[go: up one dir, main page]

JPH07231133A - Semiconductor laser capable of modulating polarization, and application thereof - Google Patents

Semiconductor laser capable of modulating polarization, and application thereof

Info

Publication number
JPH07231133A
JPH07231133A JP4519694A JP4519694A JPH07231133A JP H07231133 A JPH07231133 A JP H07231133A JP 4519694 A JP4519694 A JP 4519694A JP 4519694 A JP4519694 A JP 4519694A JP H07231133 A JPH07231133 A JP H07231133A
Authority
JP
Japan
Prior art keywords
semiconductor laser
gain
polarized light
laser according
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4519694A
Other languages
Japanese (ja)
Other versions
JP3226072B2 (en
Inventor
Atsushi Nitta
淳 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04519694A priority Critical patent/JP3226072B2/en
Priority to EP95102173A priority patent/EP0668641B1/en
Priority to DE69521157T priority patent/DE69521157T2/en
Publication of JPH07231133A publication Critical patent/JPH07231133A/en
Priority to US08/972,728 priority patent/US5901166A/en
Application granted granted Critical
Publication of JP3226072B2 publication Critical patent/JP3226072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To change polarized condition of an output beam by an external control. CONSTITUTION:A semiconductor laser for polarized modulation has active layer formed of two or more active regions 31, 32 haying different gain spectrum within one resonator, at least one active region 32 of the active layer has a gain for TM polarization which is larger than that for the TE polarization and at least the other active region 31 of the active layer has a gain for TE polarization which is larger than that for the TM polarization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部からの制御によっ
て出力光の偏光状態を変化させることができる偏波変調
可能な半導体レーザ及びその使用法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization-modulatable semiconductor laser capable of changing the polarization state of output light under external control and its use.

【0002】[0002]

【従来の技術】従来、外部制御によって出力光の偏波状
態を変化できる半導体レーザとしては、特開平2−15
9781号に記載されている分布帰還型(DFB)レー
ザがある。このDFBレーザは、位相調整や反転分布形
成のためのキャリア注入により、内部光の位相が変化
し、TEあるいはTMモードのうちしきい値ゲインの低
い方のモードで発振するものである。
2. Description of the Related Art Conventionally, a semiconductor laser capable of changing the polarization state of output light by external control is disclosed in Japanese Patent Laid-Open No. 2-15.
There is a distributed feedback (DFB) laser described in 9781. This DFB laser changes the phase of internal light by carrier injection for phase adjustment and population inversion formation, and oscillates in a mode having a lower threshold gain of TE or TM modes.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、上
記従来例では、TE光あるいはTMモード光に対する位
相で発振光の偏波状態を変化させるために、反転分布を
形成するための注入電流は常に一定量必要であった。
However, in the above-mentioned conventional example, in order to change the polarization state of the oscillation light in the phase with respect to the TE light or the TM mode light, the injection current for forming the population inversion is always constant. Was needed.

【0004】また、上記従来例では、活性層がバルク材
料で構成されていて、TEとTMモードに対する利得差
は小さいが、量子井戸活性層を用いた場合に、TEとT
Mモードに対する利得差が大きくなり、同じ動作原理で
出力光の偏波状態を切り換えられる波長範囲が狭くな
り、回折格子(これの周期によりTEとTMモードの発
振波長となるTEとTMモードに対するブラッグ波長が
決まる)等の作製精度に対する要求が厳しくなる。
Further, in the above-mentioned conventional example, the active layer is made of a bulk material, and the gain difference between TE and TM modes is small, but when the quantum well active layer is used, TE and T
The gain difference with respect to the M mode becomes large, the wavelength range in which the polarization state of the output light can be switched by the same operation principle becomes narrow, and the diffraction grating (the oscillation wavelength of the TE and TM modes depending on the period of the diffraction grating is used for the TE and TM modes. The requirements for manufacturing accuracy such as (the wavelength is determined) become stricter.

【0005】よって、本発明の目的は、上記の問題点を
解決した偏波変調可能な半導体レーザ及びその使用法を
提供することにある。
Therefore, it is an object of the present invention to provide a polarization-modulatable semiconductor laser and a method of using the same that solve the above problems.

