を抑え、微細で均一なベイナイト組織により
耐SSC性および耐HIC性は向上する。さらに、低S
化にCa添加することにより、MnS等の介在物の形態
制御により、耐HIC性が向上する。
On the other hand, by properly selecting the controlled rolling + quenching and tempering material, a fine and uniform bainite structure (ferrite, IFP or tempered martensite as the second phase) of 250 Hv or less is obtained. In addition, the formation of martensite is suppressed, and the fine and uniform bainite structure improves SSC resistance and HIC resistance. Furthermore, low S
Addition of Ca to the composition improves the HIC resistance by controlling the morphology of inclusions such as MnS.

【0013】また、HAZ靭性を向上をはかるための最
も効果的な組織はIFPであるが、低S化、Tiおよび
Ca添加およびAlの低減により、IFPの生成核(C
a酸化物、Ti酸化物)が増加し、高靭化がはかれる。
さらに、Alの低減は高炭素島状マルテンサイトの生成
を抑制するために強化元素の添加が容易となり、強度レ
ベルが上昇してもHAZ靭性は劣化しない。本発明の重
要性は板厚30mm以上の材料でも耐SSC性および耐H
IC性と低温靭性とを向上すると言う、耐サワーライン
パイプとして重要な特性を確保した点にある。
The most effective structure for improving the HAZ toughness is IFP. However, by reducing S, adding Ti and Ca, and reducing Al, the nuclei of IFP (C
a oxide, Ti oxide) is increased, and high toughness is achieved.
Further, the reduction of Al makes it easy to add a strengthening element because it suppresses the formation of high carbon island martensite, and the HAZ toughness does not deteriorate even if the strength level increases. The importance of the present invention is that SSC resistance and H resistance are high even for materials with a plate thickness of 30 mm or more
The point is to secure an important characteristic as a sour-resistant line pipe that improves the IC property and low temperature toughness.

【0014】よって、本発明の要旨とするところは、次
の通りである。 (1)重量%でC:0.01〜0.08%、Si:0.
05〜0.5%、Mn:0.8〜1.5%、P:0.0
15%以下、S:0.0010%以下、Nb:0.00
5〜0.040%、Ti:0.005〜0.025%、
Al:0.008%以下、Ca:0.001〜0.00
5%、N:0.001〜0.005%、O:0.001
〜0.005%を含有し、残留不可避不純物および鉄か
らなる鋼を連続鋳造方法によってスラブとし、これを1
100〜1250℃の温度領域で再加熱後、制御圧延
し、再加熱温度900℃以上で焼入れし、500〜70
0℃で焼戻すことを特徴とする耐サワー性および低温靭
性に優れた厚板高張力鋼板の製造方法。
Therefore, the gist of the present invention is as follows. (1) C: 0.01 to 0.08% by weight, Si: 0.
05-0.5%, Mn: 0.8-1.5%, P: 0.0
15% or less, S: 0.0010% or less, Nb: 0.00
5 to 0.040%, Ti: 0.005 to 0.025%,
Al: 0.008% or less, Ca: 0.001 to 0.00
5%, N: 0.001 to 0.005%, O: 0.001
Steel containing ˜0.005% and consisting of residual unavoidable impurities and iron was made into a slab by a continuous casting method.
After reheating in the temperature range of 100 to 1250 ° C., controlled rolling, quenching at a reheating temperature of 900 ° C. or higher, 500 to 70
A method for producing a thick high-strength steel sheet having excellent sour resistance and low-temperature toughness, which is characterized by tempering at 0 ° C.

