JPH07233274A - Production of porous film - Google Patents
Production of porous filmInfo
- Publication number
- JPH07233274A JPH07233274A JP2655794A JP2655794A JPH07233274A JP H07233274 A JPH07233274 A JP H07233274A JP 2655794 A JP2655794 A JP 2655794A JP 2655794 A JP2655794 A JP 2655794A JP H07233274 A JPH07233274 A JP H07233274A
- Authority
- JP
- Japan
- Prior art keywords
- film
- porous
- dispersion
- ptfe
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000006185 dispersion Substances 0.000 claims abstract description 82
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 67
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 67
- 239000000843 powder Substances 0.000 claims abstract description 67
- 229920000642 polymer Polymers 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000002612 dispersion medium Substances 0.000 claims abstract description 14
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 11
- 238000005266 casting Methods 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 3
- 239000010419 fine particle Substances 0.000 claims description 39
- 239000007788 liquid Substances 0.000 claims description 25
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 16
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 claims 2
- 239000011148 porous material Substances 0.000 abstract description 32
- 239000002245 particle Substances 0.000 abstract description 29
- 238000010438 heat treatment Methods 0.000 abstract description 20
- 239000004793 Polystyrene Substances 0.000 description 15
- 229920002223 polystyrene Polymers 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000011888 foil Substances 0.000 description 13
- 239000012798 spherical particle Substances 0.000 description 13
- 229910001220 stainless steel Inorganic materials 0.000 description 13
- 239000010935 stainless steel Substances 0.000 description 13
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 12
- 230000008020 evaporation Effects 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 239000007921 spray Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 239000002736 nonionic surfactant Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 229920003251 poly(α-methylstyrene) Polymers 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はポリテトラフルオロエチ
レン(以下、「PTFE」という)から成る多孔質フィ
ルムの新規な製造法に関し、より具体的には微粒子ポリ
マーの解重合および/または熱分解を利用するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a porous film made of polytetrafluoroethylene (hereinafter referred to as "PTFE"), and more specifically to depolymerization and / or thermal decomposition of a fine particle polymer. To use.
【0002】[0002]
【従来の技術】PTFEは耐熱性、耐薬品性、電気特性
等種々の特性に優れており、その多孔質フィルムは流体
中から特定物質を取り除くための選択性透過膜、フィル
ター、センサー、防水透湿材等に広く用いられている。2. Description of the Related Art PTFE is excellent in various properties such as heat resistance, chemical resistance, and electrical properties, and its porous film is a selective permeable membrane for removing a specific substance from a fluid, a filter, a sensor, a waterproof permeable membrane. Widely used for wet materials.
【0003】PTFE多孔質フィルムの製造法として
は、PTFE粉末にナフサのような液状潤滑剤を加えた
混和物を押し出し、これを圧延してフィルム状とし、次
いで液状潤滑剤を除去し、その後延伸して多孔質化する
方法が知られている。この延伸によるフッ素樹脂多孔質
フィルムの製造法は、例えば、特公昭42−13560
号公報、特公昭51−18991号公報あるいは米国特
許第3,953,566号明細書に開示されている。As a method for producing a PTFE porous film, a mixture obtained by adding a liquid lubricant such as naphtha to PTFE powder is extruded, rolled into a film, then the liquid lubricant is removed, and then stretched. There is known a method of making the material porous. The method for producing a fluororesin porous film by this stretching is described in, for example, Japanese Patent Publication No. 42-13560.
Japanese Patent Publication No. 51-18991 and Japanese Patent No. 3,953,566.
【0004】また、特表平1−502166号公報には
PTFE粉末に炭酸カルシウム粉末のような気孔形成用
粉末を添加して形成したフィルムであって、該炭酸カル
シウムの粒径の異なる2枚以上のフィルムを作成し、こ
れらを重ね合わせPTFEの融点以上の温度に加熱する
ことにより焼結一体化させ、次いで、気孔形成用粉末を
抽出除去することにより孔径の異なる2層以上の多孔質
層から成るフィルムを製造する方法が開示されている。Further, Japanese Patent Publication No. 1-502166 discloses a film formed by adding pore-forming powder such as calcium carbonate powder to PTFE powder, and two or more films having different particle diameters of calcium carbonate. Film is prepared, these are superposed and heated to a temperature not lower than the melting point of PTFE to be sintered and integrated, and then the pore-forming powder is extracted and removed from two or more porous layers having different pore sizes. A method of making the film is disclosed.
【0005】[0005]
【発明が解決しようとする課題】上記延伸法は多孔質フ
ィルムを効率よく製造できる利点を有しているが、その
反面、微細孔の孔径が延伸条件によって決定されるの
で、所定の孔径のフィルムを常時安定して得るには製造
条件について細心の注意をしなければならないという面
倒さがある。例えば、延伸温度や延伸率を厳密にコント
ロールしなければならず、また、PTFE粉末は同一グ
レードのものであってもその物性値は製造ロットによっ
て変動が不可避的であり、その変動に対応して延伸条件
も変えなければならない場合があった。The above-mentioned stretching method has an advantage that a porous film can be efficiently produced, but on the other hand, since the pore size of fine pores is determined by the stretching conditions, a film having a predetermined pore size is obtained. In order to obtain a stable product at all times, it is necessary to pay close attention to the manufacturing conditions. For example, the stretching temperature and the stretching rate must be strictly controlled, and even if the PTFE powders are of the same grade, the physical property values are inevitable to change depending on the production lot. In some cases, the stretching conditions also had to be changed.
【0006】また、延伸法により得られるフッ素樹脂多
孔質フィルムは、延伸方向に沿って配向された多数の微
細な繊維(fibrils)と、これら繊維によって連
結され且つ該延伸方向に直交する方向に配向された多数
の結節(nodes)から成る微細構造を有している。
この多孔質フィルムの微細孔は繊維と繊維の間の空間で
あるが、延伸による繊維の形成は不規則になり易く、そ
のため孔径も不均一になり易く、選択性透過膜等として
は必ずしも適当ではない。Further, the fluororesin porous film obtained by the stretching method has a large number of fine fibers oriented along the stretching direction, and is connected by these fibers and oriented in a direction orthogonal to the stretching direction. It has a fine structure composed of a number of nodes.
The micropores of this porous film are spaces between fibers, but the formation of fibers by stretching is likely to be irregular, and therefore the pore size is also likely to be nonuniform, which is not always suitable as a selective permeable membrane or the like. Absent.
【0007】更に、延伸法による場合、表面と裏面にお
ける微細孔の孔径や気孔率の異なる多孔質フィルムを得
るのはなかなか困難であった。Further, in the case of the stretching method, it is quite difficult to obtain a porous film having different pore sizes and porosities on the front and back surfaces.