【0006】[0006]

【課題を解決するための手段】本発明の偏波変調可能な
半導体レーザによれば、TM利得がTE利得より大き
い、例えば、歪量子井戸を活性層の一部に用いて、注入
電流を変化させることにより共振器内のトータルのTE
利得とTM利得を変化させることによって、出力光の偏
波状態を切り換えられるようにしている。
According to the polarization-modulatable semiconductor laser of the present invention, TM gain is larger than TE gain, for example, a strained quantum well is used as a part of the active layer to change the injection current. To allow the total TE in the resonator to
By changing the gain and the TM gain, the polarization state of the output light can be switched.

【0007】詳細には、本発明の偏波変調可能な半導体
レーザは、1つの共振器内に、異なる利得スペクトルを
持つ2つ以上の活性領域で形成される活性層があり、活
性層の少なくとも1つの活性領域は、TM偏波の光に対
する利得がTE偏波の光に対する利得よりも大きく、ま
た該活性層の少なくとも1つの活性領域は、TE偏波の
光に対する利得がTM偏波の光に対する利得よりも大き
いことを特徴とする。
Specifically, the polarization-modulatable semiconductor laser of the present invention has an active layer formed of two or more active regions having different gain spectra in one resonator, and at least the active layer. One active region has a gain of TM polarized light larger than that of TE polarized light, and at least one active region of the active layer has a gain of TE polarized light of TM polarized light. Is greater than the gain for.

【0008】具体的には、前記2つ以上の活性領域が1
つの共振器内の軸方向に沿って配列されている。前記2
つ以上の活性領域が1つの共振器内の軸方向に垂直な方
向(導波路の左右方向、及び積層方向)に沿って配列さ
れている。前記活性層の複数の活性領域に対して独立に
電流を注入できる電極構成を持つ。TM偏波の光に対す
る利得がTE偏波の光に対する利得より大きい活性領域
が、引っ張り歪が導入された歪量子井戸で構成されてい
る。前記歪量子井戸で構成される活性領域以外の活性領
域が圧縮歪が導入された歪量子井戸で構成される。ま
た、分布反射鏡を有したり、分布帰還構造を有したり、
ファブリペロー共振器を有したりする。
Specifically, the two or more active regions are one.
The two resonators are arranged along the axial direction. 2 above
One or more active regions are arranged along a direction (horizontal direction of the waveguide and stacking direction) perpendicular to the axial direction within one resonator. It has an electrode structure capable of independently injecting current into a plurality of active regions of the active layer. An active region in which the gain of TM polarized light is larger than that of TE polarized light is composed of a strained quantum well in which tensile strain is introduced. The active regions other than the active regions formed by the strained quantum wells are formed by strained quantum wells into which compressive strain is introduced. Also, it has a distributed reflector, has a distributed feedback structure,
It may have a Fabry-Perot resonator.

【0009】また、本発明の偏波変調可能な半導体レー
ザの駆動法によれば、上記半導体レーザで、TM偏波の
光に対する利得がTE偏波の光に対する利得より大きい
活性領域へ注入する電流を変調(または直流)し、他の
活性領域へ注入する電流を直流(または変調)とするこ
とを特徴とする。また、上記半導体レーザで、TM偏波
の光に対する利得がTE偏波の光に対する利得より大き
い活性領域へ注入する電流を変調し、他の活性領域へ注
入する電流を上記変調と逆位相で変調することを特徴と
する。
According to the method of driving a semiconductor laser capable of polarization modulation of the present invention, in the above semiconductor laser, a current injected into an active region in which the gain for TM polarized light is larger than the gain for TE polarized light. Is modulated (or direct current), and the current injected into another active region is changed to direct current (or modulation). In the semiconductor laser, a current injected into an active region having a gain for TM polarized light larger than a gain for TE polarized light is modulated, and a current injected into another active region is modulated in a phase opposite to that of the above modulation. It is characterized by doing.

【0010】また、本発明の光送信機または光送受信機
は、上記半導体レーザと、該半導体レーザからの出力光
のうち1つの偏波の光を透過させる偏光選択手段と、該
半導体レーザの出力光を入力信号に従って偏波変調する
制御手段から構成されることを特徴とする。
Further, the optical transmitter or the optical transmitter / receiver of the present invention comprises the above semiconductor laser, polarization selecting means for transmitting light of one polarization of the output light from the semiconductor laser, and output of the semiconductor laser. It is characterized by comprising control means for polarization-modulating light according to an input signal.