【0015】(2)重量%でC:0.01〜0.08
%、Si:0.05〜0.5%、Mn:0.8〜1.5
%、P:0.015%以下、S:0.0010%以下、
Nb:0.005〜0.040%、Ti:0.005〜
0.025%、Al:0.008%以下、Ca:0.0
01〜0.005%、N:0.001〜0.005%、
O:0.001〜0.005%を含有し、V:0.00
5〜0.060%、Ni:0.05〜0.50%、M
o:0.05〜0.40%、Cu:0.05〜1.0
%、Cr:0.05〜1.0%の1種もしくは2種以上
を含有し、残留不可避不純物および鉄からなる鋼を連続
鋳造方法によってスラブとし、これを1100〜125
0℃の温度領域で再加熱後、制御圧延し、再加熱温度9
00℃以上で焼入れし、500〜700℃で焼戻すこと
を特徴とする耐サワー性および低温靭性に優れた厚板高
張力鋼板の製造方法。
(2) C by weight%: 0.01 to 0.08
%, Si: 0.05 to 0.5%, Mn: 0.8 to 1.5
%, P: 0.015% or less, S: 0.0010% or less,
Nb: 0.005-0.040%, Ti: 0.005-
0.025%, Al: 0.008% or less, Ca: 0.0
01-0.005%, N: 0.001-0.005%,
O: 0.001 to 0.005% is included, V: 0.00
5 to 0.060%, Ni: 0.05 to 0.50%, M
o: 0.05 to 0.40%, Cu: 0.05 to 1.0
%, Cr: 0.05 to 1.0% of one or two or more, and steel made of residual unavoidable impurities and iron is made into a slab by a continuous casting method.
After reheating in the temperature range of 0 ° C, control rolling is performed and the reheating temperature is 9
A method for producing a thick high-strength steel sheet having excellent sour resistance and low-temperature toughness, which comprises quenching at 00 ° C or higher and tempering at 500 to 700 ° C.

【0016】[0016]

【作用】本発明において化学成分を上述のように限定し
た理由は次の通りである。 C:C量の下限を0.01%としたのは、母材および溶
接部の強度の確保ならびにNb,V等の添加時に、これ
らの効果を発揮させるための最小量である。しかし、C
が多すぎるとHAZ靭性に悪影響をおよぼすだけでな
く、母材靭性、溶接性、耐サワー性を劣化させるので、
上限を0.08%とした。 Si:Siは脱酸上、0.05%以上鋼に必要である
が、多く添加すると溶接性および溶接部の靭性が劣化す
るので上限を0.5%とした。
The reason for limiting the chemical components as described above in the present invention is as follows. C: The lower limit of the amount of C is set to 0.01%, which is the minimum amount for ensuring the strength of the base material and the welded portion and for exerting these effects when Nb, V and the like are added. But C
If it is too large, not only the HAZ toughness is adversely affected, but also the base metal toughness, weldability, and sour resistance are deteriorated.
The upper limit was 0.08%. Si: Si is required for steel in an amount of 0.05% or more in terms of deoxidation, but if added in a large amount, the weldability and the toughness of the welded portion deteriorate, so the upper limit was made 0.5%.

【0017】Mn:Mnは強度、靭性を確保する上で不
可欠な元素であり、その下限は0.8%である。HAZ
靭性を改善するには、γ粒界に生成する粗大な初析フェ
ライトを防止する必要があるが、Mn添加は、これを抑
制する効果がある。しかし、Mnが多すぎると焼入れ性
が増加して、溶接性、HAZ靭性を劣化させるだけでな
く、スラブのMnS等の中心偏析を助長して、耐サワー
性を劣化させるので、Mn添加の上限を1.5%とし
た。
Mn: Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.8%. HAZ
In order to improve the toughness, it is necessary to prevent the coarse proeutectoid ferrite generated at the γ grain boundary, but the addition of Mn has the effect of suppressing this. However, if the Mn content is too large, the hardenability increases, which not only deteriorates the weldability and HAZ toughness but also promotes the central segregation of MnS and the like in the slab and deteriorates the sour resistance. Was set to 1.5%.