【0008】一方、抽出法による場合は得られる多孔質
フィルムの気孔の孔径は気孔形成用粉末の粒径に対応す
るので孔径の異なる2層以上の多孔質層を容易に形成で
きるが、気孔形成用粉末の抽出除去に長時間を要するの
で生産効率が悪いばかりでなく、該粉末が残存し易いと
いう問題があった。On the other hand, in the case of the extraction method, since the pore diameter of the obtained porous film corresponds to the particle diameter of the pore-forming powder, it is possible to easily form two or more porous layers having different pore diameters. Since it takes a long time to extract and remove the powder for use, not only the production efficiency is poor, but also the powder is apt to remain.
【0009】従って、本発明は所定の孔径を有する多孔
質フィルムを容易に製造する方法を提供することを目的
とし、更に、表裏両面における微細孔の孔径や気孔率の
異なる多孔質フィルムをも容易に製造する方法を提供す
ることをもその目的とするものである。Therefore, an object of the present invention is to provide a method for easily producing a porous film having a predetermined pore size, and further to easily prepare a porous film having different pore sizes and porosities on both front and back surfaces. It is also an object of the present invention to provide a method for manufacturing the same.
【0010】[0010]
【課題を解決するための手段】本発明者は従来技術の有
する上記問題を解決するため、鋭意研究の結果、微粒子
ポリマーの解重合および/または熱分解を利用すること
により、その目的を達成できることを見出し、本発明を
完成するに至った。In order to solve the above problems of the prior art, the present inventor has conducted earnest research and as a result, can achieve the object by utilizing depolymerization and / or thermal decomposition of fine particle polymers. The present invention has been completed and the present invention has been completed.
【0011】即ち、本発明はPTFE粉末と、解重合お
よび/または熱分解する微粒子ポリマーを含む分散液を
流延し、次に前記分散液の分散媒を除去し、その後加熱
してPTFE粉末の溶融させることにより粉末相互を結
着させてフィルムを形成し、次いで微粒子ポリマーを解
重合および/または熱分解させることによりフィルムを
多孔質化し、更に、この形成された多孔質層上において
分散液の流延、分散溶媒の除去、フィルム形成およびフ
ィルムの多孔質化という一連の行程を少なくとも1回行
うことを特徴とするPTFEから成る多孔質フィルムの
製造法に係るものである。That is, according to the present invention, a PTFE powder and a dispersion liquid containing a depolymerized and / or thermally decomposed fine particle polymer are cast, then the dispersion medium of the dispersion liquid is removed, and then heated to obtain a PTFE powder. By melting the powders to bind the powders to each other to form a film, and then depolymerizing and / or thermally decomposing the fine particle polymer to make the film porous, and further disperse the dispersion liquid on the formed porous layer. The present invention relates to a method for producing a porous film made of PTFE, characterized in that a series of steps of casting, removal of a dispersion solvent, film formation and film porosification are performed at least once.
【0012】本発明におけるPTFE粉末としては、通
常、テトラフルオロエチレンを単独重合させた粉末が用
いられるが、所望により、テトラフルオロエチレンと他
のモノマーとの共重合体粉末を用いることもできる。か
ような他のモノマーとしてはエチレン、ヘキサフルオロ
プロピレン、パーフルオロアルキルビニルエーテル等が
挙げられる。この共重合体中における他のモノマーの含
有率は通常2重量%以下である。このPTFE粉末の粒
径は特に限定されないが、通常、約0.1〜0.5μm
である。なお、フッ素樹脂粉末の粒径は下記の微粒子ポ
リマーのそれよりも小さい方が好ましい。As the PTFE powder in the present invention, a powder obtained by homopolymerizing tetrafluoroethylene is usually used, but if desired, a copolymer powder of tetrafluoroethylene and another monomer can also be used. Examples of such other monomer include ethylene, hexafluoropropylene, perfluoroalkyl vinyl ether and the like. The content of the other monomer in this copolymer is usually 2% by weight or less. The particle size of this PTFE powder is not particularly limited, but is usually about 0.1 to 0.5 μm.
Is. The particle size of the fluororesin powder is preferably smaller than that of the fine particle polymer described below.
【0013】一方、微粒子ポリマーとしては解重合およ
び/または熱分解し得るものが用いられる。解重合およ
び/または熱分解し得るポリマーとしては、既に、ポリ
メタクリル酸メチル、ポリαメチルスチレン、ポリイソ
ブチレン、ポリオキシメチレン、ポリスチレン、ポリイ
ソブチルメタクリレート等が知られており、従って、本
発明にはこれらポリマーの微粒子を用いることができ
る。これらのうちポリメタクリル酸メチル、ポリαメチ
ルスチレン、ポリオキシメチレン、ポリイソブチルメタ
クリレートは加熱によって解重合を生じて気化し、ポリ
スチレン、ポリイソブチレンは加熱により解重合および
熱分解を生じて気化する。このポリマーは未架橋のもの
が好ましいが、架橋されたものを用いることもできる。
ただし、本発明においては、この微粒子ポリマーとし
て、解重合温度および熱分解温度がPTFEの融点より
も高いものを選択して用いる。On the other hand, as the fine particle polymer, one which can be depolymerized and / or thermally decomposed is used. As the polymer capable of depolymerization and / or thermal decomposition, polymethylmethacrylate, polyα-methylstyrene, polyisobutylene, polyoxymethylene, polystyrene, polyisobutylmethacrylate, etc. are already known. Fine particles of these polymers can be used. Of these, polymethylmethacrylate, poly-α-methylstyrene, polyoxymethylene, and polyisobutylmethacrylate are depolymerized by heating to be vaporized, and polystyrene and polyisobutylene are depolymerized and thermally decomposed by heating to be vaporized. This polymer is preferably an uncrosslinked polymer, but a crosslinked polymer can also be used.
However, in the present invention, as the fine particle polymer, one having a depolymerization temperature and a thermal decomposition temperature higher than the melting point of PTFE is selected and used.
【0014】この微粒子ポリマーの粒径は多孔質フィル
ムの孔径を決定するものであり、球状粒子を用いる場合
は、通常、約0.2〜50μmの径を有するものが用い
られる。多くの場合、粒径の揃った微粒子ポリマーを用
いるが、場合により小粒径のものと大粒径のものを適当
な比率で混合して用いてもよい。また、球状のほか、円
柱状、紡錘状、角棒状等の任意の形状のものを用いるこ
ともできる。The particle size of the fine particle polymer determines the pore size of the porous film, and when spherical particles are used, those having a diameter of about 0.2 to 50 μm are usually used. In many cases, a fine particle polymer having a uniform particle size is used, but in some cases, a small particle size and a large particle size may be mixed and used at an appropriate ratio. Further, in addition to the spherical shape, an arbitrary shape such as a columnar shape, a spindle shape, or a square bar shape can be used.