【0011】また、本発明の光通信システムは、上記光
送信機または光送受信機を少なくとも1つ含んでいるこ
とを特徴とする。
An optical communication system of the present invention is characterized by including at least one of the above optical transmitter or optical transmitter / receiver.

【0012】[0012]

【第1実施例】図1と図1のA−A´断面図である図2
は、ファブリペロー共振器を持つ本実施例の特徴を最も
よく表す図面である。同図において、1は例えばn型G
aAsからなる基板、2は例えばn型Al0.5Ga0.5
sからなる第1クラッド層、31はTE偏波の光に対し
て利得が大きい第1活性層、32はTM偏波の光に対し
て利得が大きい第2活性層、4は例えばp型Al0.5
0.5Asからなる第2クラッド層、5は例えばp型G
aAsからなるキャップ層、6は絶縁膜、7は基板1に
接して形成してある、例えば、金とゲルマニウムの合金
からなる第1電極、8は、例えば、金とクロムの合金か
らなり第1活性層31へ電流を注入するために用いられ
る第2電極、9は第2活性層32へ電流を注入するため
に用いられる第3電極、10は第2電極8と第3電極9
を電気的に分離するための分離溝である。
[First Embodiment] FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1 and FIG.
FIG. 4 is a drawing best showing the features of this embodiment having a Fabry-Perot resonator. In the figure, 1 is, for example, n-type G
The substrate made of aAs, 2 is, for example, n-type Al 0.5 Ga 0.5 A
s is a first clad layer, 31 is a first active layer having a large gain for TE polarized light, 32 is a second active layer having a large gain for TM polarized light, and 4 is, for example, p-type Al. 0.5 G
The second cladding layer 5 made of a 0.5 As is, for example, p-type G
a cap layer made of aAs, 6 an insulating film, 7 a first electrode made of, for example, an alloy of gold and germanium formed in contact with the substrate 1, and 8 a first electrode made of, for example, an alloy of gold and chromium. Second electrode used to inject current into active layer 31, 9 is a third electrode used to inject current into second active layer 32, 10 is second electrode 8 and third electrode 9
Is a separation groove for electrically separating the.

【0013】図3は第1活性層31と第2活性層32の
構造(バントギャップの大きさ)を示す(伝導帯のエネ
ルギーレベルのみを示す)。同図において、各領域を示
す番号は、図1、図2と共通のものを使っている。すな
わち、2は第1クラッド層を、4は第2クラッド層を示
している。また、311、312(層3121、312
2から成る)、313の層部分全部で第1活性層31と
なる。層311および層313は、屈折率(エネルギー
バンドギャップ)が徐々にAl0.5Ga0.5AsからAl
0.3Ga0.7As(或はこの逆)へ変化するいわゆるGR
IN層である。層312は量子井戸から構成される活性
領域で、図3では、例えばGaAsからなる井戸層31
21と、例えばAl0.3Ga0.7Asからなる障壁層31
22から構成されている。一方、第2活性層32は、第
1活性層31とほぼ同様の構成となるが、井戸層部分3
121が、例えばGaAs0.80.2から構成されてい
て、いわゆる引っ張り歪量子井戸となっている。こうし
て、TM偏波に対する利得がTE偏波に対する利得より
大きくなっている。
FIG. 3 shows the structure (size of the band gap) of the first active layer 31 and the second active layer 32 (only the energy level of the conduction band is shown). In the figure, the numbers indicating the respective areas are the same as those in FIGS. 1 and 2. That is, 2 indicates the first clad layer, and 4 indicates the second clad layer. Also, 311, 312 (layers 3121, 312)
The first active layer 31 is made up of all 313 layer portions. The layers 311 and 313 have a refractive index (energy band gap) gradually increasing from Al 0.5 Ga 0.5 As to Al.
So-called GR that changes to 0.3 Ga 0.7 As (or vice versa)
It is the IN layer. The layer 312 is an active region formed of a quantum well. In FIG. 3, the well layer 31 made of GaAs, for example, is used.
21 and a barrier layer 31 made of, for example, Al 0.3 Ga 0.7 As
It is composed of 22. On the other hand, the second active layer 32 has substantially the same structure as the first active layer 31, but the well layer portion 3
121 is composed of, for example, GaAs 0.8 P 0.2, and is a so-called tensile strain quantum well. In this way, the gain for TM polarized waves is larger than the gain for TE polarized waves.