【0018】P:本発明において不純物であるPを0.
015%以下とした。これは、母材、HAZの低温靭性
をより一層向上させ、スラブの中心偏析を軽減するため
である。P量の低減は、HAZにおける粒界破壊傾向を
減少させる傾向がある。好ましくはP量は0.010%
以下が望ましい。
P: P which is an impurity in the present invention is 0.
It was set to 015% or less. This is to further improve the low temperature toughness of the base material and HAZ and reduce the center segregation of the slab. Reduction of the amount of P tends to reduce the tendency of intergranular fracture in the HAZ. P content is preferably 0.010%
The following is desirable.

【0019】S:S量の上限を0.001%以上にする
と、Caによる形態制御が不可能なMnSが生成し、H
ICを起点とする。従って、本発明ではS量を0.00
1%以下とした。 Nb:Nbは本発明鋼において重要な元素であり、高強
度鋼においてはNbを添加することなく優れたHAZ靭
性を得ることは困難である。Nbはγ粒界に生成するフ
ェライトを抑制し、CaOを核とする微細なIFPの生
成を促進する働きがある。この効果を得るためには最低
0.005%のNb量が必要である。しかしながら、N
b量が多すぎると、逆に微細なIFPの生成が妨げられ
るので、またHAZのMA生成を助長しHAZを劣化さ
せるので、その上限を0.040%とした。特に、CT
OD特性の要求される鋼はNb析出物が脆性亀裂の発生
起点となり得るため好ましくは0.030%以下が望ま
しい。
S: When the upper limit of the amount of S is set to 0.001% or more, MnS whose morphology cannot be controlled by Ca is produced, and H
IC is the starting point. Therefore, in the present invention, the S content is 0.00
It was set to 1% or less. Nb: Nb is an important element in the steel of the present invention, and it is difficult to obtain excellent HAZ toughness in high strength steel without adding Nb. Nb has a function of suppressing ferrite generated at the γ grain boundary and promoting generation of fine IFP having CaO as a nucleus. To obtain this effect, a minimum Nb content of 0.005% is required. However, N
If the amount of b is too large, on the contrary, the production of fine IFPs is hindered. Further, the production of MA in HAZ is promoted and HAZ is deteriorated, so the upper limit was made 0.040%. Especially CT
In a steel required to have OD characteristics, Nb precipitates can serve as a starting point of occurrence of brittle cracks, so 0.030% or less is preferable.

【0020】Ti:Tiを本発明鋼に添加するとTiO
およびTiNを形成して、HAZ組織を微細化し、HA
Z靭性を向上させる。下限の0.005%は、この効果
を得るための最小量であり、また、上限の0.025%
はTiC形成によるHAZ靭性劣化を防止するためであ
る。 Al:Alは、一般に脱酸上鋼に含まれる元素である
が、本発明では好ましくない元素であり、その上限を
0.008%とした。これは、Alが鋼中に含まれてい
るとOと結合して、Ti酸化物、Ca酸化物が生成しな
いためである。好ましくはAl量は0.003%以下が
望ましい。
Ti: When Ti is added to the steel of the present invention, TiO
And TiN are formed to refine the HAZ structure,
Improves Z toughness. The lower limit of 0.005% is the minimum amount for obtaining this effect, and the upper limit of 0.025%.
Is to prevent HAZ toughness deterioration due to TiC formation. Al: Al is an element that is generally contained in deoxidized upper steel, but is an element that is not preferred in the present invention, and its upper limit was made 0.008%. This is because when Al is contained in the steel, it is combined with O and Ti oxide and Ca oxide are not generated. Preferably, the amount of Al is 0.003% or less.