【0015】本発明においては、先ず、PTFE粉末
と、PTFEの融点よりも高い温度で解重合および/ま
たは熱分解する微粒子ポリマーとを含む分散液が流延さ
れる。ここで用いる分散液は、例えば、約30〜60重
量%濃度のPTFE粉末の分散液に、微粒子ポリマーを
直接または分散液の状態で混合することにより調製でき
る。分散媒は、通常、水を用いるが微粒子ポリマーを溶
解しない有機溶媒を用いることもできる。この分散液に
おいて、PTFE粉末と微粒子ポリマーとの混合比率は
目的とする多孔質フィルムの気孔率、微粒子ポリマーの
粒径等に応じて決定するが、通常、両者の重量合計中に
占める微粒子ポリマーの割合が約0.1〜60重量%と
なるようにする。なお、PTFE粉末や微粒子ポリマー
の分散性を向上させるため、分散液に界面活性剤を添加
することもできる。In the present invention, first, a dispersion liquid containing PTFE powder and a fine particle polymer which is depolymerized and / or thermally decomposed at a temperature higher than the melting point of PTFE is cast. The dispersion used here can be prepared, for example, by mixing the fine particle polymer in the dispersion of the PTFE powder having a concentration of about 30 to 60% by weight, or in the state of the dispersion. As the dispersion medium, water is usually used, but an organic solvent which does not dissolve the fine particle polymer may be used. In this dispersion, the mixing ratio of the PTFE powder and the fine particle polymer is determined according to the porosity of the target porous film, the particle size of the fine particle polymer, etc. The proportion is about 0.1 to 60% by weight. A surfactant may be added to the dispersion liquid in order to improve the dispersibility of the PTFE powder or the fine particle polymer.
【0016】この分散液の流延は、ポリイミド、ポリエ
ーテルエーテルケトン等の耐熱性プラスチック、金属、
セラミック等の耐熱材料から成る任意形状の基体を用
い、この基体を分散液中に浸漬する方法、この基体表面
にスプレー塗布や刷毛塗りにより分散液を塗布する方法
等により行うことができる。基体上への分散液の流延厚
さは微粒子ポリマーの粒径の3倍以下が好ましく、該ポ
リマーの粒径以下が更に好ましい。The dispersion is cast by heat-resistant plastics such as polyimide and polyetheretherketone, metals,
This can be carried out by using a substrate of an arbitrary shape made of a heat-resistant material such as ceramics, immersing the substrate in the dispersion liquid, and applying the dispersion liquid to the surface of the substrate by spray coating or brush coating. The casting thickness of the dispersion liquid on the substrate is preferably not more than 3 times the particle size of the fine particle polymer, more preferably not more than the particle size of the polymer.
【0017】このように基体上に分散液を流延した後、
該分散液の分散媒を除去する。この除去は加熱法、減圧
法等により行うことができ、加熱法を採用する場合は、
その温度をフッ素樹脂粉末の融点よりも低く且つ微粒子
ポリマーの解重合温度および熱分解温度よりも低く設定
する。After casting the dispersion liquid on the substrate in this way,
The dispersion medium of the dispersion is removed. This removal can be performed by a heating method, a decompression method, or the like. When the heating method is adopted,
The temperature is set to be lower than the melting point of the fluororesin powder and lower than the depolymerization temperature and the thermal decomposition temperature of the fine particle polymer.
【0018】上記のようにして分散媒を除去した後、P
TFEの融点以上で且つ微粒子ポリマーの解重合温度お
よび熱分解温度よりも低い温度に加熱して、PTFE粉
末を溶融させることにより、PTFE粉末相互を結着さ
せて微粒子ポリマーを含むフィルムを形成する。フィル
ム形成に要する加熱時間は温度等によって変わり得る
が、通常、約30秒〜5分である。After removing the dispersion medium as described above, P
The PTFE powder is melted by heating it to a temperature not lower than the melting point of TFE and lower than the depolymerization temperature and the thermal decomposition temperature of the fine particle polymer to bond the PTFE powders to each other to form a film containing the fine particle polymer. The heating time required for film formation may vary depending on the temperature and the like, but is usually about 30 seconds to 5 minutes.
【0019】かようにしてPTFEフィルムを形成した
後、微粒子ポリマーの解重合温度および/または熱分解
温度以上に加熱する。なお、加熱温度はフィルムの変質
を防止するため、PTFEの分解温度よりも低く設定す
るのがよい。加熱時間は温度に応じて設定するが、通
常、約2〜30分である。After the PTFE film is formed in this way, it is heated to a temperature above the depolymerization temperature and / or thermal decomposition temperature of the fine particle polymer. The heating temperature is preferably set lower than the decomposition temperature of PTFE in order to prevent deterioration of the film. The heating time is set according to the temperature, but is usually about 2 to 30 minutes.
【0020】この加熱によりPTFEフィルム中の微粒
子ポリマーが解重合および/または熱分解し、ポリマー
主鎖が切断されてモノマーないしオリゴマーとなって気
化する。そして、PTFEフィルムにおける微粒子ポリ
マーの存在した部分が微細孔となり、フィルムが多孔質
化するのである。By this heating, the fine particle polymer in the PTFE film is depolymerized and / or thermally decomposed, the main chain of the polymer is cleaved, and the monomer or oligomer is vaporized. Then, the portions where the fine particle polymer was present in the PTFE film become fine pores, and the film becomes porous.
【0021】本発明においてはこのようにしてフィルム
を多孔質化した後、この多孔質層上に、PTFE粉末
と、解重合および/または熱分解する微粒子ポリマーと
を含む分散液を流延し、この分散液の分散媒を除去し、
その後加熱してPTFE粉末を溶融させることにより粉
末相互を結着させてフィルムを形成し、次いで微粒子ポ
リマーを解重合および/または熱分解させることにより
フィルムを多孔質化する。これにより前記の多孔質層と
その上に形成された多孔質層とから成る多孔質フィルム
が得られる。この多孔質層上での分散液の流延、分散媒
除去、フィルム形成および多孔質化という一連の行程は
1回あるいは2回以上の任意回数だけ行うことができ
る。かような本発明によれば、得られる多孔質フィルム
は比較的厚手となる。In the present invention, after the film is made porous in this way, a dispersion liquid containing PTFE powder and a depolymerized and / or thermally decomposed fine particle polymer is cast on the porous layer, Remove the dispersion medium of this dispersion,
Thereafter, the PTFE powder is melted by heating to bind the powder particles together to form a film, and then the fine particle polymer is depolymerized and / or thermally decomposed to make the film porous. As a result, a porous film composed of the porous layer and the porous layer formed thereon can be obtained. The series of steps of casting the dispersion liquid on the porous layer, removing the dispersion medium, forming a film and making it porous can be performed once or twice or more times. According to the present invention, the porous film obtained is relatively thick.