【0014】本実施例では、導波路の横閉じ込めについ
ては、図1に示したようにリッジ導波構造を用いてい
る。横方向の閉じ込めは、リッジ構造に限らず、半導体
レーザで用いている埋め込み構造などの他の構造でもよ
い。
In this embodiment, for lateral confinement of the waveguide, a ridge waveguide structure is used as shown in FIG. The lateral confinement is not limited to the ridge structure but may be another structure such as a buried structure used in a semiconductor laser.

【0015】また、本実施例では、2つの電極8、9を
分離するために、単純に電極を2つに分離しただけの構
成を用いたが、これに限定されるものではなく、他の構
成(例えば、深いスリットを形成する)を用いることも
できる。
Further, in this embodiment, in order to separate the two electrodes 8 and 9, the structure in which the electrodes are simply separated into two is used, but the present invention is not limited to this and other structures are used. Configurations (eg, forming deep slits) can also be used.

【0016】図4、図5には、本実施例の半導体レーザ
の駆動法を示した。図4において、I1は第1活性層3
1へ注入する電流、I2は第2活性層32へ注入する電
流、11は光出力である。図5は、本素子への電流注入
法を示している。注入電流I1と注入電流I21(電流I2
の1つの量)は、本実施例の半導体レーザからの発振光
がTE光になるように設定する。電流I22(電流I2
他の量)は、発振光がTM偏波になるように設定する。
このように設定した様子を図5(A)、(B)に示し
た。この駆動によって、図5(C)のような光出力11
が得られ、その光出力の偏波状態は、図5(D)のよう
にTE、TMモード間で交互に変換される。
4 and 5 show a method of driving the semiconductor laser of this embodiment. In FIG. 4, I 1 is the first active layer 3
1 is a current injected into 1, 1 2 is a current injected into the second active layer 32, and 11 is a light output. FIG. 5 shows a method of injecting current into this device. Injection current I 1 and injection current I 21 (current I 2
Is set so that the oscillation light from the semiconductor laser of this embodiment becomes TE light. The current I 22 (another amount of the current I 2 ) is set so that the oscillated light is TM polarized.
The settings made in this way are shown in FIGS. 5 (A) and 5 (B). By this drive, the optical output 11 as shown in FIG.
Is obtained, and the polarization state of the optical output is alternately converted between the TE mode and the TM mode as shown in FIG.

【0017】即ち、第1活性層31へ注入する電流及び
第2活性層32へ注入する電流が、夫々、I1とI21
あるときは、TEモードにおいてのみ縦モードの或る波
長が発振条件を満足させてTEモード発振が起こる。他
方、第1活性層31へ注入する電流及び第2活性層32
へ注入する電流が、夫々、I1とI22であるときは、T
Mモードにおいてのみ縦モードの或る波長が発振条件を
満足させてTMモード発振が起こる。
That is, when the current injected into the first active layer 31 and the current injected into the second active layer 32 are I 1 and I 21 , respectively, a certain wavelength in the longitudinal mode oscillates only in the TE mode. TE-mode oscillation occurs with satisfying the conditions. On the other hand, the current injected into the first active layer 31 and the second active layer 32
When the currents injected into I are I 1 and I 22 , respectively,
Only in the M mode, a certain wavelength of the longitudinal mode satisfies the oscillation condition and TM mode oscillation occurs.

【0018】図6には、本素子の他の駆動方法を示して
ある。図5の駆動方式では、注入電流としきい値利得の
関係で、光出力(図5(C))がTEとTMの切換えに
よって変化してしまう。そこで、図6の駆動方法によれ
ば、電流I1を電流I2と逆位相で変調することにより
(図6(A)、(B))、光出力変動がなく(図6
(C))、偏波状態だけが変化するようにできる(図6
(D))。
FIG. 6 shows another driving method of this element. In the driving method of FIG. 5, the optical output (FIG. 5C) changes due to the switching between TE and TM due to the relationship between the injection current and the threshold gain. Therefore, according to the driving method of FIG. 6, by modulating the current I 1 in a phase opposite to that of the current I 2 (FIGS. 6A and 6B), there is no optical output fluctuation (FIG. 6).
(C)), only the polarization state can be changed (Fig. 6).
(D)).