【0021】Ca:鋼中介在物であるMnSの形態を制
御し耐HIC性を向上させるために、また、HAZにお
いて靭性を向上するためのCaOを生成するために0.
001%以上を添加する。しかし、0.005%を超え
るとCa系の大型介在物やクラスターにより耐HIC性
および耐SSC性が劣化するので0.005%を上限と
した。 N:TiN等によるHAZ靭性を確保するためには0.
001%以上必要である。また、0.005%を超える
と耐HIC性が劣化するので、上限を0.005%とし
た。 O:HAZにおいてCaO,TiOを生成するために
は、O量が0.001%以上必要である。O量の上限を
0.005%としたのは、非金属介在物の生成による鋼
の清浄度、靭性劣化を防止するためである。
Ca: In order to control the morphology of MnS, which is an inclusion in steel, to improve the HIC resistance, and to generate CaO for improving the toughness in HAZ,
Add 001% or more. However, when it exceeds 0.005%, HIC resistance and SSC resistance are deteriorated by large Ca-based inclusions and clusters, so 0.005% was made the upper limit. N: In order to secure HAZ toughness due to TiN or the like, 0.
001% or more is necessary. Further, if it exceeds 0.005%, the HIC resistance deteriorates, so the upper limit was made 0.005%. In order to produce CaO and TiO in O: HAZ, the amount of O needs to be 0.001% or more. The upper limit of the amount of O is set to 0.005% in order to prevent deterioration of cleanliness and toughness of steel due to the formation of non-metallic inclusions.

【0022】本発明にあたっては、所望によりさらに強
度調整元素としてV,Cu,Crの少なくとも1種類以
上を添加する。 V:VはNbとほぼ同じ効果をもつ元素であるが、0.
005%以下では効果がなく、上限は0.060%まで
許容できる。 Ni:Niは0.05%以上の添加により、溶接性、H
AZ靭性に悪影響をおよぼすことなく、母材の強度、靭
性を向上させる。一方0.5%を超えるとAlの低減に
よる靭性向上の効果が低下するので、上限を0.5%と
した。 Cu:CuはNiとほぼ同様な効果が0.05%以上の
添加によって得られる。しかし、1.0%以上添加する
と熱間圧延時にCu−クラックが発生し製造困難とな
る。このため、上限を1.0%とした。
In the present invention, at least one kind of V, Cu and Cr is further added as a strength adjusting element, if desired. V: V is an element having almost the same effect as Nb, but 0.
If it is 005% or less, there is no effect, and the upper limit is 0.060%. Ni: Addition of 0.05% or more of Ni results in weldability and H
The strength and toughness of the base material are improved without adversely affecting the AZ toughness. On the other hand, if it exceeds 0.5%, the effect of improving toughness due to the reduction of Al decreases, so the upper limit was made 0.5%. Cu: Cu has almost the same effect as Ni, and is obtained by adding 0.05% or more. However, if 1.0% or more is added, Cu-cracks are generated during hot rolling, which makes manufacturing difficult. Therefore, the upper limit is set to 1.0%.

【0023】Cr:Crは0.05%以上の添加によ
り、母材、溶接部の強度を高めるが、多すぎると溶接性
やHAZ靭性を劣化させる。そのため、上限を1.0%
とした。 Mo:Moは0.05%以上の添加により、母材の強
度、靭性を向上させる元素であるが、多すぎるとNiと
同様にHAZ靭性、溶接性の劣化を招き好ましくない。
その上限は0.40%である。
Cr: Addition of 0.05% or more of Cr increases the strength of the base material and the welded portion, but if it is too large, the weldability and HAZ toughness deteriorate. Therefore, the upper limit is 1.0%
And Mo: Mo is an element that improves the strength and toughness of the base material when added in an amount of 0.05% or more, but if it is too large, it deteriorates HAZ toughness and weldability like Ni, which is not preferable.
The upper limit is 0.40%.