【0022】そして、本発明においてはPTFE粉末
と、解重合および/または熱分解する微粒子ポリマーと
を含む分散液の調製に際し、微粒子ポリマーを適宜選択
するすることにより種々のタイプの多孔質フィルムを得
ることができる。例えば、(a)微粒子ポリマーの粒径
が同じである分散液を一貫して用いれば、各層の孔径が
同じである2層以上の多孔質層から成る多孔質フィルム
を、(b)微粒子ポリマーの粒径が異なる2種以上の分
散液を用いれば、孔径の異なる2層以上の多孔質層から
成る多孔質フィルムを、(c)微粒子ポリマーの粒径を
同じとし、その配合量を変えた2種以上の分散液を用い
れば、気孔率の異なる2層以上の多孔質層から成る多孔
質フィルムを、各々得ることができる。In the present invention, various types of porous films are obtained by appropriately selecting the fine particle polymer when preparing a dispersion liquid containing the PTFE powder and the fine particle polymer which is depolymerized and / or thermally decomposed. be able to. For example, if (a) a dispersion liquid having the same particle diameter of the fine particle polymer is used consistently, a porous film composed of two or more porous layers having the same pore diameter of each layer is obtained. If two or more kinds of dispersion liquids having different particle diameters are used, a porous film composed of two or more porous layers having different pore diameters (c) has the same particle diameter of the fine particle polymer, and the compounding amount is changed. By using at least one kind of dispersion liquid, a porous film composed of two or more porous layers having different porosities can be obtained.
【0023】このようにして2層以上の多孔質層を形成
した後、基体から剥離することにより多孔質フィルムを
得ることができる。基体からの剥離はPTFEが本来的
に非接着性であるので容易に行うことができる。また、
所望により、多孔質フィルムに適当な補強材を貼り合わ
せた後、剥離すれば、補強材付きの多孔質フィルムを得
ることができる。After forming two or more porous layers in this manner, the porous film can be obtained by peeling from the substrate. Peeling from the substrate can be easily done because PTFE is inherently non-adhesive. Also,
If desired, a porous film with a reinforcing material can be obtained by adhering a suitable reinforcing material to the porous film and then peeling it off.
【0024】なお、本発明においては、基体上に多孔質
層を形成し、これを基体から剥離し、この剥離した多孔
質層上において分散液の流延、分散媒の除去、フィルム
形成およびフィルムの多孔質化を行ってもよい。この場
合にも、剥離前に多孔質層に補強材を貼り合わせておく
ことができ、また、剥離後に補強材を貼り合わせること
もできる。In the present invention, a porous layer is formed on a substrate, which is peeled off from the substrate and the dispersion is cast on the peeled porous layer, the dispersion medium is removed, a film is formed, and a film is formed. May be made porous. Also in this case, the reinforcing material can be attached to the porous layer before the peeling, or the reinforcing material can be attached after the peeling.
【0025】次に、本発明の他の態様に係るフッ素樹脂
多孔質フィルムの製造法について説明する。この製造法
は、PTFE粉末と、解重合および/または熱分解する
微粒子ポリマーを含む分散液を流延し、次に、前記分散
液の分散媒を除去し、その後加熱してPTFE粉末を溶
融させることにより粉末相互を結着させてフィルムを形
成しながら微粒子ポリマーの解重合および/または熱分
解により多孔質層とし、更に、この形成された多孔質層
上において分散液の流延、分散媒の除去、フィルム形成
しながらの該多孔質フィルムの多孔化という一連の行程
を少なくとも1回行うことを特徴とするものである。Next, a method for producing a fluororesin porous film according to another embodiment of the present invention will be described. In this manufacturing method, a dispersion liquid containing a PTFE powder and a fine particle polymer that undergoes depolymerization and / or thermal decomposition is cast, then the dispersion medium of the dispersion liquid is removed, and then heated to melt the PTFE powder. By binding the powders together to form a film, a fine particle polymer is depolymerized and / or pyrolyzed to form a porous layer. Further, the dispersion liquid is cast on the formed porous layer, and the dispersion medium is dispersed. It is characterized in that a series of steps of removing and forming the film into a porous film is performed at least once.
【0026】前述の方法においてはPTFEフィルムを
形成した後に該フィルムの多孔質化を行ったが、この態
様に係る方法においてはフィルムを形成しながら微粒子
ポリマーの解重合および/または熱分解による多孔質化
を行う。In the above-mentioned method, the PTFE film was formed and then the film was made porous. In the method according to this embodiment, while the film is being formed, the fine particle polymer is depolymerized and / or pyrolyzed to make it porous. To convert.
【0027】従って、微粒子ポリマーとしてPTFE粉
末の融点以上の温度で解重合および/または熱分解し得
るものを用いる点、および分散媒除去後の加熱温度をP
TFEの融点以上で且つ微粒子ポリマーの解重合および
/または熱分解温度以上に設定する点が前述の方法と異
なる。しかし、これ以外は前述の方法と同様に作業して
よい。Therefore, the point that a polymer capable of depolymerization and / or thermal decomposition at a temperature equal to or higher than the melting point of the PTFE powder is used as the fine particle polymer, and the heating temperature after removing the dispersion medium is P
It is different from the above-mentioned method in that the temperature is set above the melting point of TFE and above the depolymerization and / or thermal decomposition temperature of the fine particle polymer. However, other than this, the same operation as that described above may be performed.
【0028】このような本発明の方法によって得られる
多孔質フィルムの厚さ、孔径、気孔率は種々の条件によ
り変わるが、通常、厚さは約5〜100μm、孔径は約
0.5〜50μm、気孔率は約0.1〜60%である。The thickness, pore size, and porosity of the porous film obtained by the method of the present invention vary depending on various conditions, but usually the thickness is about 5 to 100 μm and the pore size is about 0.5 to 50 μm. The porosity is about 0.1 to 60%.
【0029】そして、このフッ素樹脂多孔質フィルムは
従来の多孔質フィルムと同様に選択性透過膜、フィルタ
ー、センサー、防水透湿材に用いることは勿論、医療用
材料、創傷被覆材、絆創膏、ギプス材料、マスク材料、
病院用ガウン、シーツ、テント、各種電池膜、セパレー
タ、衣料材料、ガス透過膜等としても用いることもでき
る。そして、これらに用いる場合、織布、不織布等の通
気性材料と点状、網目状、筋状等に部分接合することも
できる。This fluororesin porous film can be used not only for selective permeable membranes, filters, sensors and waterproof / moisture permeable materials like conventional porous films, but also for medical materials, wound dressings, bandages and plaster casts. Material, mask material,
It can also be used as a hospital gown, sheets, tent, various battery membranes, separators, clothing materials, gas permeable membranes and the like. When it is used for these, it can be partially joined to a breathable material such as a woven fabric or a non-woven fabric in a dot shape, a mesh shape, or a stripe shape.
【0030】[0030]
【実施例】以下、実施例により本発明を更に詳細に説明
する。なお、成分の配合量を示す「部」は全て「重量
部」である。EXAMPLES The present invention will be described in more detail below with reference to examples. In addition, all "parts" indicating the blending amounts of the components are "parts by weight".