【0019】また、図5(A)、(B)の関係を逆、即
ち第1活性層31へ注入する電流I1を変調し第2活性
層32へ注入する電流I2を直流にしてもよい。
5A and 5B are reversed, that is, the current I 1 injected into the first active layer 31 is modulated and the current I 2 injected into the second active layer 32 is changed to DC. Good.

【0020】[0020]

【第2実施例】図7に本発明の第2実施例を示す。第2
実施例は本発明を分布反射型半導体レーザ(DBR−L
D)へ適用した例である。図1と同一部材には同一番号
をつけてある。本実施例では、図1の実施例の片側に分
布反射鏡をもうけた構造になっている(両側に設けても
よい)。本実施例の分布反射鏡は、電流を注入すること
により、そのブラッグ波長を変化させることが可能であ
る。
[Second Embodiment] FIG. 7 shows a second embodiment of the present invention. Second
In the embodiments, the present invention is applied to the distributed Bragg reflector semiconductor laser (DBR-L).
This is an example applied to D). The same members as those in FIG. 1 have the same reference numerals. This embodiment has a structure in which a distributed reflector is provided on one side of the embodiment of FIG. 1 (may be provided on both sides). The distributed Bragg reflector of this embodiment can change its Bragg wavelength by injecting a current.

【0021】図7において、20は例えばAl0.3Ga
0.7Asからなるグレーティング下部領域、21は例え
ばAl0.4Ga0.6Asからなるグレーティング上部領域
であり、この両者の界面に格子(グレーティング)22
が形成してある。また、25は、例えばAl0.4Ga0.6
Asからなる位相調整領域、23、24は夫々グレーテ
ィング領域20、21、22、位相調整領域25の電極
である。
In FIG. 7, 20 is, for example, Al 0.3 Ga.
A lower region of the grating made of 0.7 As, 21 is an upper region of the grating made of, for example, Al 0.4 Ga 0.6 As, and a lattice (grating) 22 is provided at the interface between the two.
Is formed. Further, 25 is, for example, Al 0.4 Ga 0.6.
Phase adjusting regions 23, 24 made of As are electrodes of the grating regions 20, 21, 22 and the phase adjusting region 25, respectively.

【0022】本実施例において、偏波状態を変化させる
方法は第1実施例と実質的に同じである。即ち、第1の
制御状態では、第1活性層31へ注入する電流、第2活
性層32へ注入する電流、グレーティング領域20、2
1、22へ注入する電流及び位相調整領域25へ注入す
る電流を適当に設定して、TEモードのゲインスペクト
ルを支配的にし、そのゲインピークであるTEモードの
ブラッグ波長でTEモード発振を起こす。他方、第2の
制御状態では、第1活性層31へ注入する電流、第2活
性層32へ注入する電流、グレーティング領域20、2
1、22へ注入する電流及び位相調整領域25へ注入す
る電流を適当に設定して、TMモードのゲインスペクト
ルを支配的にし、そのゲインピークであるTMモードの
ブラッグ波長でTMモード発振を起こす。この際、発振
光の線幅を狭くし、発振波長を変化させるために、DB
Rが形成してある。
In this embodiment, the method of changing the polarization state is substantially the same as in the first embodiment. That is, in the first control state, the current injected into the first active layer 31, the current injected into the second active layer 32, the grating regions 20, 2
The currents to be injected into the first and the second regions and the currents to be injected into the phase adjusting region 25 are appropriately set to dominate the TE mode gain spectrum, and TE mode oscillation is generated at the TE mode Bragg wavelength which is the gain peak. On the other hand, in the second control state, the current injected into the first active layer 31, the current injected into the second active layer 32, the grating regions 20, 2
The currents injected into Nos. 1 and 22 and the current injected into the phase adjustment region 25 are appropriately set to dominate the TM mode gain spectrum, and TM mode oscillation occurs at the Bragg wavelength of the TM mode, which is the gain peak. At this time, in order to narrow the line width of the oscillation light and change the oscillation wavelength, DB
R is formed.