【0024】このような組成のCCスラブを、熱間圧延
(+加速冷却)+焼入れ焼戻しするが、図1はこのとき
の水冷パターンを示すものである。すなわち、1100
〜1250℃の温度領域で再加熱後、制御圧延し、90
0℃以上で焼入れし、500〜700℃で焼戻す。本発
明においての製造条件を上述のように限定した理由は次
の通りである。まず、再加熱温度は上限を1250℃と
した。これはγ粒が粗大化し、靭性が劣化するためであ
る。また、1100℃より低くするとNb(CN)等の
析出物が粗大化して、耐HIC性を劣化させる。制御圧
延はγ粒を細粒にするために必要であるが、特に限定し
ない。好ましくは、900℃以下の累積圧下量が40%
以上、圧延終了温度750〜900℃で圧延することが
望ましい。また、必要があれば加速冷却しても問題な
い。
The CC slab having such a composition is hot-rolled (+ accelerated cooling) + quenched and tempered, and FIG. 1 shows a water cooling pattern at this time. That is, 1100
After reheating in a temperature range of ˜1250 ° C., controlled rolling, 90
Quench at 0 ° C or higher and temper at 500 to 700 ° C. The reasons for limiting the manufacturing conditions in the present invention as described above are as follows. First, the upper limit of the reheating temperature was 1250 ° C. This is because the γ grains become coarse and the toughness deteriorates. On the other hand, if the temperature is lower than 1100 ° C., precipitates such as Nb (CN) are coarsened to deteriorate the HIC resistance. Controlled rolling is necessary to make the γ grains fine, but is not particularly limited. Preferably, the cumulative reduction amount at 900 ° C or lower is 40%
As described above, it is desirable to perform rolling at the rolling end temperature of 750 to 900 ° C. In addition, if necessary, accelerated cooling does not cause any problem.

【0025】さらに、制御圧延後の900℃以上の温度
での焼入れに組織が微細化する。900℃以下では細粒
オーステナイトからの焼入れができず母材靭性、耐サワ
ー性が低下する。焼入れ後の低温変態組織、マルテンサ
イト、250Hv以上のベイナイトを焼戻すためには50
0℃以上にしないと分解せず母材靭性、耐サワー性を劣
化させる。また、700℃以上にすると前述の組織は分
解するもののMAが生成し、母材靭性、耐サワー性を劣
化させる。このため、焼入れ温度は900℃以上とし、
焼戻し温度は500〜700℃とした。
Further, the structure is refined by quenching at a temperature of 900 ° C. or higher after controlled rolling. If the temperature is 900 ° C. or less, quenching cannot be performed from fine-grained austenite, and the base material toughness and sour resistance deteriorate. To temper the low temperature transformation structure after hardening, martensite, and bainite of 250 Hv or more, 50
If the temperature is not higher than 0 ° C, the material does not decompose and the toughness and sour resistance of the base material deteriorate. Further, when the temperature is 700 ° C. or higher, MA is generated although the aforementioned structure is decomposed, which deteriorates the base material toughness and sour resistance. Therefore, the quenching temperature should be 900 ° C or higher,
The tempering temperature was 500 to 700 ° C.

【0026】[0026]