【0031】実施例1 平均粒径0.25μmのPTFE(融点327℃)粉末
の濃度が60重量%である水性ディスパージョン(ただ
し、PTFE100部に対し、ノニオン系界面活性剤6
部を配合)を用意する。Example 1 Aqueous dispersion in which the concentration of PTFE (melting point 327 ° C.) powder having an average particle size of 0.25 μm was 60% by weight (however, 100 parts of PTFE was added to the nonionic surfactant 6).
Part) is prepared.
【0032】また、これとは別に平均粒径5μmのポリ
αメチルスチレン球状粒子(解重合温度290℃)10
0部に対し、ノニオン系界面活性剤10部を配合した水
性ディスパージョン(ポリαメチルスチレン球状粒子の
濃度50重量%)を用意する。Separately from this, poly-α-methylstyrene spherical particles having an average particle size of 5 μm (depolymerization temperature 290 ° C.) 10
An aqueous dispersion (concentration of poly-α-methylstyrene spherical particles of 50% by weight) containing 10 parts of a nonionic surfactant is prepared for 0 part.
【0033】上記のPTFE粉末の水性ディスパージョ
ン100部に対し、ポリαメチルスチレン球状粒子含有
水性ディスパージョン36部を混合して分散液Aを得
る。A dispersion A is obtained by mixing 36 parts of the aqueous dispersion containing poly-α-methylstyrene spherical particles with 100 parts of the aqueous dispersion of the above PTFE powder.
【0034】次に、平均粒径2μmのポリαメチルスチ
レン球状粒子100部に対し、ノニオン系界面活性剤1
0部を配合した水性ディスパージョン(球状粒子濃度5
0重量%)を用意し、これを前記と同じPTFE粉末の
水性ディスパージョン100部に対し、18部混合し分
散液Bを得る。Next, 1 part of nonionic surfactant was added to 100 parts of spherical particles of poly-α-methylstyrene having an average particle size of 2 μm.
Aqueous dispersion containing 0 parts (spherical particle concentration 5
0% by weight) was prepared, and 18 parts of this was mixed with 100 parts of the same aqueous dispersion of PTFE powder as above to obtain a dispersion B.
【0035】そして、分散液Aをステンレス箔の片面上
に厚さが5μmになるようにスプレー塗布し、120℃
の温度で1分間加熱して水を蒸発除去する。次に、40
0℃の温度に30分間加熱し、PTFE粉末を溶融させ
該粉末相互を結着させてフィルム形成しながらポリαメ
チルスチレンを解重合により気化させて多孔質化を行っ
て室温まで冷却する。Then, the dispersion A is spray-coated on one surface of the stainless steel foil so as to have a thickness of 5 μm, and the temperature is 120 ° C.
Water is removed by evaporation by heating at a temperature of 1 minute. Then 40
The mixture is heated to a temperature of 0 ° C. for 30 minutes, and the PTFE powder is melted and the powder particles are bound to each other to form a film, and poly α-methylstyrene is vaporized by depolymerization to make it porous and cooled to room temperature.
【0036】その後、この第1の多孔質層(厚さ5μ
m)上に分散液Bを厚さが2μmになるようにスプレー
塗布し、120℃の温度で1分間加熱して水を蒸発除去
する。次に、400℃の温度に30分間加熱し、PTF
E粉末を溶融させ該粉末相互を結着させてフィルム形成
しながらポリαメチルスチレンを解重合により気化させ
て第2の多孔質層(厚さ2μm)を形成し、室温まで冷
却してステンレス箔から多孔質フィルムを剥離した。Thereafter, this first porous layer (thickness 5 μm
m) is spray-coated so that the thickness of the dispersion B is 2 μm, and heated at a temperature of 120 ° C. for 1 minute to evaporate and remove water. Next, heat to a temperature of 400 ° C. for 30 minutes to remove PTF.
The E powder was melted and the powders were bound to each other to form a film, and poly (α-methylstyrene) was vaporized by depolymerization to form a second porous layer (thickness 2 μm). The porous film was peeled from the.
【0037】このPTFE多孔質フィルムの表裏両面を
走査型電子顕微鏡で観察したところ、第1の多孔質層側
の表面は孔径が4.6μm、気孔率が38%であり、第
2の多孔質層側の表面は孔径が1.8μm、気孔率が2
3%であった。Observation of both the front and back surfaces of this PTFE porous film with a scanning electron microscope revealed that the surface on the first porous layer side had a pore diameter of 4.6 μm and a porosity of 38%, and the second porous The surface of the layer side has a pore diameter of 1.8 μm and a porosity of 2
It was 3%.
【0038】実施例2 平均粒径1μmのポリαメチルスチレン球状粒子(解重
合温度290℃)100部に対し、ノニオン系界面活性
剤10部を配合した水性ディスパージョン(球状粒子濃
度50重量%)を用意する。Example 2 100 parts of poly-α-methylstyrene spherical particles having an average particle size of 1 μm (depolymerization temperature of 290 ° C.) and 10 parts of a nonionic surfactant were mixed in an aqueous dispersion (concentration of spherical particles of 50% by weight). To prepare.
【0039】実施例1で用いたのと同じPTFE粉末の
ディスパージョン100部に対し、このポリαメチルス
チレン球状粒子含有ディスパージョン30部を混合して
分散液Cとする。Dispersion C is prepared by mixing 30 parts of this poly-α-methylstyrene spherical particle-containing dispersion with 100 parts of the same PTFE powder dispersion as used in Example 1.
【0040】一方、これとは別に実施例1と同様に作業
してステンレス箔上に第1および第2の多孔質層を順次
形成し、第2の多孔質層上に分散液Cを厚さが1μmに
なるようにスプレー塗布し、120℃の温度で1分間加
熱して水を蒸発除去し、次に、400℃の温度に30分
間加熱し、PTFE粉末を溶融させ該粉末相互を結着さ
せてフィルム形成しながらポリαメチルスチレンを解重
合により気化させて第3の多孔質層(厚さ1μm)を形
成し、室温まで冷却してステンレス箔から剥離した。On the other hand, separately from this, the same operation as in Example 1 was performed to sequentially form the first and second porous layers on the stainless steel foil, and the dispersion liquid C was formed on the second porous layer to a thickness of To 1 μm by spraying, heating at 120 ° C. for 1 minute to remove water by evaporation, and then heating at 400 ° C. for 30 minutes to melt the PTFE powder and bind the powder to each other. Then, while forming a film, poly-α-methylstyrene was vaporized by depolymerization to form a third porous layer (thickness 1 μm), which was cooled to room temperature and peeled from the stainless steel foil.
【0041】このPTFE多孔質フィルムは孔径と気孔
率の異なる3つの多孔質層から成るもので、第3の多孔
質層側の表面は孔径が0.6μm、気孔率が35%であ
った。This PTFE porous film was composed of three porous layers having different pore sizes and porosities, and the surface on the side of the third porous layer had a pore size of 0.6 μm and a porosity of 35%.
【0042】実施例3 実施例1で用いたのと同じPTFE粉末の水性ディスパ
ージョンおよびポリαメチルスチレン(平均粒径5μ
m)水性ディスパージョンを用意する。そして、PTF
E粉末の水性ディスパージョン100部に対し、ポリα
メチルスチレン水性ディスパーション3部を混合して分
散液Dを調製する。更に、このPTFE粉末の水性ディ
スパージョン100部に対し、実施例2で用いたのと同
じポリαメチルスチレン水性ディスパージョン36部を
混合して分散液Eを調製する。Example 3 An aqueous dispersion of the same PTFE powder as used in Example 1 and poly alpha methyl styrene (average particle size 5μ
m) Prepare an aqueous dispersion. And PTF
For 100 parts of aqueous dispersion of E powder, poly α
Dispersion D is prepared by mixing 3 parts of an aqueous dispersion of methylstyrene. Further, to 100 parts of this PTFE powder aqueous dispersion, 36 parts of the same poly α-methylstyrene aqueous dispersion as used in Example 2 is mixed to prepare a dispersion E.
【0043】そして、分散液Dをステンレス箔の片面上
に厚さが5μmになるようにスプレー塗布し、120℃
の温度で1分間加熱して水を蒸発除去する。次に、40
0℃の温度に30分間加熱し、PTFE粉末を溶融させ
該粉末相互を結着させてフィルム形成しながらポリαメ
チルスチレンを解重合により気化させて多孔質化を行
う。Then, the dispersion D is spray-coated on one surface of the stainless steel foil so as to have a thickness of 5 μm, and the temperature is 120 ° C.
Water is removed by evaporation by heating at a temperature of 1 minute. Then 40
The mixture is heated to a temperature of 0 ° C. for 30 minutes to melt the PTFE powder and bind the powder to each other to form a film, and poly (α-methylstyrene) is vaporized by depolymerization to make it porous.
【0044】その後、分散液Dにより形成された第1の
多孔質層(厚さ5μm)上に分散液Eを厚さが1μmに
なるようにスプレー塗布し、120℃の温度で1分間加
熱して水を蒸発除去する。次に、400℃の温度に30
分間加熱し、PTFE粉末を溶融させ該粉末相互を結着
させてフィルム形成しながらポリαメチルスチレンを解
重合により気化させて第2の多孔質層(厚さ1μm)を
形成し、室温まで冷却してステンレス箔から多孔質フィ
ルムを剥離した。Then, the dispersion E is spray-coated to a thickness of 1 μm on the first porous layer (thickness 5 μm) formed by the dispersion D, and heated at a temperature of 120 ° C. for 1 minute. Water is removed by evaporation. Then, the temperature of 400 ℃ 30
After heating for a minute, the PTFE powder is melted and the powders are bound to each other to form a film, while polyα-methylstyrene is vaporized by depolymerization to form a second porous layer (thickness 1 μm) and cooled to room temperature. Then, the porous film was peeled off from the stainless steel foil.
【0045】このPTFE多孔質フィルムの表裏両面を
走査型電子顕微鏡で観察したところ、第1の多孔質層側
の表面は孔径が4.6μm、気孔率が4%であり、第2
の多孔質層側の表面は孔径が0.7μm、気孔率が39
%であった。Observation of both the front and back surfaces of this PTFE porous film with a scanning electron microscope revealed that the surface on the first porous layer side had a pore diameter of 4.6 μm and a porosity of 4%,
The surface of the porous layer on the porous layer side has a pore size of 0.7 μm and a porosity of 39.
%Met.
【0046】実施例4 実施例1で調製した分散液Aをステンレス箔の片面上に
厚さが5μmになるようにスプレー塗布し、120℃の
温度で1分間加熱して水を蒸発除去する。次に、400
℃の温度に30分間加熱し、PTFE粉末を溶融させ該
粉末相互を結着させてフィルム形成しながらポリαメチ
ルスチレンを解重合により気化させて多孔質化を行う。Example 4 The dispersion A prepared in Example 1 is spray-coated on one side of a stainless steel foil so that the thickness is 5 μm, and heated at a temperature of 120 ° C. for 1 minute to remove water by evaporation. Then 400
The mixture is heated at a temperature of 30 ° C. for 30 minutes to melt the PTFE powder and bind the powder to each other to form a film, and poly (α-methylstyrene) is vaporized by depolymerization to make it porous.
【0047】その後、この第1の多孔質層(厚さ5μ
m)上において、分散液Aのスプレー塗布、水の蒸発除
去、フィルム形成しながらポリαメチルスチレンを解重
合により気化させることによる多孔質化を上記と同条件
でもう一度行い第2の多孔質層を形成する。そして、室
温まで冷却してステンレス箔から多孔質フィルムを剥離
した。このPTFE多孔質フィルム(厚さ10μm)の
表裏両面を走査型電子顕微鏡で観察したところ、表裏両
面とも孔径が4.6μm、気孔率が38%であった。Thereafter, the first porous layer (thickness 5 μm
m), spray coating of dispersion A, removal of water by evaporation, and porosification by vaporizing poly-α-methylstyrene by depolymerization while forming a film are performed again under the same conditions as above, and the second porous layer To form. And it cooled to room temperature and peeled the porous film from the stainless steel foil. Both front and back surfaces of this PTFE porous film (thickness 10 μm) were observed with a scanning electron microscope. As a result, both front and back surfaces had a pore diameter of 4.6 μm and a porosity of 38%.
【0048】実施例5 実施例1で用いたのと同じPTFE水性ディスパージョ
ンと、平均粒径5μmのポリスチレン球状粒子(熱分解
温度360℃)100部に対し、ノニオン系界面活性剤
10部を配合した水性ディスパージョン(ポリスチレン
球状粒子の濃度40重量%)を用意する。Example 5 The same PTFE aqueous dispersion as used in Example 1 and 100 parts of polystyrene spherical particles having an average particle size of 5 μm (pyrolysis temperature 360 ° C.) were mixed with 10 parts of a nonionic surfactant. The prepared aqueous dispersion (concentration of polystyrene spherical particles: 40% by weight) is prepared.
【0049】PTFE水性ディスパージョン100部に
対し、ポリスチレン水性ディスパージョン60部を混合
して分散液Fを得、更に、PTFE水性ディスパージョ
ン100部に対し、ポリスチレン水性ディスパージョン
6部を混合して分散液Gを得る。60 parts of polystyrene aqueous dispersion was mixed with 100 parts of PTFE aqueous dispersion to obtain dispersion F, and 6 parts of polystyrene aqueous dispersion was mixed with 100 parts of PTFE aqueous dispersion and dispersed. Liquid G is obtained.