【実施例】表1に示す化学成分の供試鋼を使い、CCス
ラブを表2に示すような製造条件で行った。それによっ
て得られた鋼板の機械的性質、耐HIC性および耐SS
C性を表2に示す。試験片は図2に示す位置から採取し
た。
[Examples] Using test steels having the chemical compositions shown in Table 1, CC slabs were manufactured under the manufacturing conditions shown in Table 2. Mechanical properties, HIC resistance and SS resistance of the steel sheet thus obtained
C property is shown in Table 2. The test piece was taken from the position shown in FIG.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】鋼13〜16は適切な製造条件ではないの
で、耐HIC性および耐SSC性が劣化している。鋼1
3は再加熱温度が低すぎるため、鋼14は焼戻し温度が
高温であるため、鋼15は焼戻し温度が低温であるた
め、鋼16では焼入れ温度が900℃未満のためであ
る。また、鋼14〜16では母材靭性も低下した。鋼1
7〜25は化学成分が適切でなく、機械的性質が得られ
ない。鋼17はC量が多く微細で均一なベイナイト組織
が得られないため、鋼18はMn量が超で多量のMnS
の析出のため、鋼19はS量が多くMnSの形態制御が
行えないため、耐HIC性および耐SSC性が得られな
い。鋼20ではTiが少ないために、鋼21ではAl量
が多いためHAZ靭性が低下した。また、鋼22はO量
が多く、清浄度が損なわれ、靭性、耐サワー性が劣化し
た例である。鋼23はCa量が少ないため靭性、耐サワ
ー性が低下した。鋼24ではNb量が少ないため母材強
度、母材靭性が確保できない例である。また、鋼25で
はNb量が多いためHAZ靭性が劣化した例である。
Steels 13 to 16 are not under proper manufacturing conditions, so that HIC resistance and SSC resistance are deteriorated. Steel 1
This is because the reheating temperature of No. 3 is too low, the tempering temperature of Steel 14 is high, and the tempering temperature of Steel 15 is low, and the quenching temperature of Steel 16 is less than 900 ° C. Further, in steels 14 to 16, the base material toughness also decreased. Steel 1
Nos. 7 to 25 have an inappropriate chemical composition and cannot obtain mechanical properties. Steel 17 has a large amount of C and cannot obtain a fine and uniform bainite structure. Therefore, Steel 18 has a high Mn content and a large amount of MnS.
Since steel 19 has a large amount of S and cannot control the morphology of MnS, HIC resistance and SSC resistance cannot be obtained. Steel 20 had a small amount of Ti, and Steel 21 had a large amount of Al, so that the HAZ toughness deteriorated. Further, Steel 22 is an example in which the O content is large, the cleanliness is impaired, and the toughness and sour resistance are deteriorated. Steel 23 had a small amount of Ca, so its toughness and sour resistance decreased. Steel 24 is an example in which the strength of the base material and the toughness of the base material cannot be ensured because the amount of Nb is small. Further, in Steel 25, the HAZ toughness is deteriorated because the Nb content is large.

【0030】[0030]

【発明の効果】本発明によりH2 Sを含有した約pH3
のような低pH環境における耐水素誘起割れ性および耐
硫化物応力腐食割れ性を改善し、特に母材のみならず溶
接部の靭性を適切に改善して、板厚30mm以上でも高強
度耐サワーラインパイプ用鋼管材としての特性を有効に
高められる。工業的にその効果の大きい発明である。
EFFECTS OF THE INVENTION According to the present invention, about pH 3 containing H 2 S is used.
Hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance in a low pH environment, such as that of the base metal, as well as the toughness of the welded part are properly improved, and high strength sour resistance even with a plate thickness of 30 mm or more. The characteristics as a steel pipe material for line pipes can be effectively enhanced. It is an invention that is industrially highly effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の圧延、水冷パターンを示す線図。FIG. 1 is a diagram showing rolling and water cooling patterns according to the method of the present invention.

【図2】(a)〜(d)は試験片採取位置の説明図。2A to 2D are explanatory views of a test piece sampling position.