【0050】この分散液Fをステンレス箔の片面上に厚
さが5μmになるようにスプレー塗布し、120℃の温
度で5分間加熱して水を除去する。次に、330℃の温
度で10分間加熱しPTFE粉末を溶融させ粉末相互を
結着させてフィルムを形成した後、380℃の温度で2
0分間加熱してポリスチレンを熱分解および解重合させ
て多孔質化を行って室温まで冷却する。This dispersion F is spray-coated on one surface of the stainless steel foil so that the thickness is 5 μm, and heated at a temperature of 120 ° C. for 5 minutes to remove water. Next, the PTFE powder is melted by heating at a temperature of 330 ° C. for 10 minutes to bind the powders together to form a film, and then at a temperature of 380 ° C. for 2 minutes.
The polystyrene is pyrolyzed and depolymerized by heating for 0 minutes to make it porous, and then cooled to room temperature.
【0051】その後、この第1の多孔質層(厚さ5μ
m)上において、分散液Gのスプレー塗布、水の蒸発除
去、フィルム形成、およびポリスチレンの熱分解および
解重合によるフィルムの多孔質化を第1の多孔質層の形
成と同条件で行い第2の多孔質層を形成する。そして、
室温まで冷却してステンレス箔から多孔質フィルムを剥
離した。Then, the first porous layer (thickness 5 μm
m), spray coating of the dispersion G, water removal by evaporation, film formation, and thermal decomposition and depolymerization of polystyrene to make the film porous are conducted under the same conditions as the formation of the first porous layer. To form a porous layer. And
After cooling to room temperature, the porous film was peeled off from the stainless steel foil.
【0052】このPTFE多孔質フィルム(厚さ10μ
m)の表面を走査型電子顕微鏡で観察したところ、第1
の多孔質層側の表面は孔径が4.6μm、気孔率が44
%、第2の多孔質層側の表面は孔径が4.6μm、気孔
率が7%であった。This PTFE porous film (thickness 10 μm
The surface of m) was observed by a scanning electron microscope.
The surface of the porous layer on the porous layer side has a pore diameter of 4.6 μm and a porosity of 44.
%, And the surface on the second porous layer side had a pore diameter of 4.6 μm and a porosity of 7%.
【0053】実施例6 実施例1で用いたのと同じPTFE水性ディスパージョ
ンと、平均粒径2.0μmのポリスチレン球状粒子10
0部に対し、ノニオン系界面活性剤10部を配合した水
性ディスパージョン(ポリスチレン球状粒子の濃度40
重量%)を用意し、PTFE水性デスパージョン100
部に対し、ポリスチレン水性ディスパージョン36部を
混合して分散液Hを得る。Example 6 The same PTFE aqueous dispersion as used in Example 1 and polystyrene spherical particles 10 having an average particle size of 2.0 μm.
An aqueous dispersion (concentration of polystyrene spherical particles of 40
%), And prepare PTFE aqueous dispersion 100
A dispersion H is obtained by mixing 36 parts of polystyrene aqueous dispersion.
【0054】実施例5で用いたのと同じ分散液Fをステ
ンレス箔の片面上に厚さが5μmになるようにスプレー
塗布し、120℃の温度で5分間加熱して水を蒸発除去
する。次に、330℃の温度に10分間加熱し、PTF
E粉末を溶融させ該粉末相互を結着させてフィルム形成
した後、380℃の温度で20分間加熱してポリスチレ
ンを熱分解および解重合させて多孔質化し、室温まで冷
却する。The same dispersion F as that used in Example 5 was spray coated on one surface of the stainless steel foil so that the thickness was 5 μm, and heated at 120 ° C. for 5 minutes to remove water by evaporation. Next, heat to a temperature of 330 ° C. for 10 minutes to remove PTF.
After the E powder is melted and the powders are bound to each other to form a film, it is heated at 380 ° C. for 20 minutes to thermally decompose and depolymerize polystyrene to make it porous, and then cooled to room temperature.
【0055】その後、この第1の多孔質層(厚さ5μ
m)上において、分散液Hのスプレー塗布(ただし、塗
布厚さを2μmとする)、水の蒸発除去、フィルム形
成、ポリスチレンの熱分解および解重合による多孔質化
を上記と同様にして一度行い第2の多孔質層を形成す
る。そして、室温まで冷却してステンレス箔から多孔質
フィルムを剥離した。Thereafter, the first porous layer (thickness 5 μm
m), spray coating of dispersion H (however, coating thickness is 2 μm), water evaporation removal, film formation, polystyrene pyrolysis and depolymerization to make porous once as described above. A second porous layer is formed. And it cooled to room temperature and peeled the porous film from the stainless steel foil.
【0056】このPTFE多孔質フィルム(厚さ7μ
m)の表裏両面を走査型電子顕微鏡で観察したところ、
第1の多孔質層側の表面は孔径が4.6μm、気孔率が
44%であり、第2の多孔質層側の表面は孔径が1.8
μm、気孔率が20%であった。This PTFE porous film (thickness 7 μm
When the both sides of m) were observed with a scanning electron microscope,
The surface on the first porous layer side has a pore size of 4.6 μm and the porosity is 44%, and the surface on the second porous layer side has a pore size of 1.8.
μm, and the porosity was 20%.
【0057】実施例7 実施例6で調製した分散液Hをステンレス箔の片面上に
厚さが2μmになるようにスプレー塗布し、120℃の
温度で5分間加熱して水を蒸発除去する。次に、330
℃の温度に10分間加熱し、PTFE粉末を溶融させ該
粉末相互を結着させてフィルム形成した後、380℃の
温度で20分間加熱してポリスチレンを熱分解および解
重合させて多孔質化し、室温まで冷却する。Example 7 The dispersion H prepared in Example 6 is spray-coated on one surface of a stainless steel foil to a thickness of 2 μm, and heated at 120 ° C. for 5 minutes to remove water by evaporation. Then 330
After heating to a temperature of ℃ for 10 minutes, PTFE powder is melted and the powder particles are bound to each other to form a film, and then heated at a temperature of 380 ° C. for 20 minutes to thermally decompose and depolymerize polystyrene to make it porous, Cool to room temperature.
【0058】その後、この第1の多孔質層(厚さ2μ
m)上において、分散液Hのスプレー塗布、水の蒸発除
去、フィルム形成、ポリスチレンの熱分解および解重合
による多孔質化を上記と同条件で一度行い第2の多孔質
層を形成する。そして、室温まで冷却してステンレス箔
から多孔質フィルムを剥離した。Then, the first porous layer (thickness 2 μm)
m), spray coating of the dispersion H, evaporation of water, film formation, and thermal decomposition of polystyrene and porosification by depolymerization are performed once under the same conditions as above to form a second porous layer. And it cooled to room temperature and peeled the porous film from the stainless steel foil.
【0059】このPTFE多孔質フィルム(厚さ4μ
m)の表裏両面を走査型電子顕微鏡で観察したところ、
表裏両面とも孔径が1.8μm、気孔率が20%であっ
た。This PTFE porous film (thickness 4 μm
When the both sides of m) were observed with a scanning electron microscope,
Both the front and back surfaces had a pore diameter of 1.8 μm and a porosity of 20%.
【0060】[0060]
【発明の効果】本発明は上記のように構成され、微粒子
ポリマーを解重合および/または熱分解により気化させ
て微細孔を形成するようにしたので、所望の径を有する
多孔質フィルムを容易に製造でき、また、表面と裏面に
おける孔径や気孔率の異なる多孔質フィルムも容易に製
造できる。EFFECTS OF THE INVENTION The present invention is constituted as described above, and since the fine particle polymer is vaporized by depolymerization and / or thermal decomposition to form fine pores, a porous film having a desired diameter can be easily formed. A porous film having different pore sizes and different porosities on the front and back surfaces can be easily produced.
Claims (2)
重合および/または熱分解する微粒子ポリマーとを含む
分散液を流延し、次に前記分散液の分散媒を除去し、そ
の後加熱してポリテトラフルオロエチレン粉末を溶融さ
せることにより粉末相互を結着させてフィルムを形成
し、次いで微粒子ポリマーを解重合および/または熱分
解させることによりフィルムを多孔質化し、更に、この
形成された多孔質層上において分散液の流延、分散媒の
除去、フィルムの形成およびフィルムの多孔質化という
一連の行程を少なくとも1回行うことを特徴とする多孔
質フィルムの製造法。1. A dispersion liquid containing polytetrafluoroethylene powder and a fine particle polymer that undergoes depolymerization and / or thermal decomposition is cast, then the dispersion medium of the dispersion liquid is removed, and then heated to obtain polytetrafluoroethylene. The fluoroethylene powder is melted to bind the powders to each other to form a film, and then the fine particle polymer is depolymerized and / or thermally decomposed to make the film porous, and further, on the formed porous layer. In the method for producing a porous film, the series of steps of casting the dispersion liquid, removing the dispersion medium, forming a film and making the film porous is performed at least once.
重合および/または熱分解する微粒子ポリマーとを含む
分散液を流延し、次に前記分散液の分散媒を除去し、そ
の後加熱してポリテトラフルオロエチレン粉末を溶融さ
せることにより粉末相互を結着させてフィルムを形成し
ながら微粒子ポリマーの解重合および/または熱分解に
より多孔質層とし、更に、この形成された多孔質層上に
おいて分散液の流延、分散溶媒の除去、フィルム形成し
ながらの該フィルムの多孔質化という一連の行程を少な
くとも1回行うことを特徴とする多孔質フィルムの製造
法。2. A dispersion liquid containing polytetrafluoroethylene powder and a fine particle polymer that undergoes depolymerization and / or thermal decomposition is cast, then the dispersion medium of the dispersion liquid is removed, and then heated to obtain polytetrafluoroethylene. The fluoroethylene powder is melted to bind the powders to each other to form a film, thereby forming a porous layer by depolymerization and / or thermal decomposition of the fine particle polymer, and further forming a dispersion on the formed porous layer. A process for producing a porous film, which comprises performing a series of steps of casting, removing a dispersion solvent, and making the film porous while forming the film at least once.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2655794A JPH07233274A (en) | 1994-02-24 | 1994-02-24 | Production of porous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2655794A JPH07233274A (en) | 1994-02-24 | 1994-02-24 | Production of porous film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07233274A true JPH07233274A (en) | 1995-09-05 |
Family
ID=12196843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2655794A Pending JPH07233274A (en) | 1994-02-24 | 1994-02-24 | Production of porous film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07233274A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09154933A (en) * | 1995-12-12 | 1997-06-17 | Nitto Denko Corp | Medical adhesive tape and first-acid adhesive tape |
JP2000208126A (en) * | 1999-01-12 | 2000-07-28 | Nitto Denko Corp | Battery separator and manufacture thereof |
JP2009179802A (en) * | 2006-08-09 | 2009-08-13 | Sumitomo Electric Fine Polymer Inc | Method for producing fluororesin thin film and fluororesin dispersion |
-
1994
- 1994-02-24 JP JP2655794A patent/JPH07233274A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09154933A (en) * | 1995-12-12 | 1997-06-17 | Nitto Denko Corp | Medical adhesive tape and first-acid adhesive tape |
JP2000208126A (en) * | 1999-01-12 | 2000-07-28 | Nitto Denko Corp | Battery separator and manufacture thereof |
JP2009179802A (en) * | 2006-08-09 | 2009-08-13 | Sumitomo Electric Fine Polymer Inc | Method for producing fluororesin thin film and fluororesin dispersion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1317424C (en) | Oriented microporous film | |
CN102179188B (en) | Super hydrophobic modification method for polyvinylidene fluoride hydrophobic membranes | |
JPH02208329A (en) | Fluorocarbon film and manufacture thereof | |
JP2003138047A (en) | Asymmetric porous polytetrafluoroethylene (ptte) film and method for manufacturing the same | |
JP2000501752A (en) | Microporous material of ethylene-vinyl alcohol copolymer and method for producing the same | |
JPS5857205B2 (en) | Manufacturing method of semipermeable membrane | |
JPH078926B2 (en) | Method for producing polytetrafluoroethylene multilayer porous membrane | |
JP2011108658A (en) | Manufacturing method of membrane electrode | |
JP2011501773A (en) | Microporous membrane having relatively large average pore diameter and method for producing the same | |
EP1561561B1 (en) | Process for producing porous film and porous film | |
KR20010022125A (en) | Integrally asymmetrical polyolefin membrane for gas transfer | |
KR20140037018A (en) | Pvdf membranes having a superhydrophobic surface | |
JPS63278943A (en) | Production of porous body | |
JP2012139619A (en) | Polyvinylidene fluoride porous flat membrane and method for manufacturing the same | |
US5091087A (en) | Fabrication of microporous PBI membranes with narrow pore size distribution | |
KR900002095B1 (en) | Manufacturing method of porous membrane | |
DE60012425T2 (en) | Membranes of (per) fluorinated amorphous polymers | |
JP2845571B2 (en) | Microporous membrane, composition for microporous membrane, and method for producing microporous membrane | |
CA1269209A (en) | Method for sizing polytetrafluoroethylene fabrics | |
Shao et al. | Composite membranes with an integrated skin layer: preparation, structural characteristics and pervaporation performance | |
JPH03179039A (en) | Method for manufacturing polytetrafluoroethylene multilayer porous membrane | |
JPS61114701A (en) | Flat film type permeable membrane and preparation thereof | |
JPH07233274A (en) | Production of porous film | |
JPH0532810A (en) | Production of porous body | |
CA1314667C (en) | Process for producing porous membranes |