フロントページの続き (72)発明者 伊達 昭宏 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内Front Page Continuation (72) Inventor Akihiro Date 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.01〜0.08%、 Si:0.05〜0.5%、 Mn:0.8〜1.5%、 P :0.015%以下、 S :0.0010%以下、 Nb:0.005〜0.040%、 Ti:0.005〜0.025%、 Al:0.008%以下、 Ca:0.001〜0.005%、 N :0.001〜0.005%、 O :0.001〜0.005% を含有し、残留不可避不純物および鉄からなる鋼を連続
鋳造方法によってスラブとし、これを1100〜125
0℃の温度領域で再加熱後、制御圧延し、再加熱温度9
00℃以上で焼入れし、500〜700℃で焼戻すこと
を特徴とする耐サワー性および低温靭性に優れた厚板高
張力鋼板の製造方法。
1. C: 0.01 to 0.08% by weight, Si: 0.05 to 0.5%, Mn: 0.8 to 1.5%, P: 0.015% or less, S : 0.0010% or less, Nb: 0.005 to 0.040%, Ti: 0.005 to 0.025%, Al: 0.008% or less, Ca: 0.001 to 0.005%, N: A steel containing 0.001 to 0.005%, O: 0.001 to 0.005%, and consisting of residual unavoidable impurities and iron was made into a slab by a continuous casting method.
After reheating in the temperature range of 0 ° C, control rolling is performed and the reheating temperature is 9
A method for producing a thick high-strength steel sheet having excellent sour resistance and low-temperature toughness, which comprises quenching at 00 ° C or higher and tempering at 500 to 700 ° C.
【請求項2】 重量%で V :0.005〜0.060%、 Ni:0.05〜0.50%、 Mo:0.05〜0.40%、 Cu:0.05〜1.0%、 Cr:0.05〜1.0% の1種もしくは2種以上を含有することを特徴とする請
求項1記載の耐サワー性および低温靭性に優れた厚板高
張力鋼板の製造方法。
2. By weight%, V: 0.005-0.060%, Ni: 0.05-0.50%, Mo: 0.05-0.40%, Cu: 0.05-1.0. %, Cr: 0.05 to 1.0%, or a combination of two or more thereof. The method for producing a thick high-strength steel sheet having excellent sour resistance and low temperature toughness according to claim 1.
JP2401494A 1994-02-22 1994-02-22 Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness Withdrawn JPH07233415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2401494A JPH07233415A (en) 1994-02-22 1994-02-22 Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401494A JPH07233415A (en) 1994-02-22 1994-02-22 Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness

Publications (1)

Publication Number Publication Date
JPH07233415A true JPH07233415A (en) 1995-09-05

Family

ID=12126702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401494A Withdrawn JPH07233415A (en) 1994-02-22 1994-02-22 Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness

Country Status (1)

Country Link
JP (1) JPH07233415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218707A (en) * 2013-05-09 2014-11-20 Jfeスチール株式会社 Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
CN107779580A (en) * 2016-08-31 2018-03-09 鞍钢股份有限公司 Production process for preventing edge crack of high-crack-sensitivity-index steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218707A (en) * 2013-05-09 2014-11-20 Jfeスチール株式会社 Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
CN107779580A (en) * 2016-08-31 2018-03-09 鞍钢股份有限公司 Production process for preventing edge crack of high-crack-sensitivity-index steel plate
CN107779580B (en) * 2016-08-31 2019-06-25 鞍钢股份有限公司 Production process for preventing edge crack of high-crack-sensitivity-index steel plate

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP2020012168A (en) Thick steel plate for sour resistant line pipe and method for producing the same
JP6616002B2 (en) High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same
KR20070091368A (en) High tensile fire resistant steel with excellent weldability and gas cutting property and its manufacturing method
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
KR100256350B1 (en) Yield strength 50kgf / mm² grade steel with excellent resistance to hydrogen organic cracking and hydrogen sulfide stress corrosion cracking
JPH06293915A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JP3474661B2 (en) Sour-resistant steel plate with excellent crack arrestability
JP7048378B2 (en) High strength and high ductility steel sheet
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP2000256777A (en) High strength steel sheet with excellent strength and low temperature toughness
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH05295434A (en) Method for manufacturing high-strength steel sheet excellent in hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance and low temperature toughness
JPH075968B2 (en) Method for producing steel sheet excellent in hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance and low temperature toughness
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP2688312B2 (en) High strength and high toughness steel plate
JP2004091916A (en) Wear-resistant steel
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JPH06293919A (en) Production of high tensile strength steel plate excellent in sour resistance and toughness at low temperature
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JPH07233415A (en) Method for producing high-strength steel sheet excellent in sour resistance and low temperature toughness
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508