【0023】[0023]

【第3実施例】図8に本発明の第3実施例を示す。第3
実施例は本発明を分布帰還型半導体レーザ(DFB−L
D)に適用したものである。図1の部材と同一部材には
同一番号をつけてある。新たに、格子22を形成するた
めの層20、21を第2実施例と同じように形成してあ
る。即ち、20、21、22は第2実施例と同一部材で
ある。
[Third Embodiment] FIG. 8 shows a third embodiment of the present invention. Third
In the embodiment, the present invention is applied to a distributed feedback semiconductor laser (DFB-L).
It is applied to D). The same members as those in FIG. 1 are designated by the same reference numerals. Layers 20 and 21 for forming the grating 22 are newly formed in the same manner as in the second embodiment. That is, 20, 21, and 22 are the same members as in the second embodiment.

【0024】本実施例の動作は第1及び第2実施例と実
質的に同様であるので、ここでは説明を省略する。
Since the operation of this embodiment is substantially the same as that of the first and second embodiments, its explanation is omitted here.

【0025】ところで、前記実施例では、2つ以上の活
性領域が1つの共振器内の軸方向に沿って直列的に配列
されていたが、共振器内の軸方向に垂直な方向に沿って
配列されていてもよい。即ち、例えば、導波路の軸方向
中心軸の左右に対称に2つの活性領域を設けそれに応じ
て2つの電極を形成したり、積層方向に上下に2つの活
性領域を設けそれに応じて上下に電極を形成し2つの活
性領域の間の層を接地するなどして、それらの電極から
独立に電流を2つの活性領域に注入可能としてもよい。
By the way, in the above embodiment, two or more active regions are arranged in series along the axial direction within one resonator, but along the direction perpendicular to the axial direction within the resonator. It may be arranged. That is, for example, two active regions are provided symmetrically on the left and right of the center axis of the waveguide, and two electrodes are formed accordingly, or two active regions are provided above and below in the stacking direction and the upper and lower electrodes are accordingly formed. May be formed and the layer between the two active regions may be grounded so that current can be injected into the two active regions independently from their electrodes.

【0026】[0026]

【第4実施例】図9に本発明の半導体レーザを光通信の
光送信機に適用した実施例を示した。図9において、1
01は制御回路、102は前記実施例で示した本発明の
半導体レーザ、103は偏光子、104は空間を伝搬し
ている光を光ファイバへ結合する光結合手段、105は
光ファイバ、106は端末から送られてきた電気信号、
107は、制御回路101から、半導体レーザ102を
駆動するために送られる駆動信号、108は駆動信号1
07に従って半導体レーザ102が駆動されることで出
力された光信号、109は、光信号108の直交する2
つの偏波状態のうち1つだけを取り出すように調整され
た偏光子103を通過した光信号、110は光ファイバ
105中を伝送される光信号、111は本発明の半導体
レーザ102を用いた光送信機である。、この実施例で
は、光送信機111は、制御回路101、半導体レーザ
102、偏光子103、光結合手段104、光ファイバ
105などから構成されている。
Fourth Embodiment FIG. 9 shows an embodiment in which the semiconductor laser of the present invention is applied to an optical transmitter for optical communication. In FIG. 9, 1
Reference numeral 01 is a control circuit, 102 is the semiconductor laser of the present invention shown in the above embodiment, 103 is a polarizer, 104 is an optical coupling means for coupling light propagating in space to an optical fiber, 105 is an optical fiber, and 106 is Electrical signal sent from the terminal,
107 is a drive signal sent from the control circuit 101 to drive the semiconductor laser 102, and 108 is a drive signal 1.
The optical signal 109 output by driving the semiconductor laser 102 according to 07 is orthogonal to the optical signal 108.
An optical signal that has passed through the polarizer 103 that is adjusted so as to extract only one of the two polarization states, 110 is an optical signal that is transmitted through the optical fiber 105, and 111 is an optical signal that uses the semiconductor laser 102 of the present invention. It is a transmitter. In this embodiment, the optical transmitter 111 is composed of a control circuit 101, a semiconductor laser 102, a polarizer 103, an optical coupling means 104, an optical fiber 105 and the like.

【0027】次に、本実施例の光送信機111の送信動
作について説明する。端末からの電気信号106が制御
回路101に入力されると、図5または図6のような変
調方法に従って本発明の半導体レーザ102へ駆動信号
107が送られる。駆動信号107を入力された半導体
レーザ102は、駆動信号107に従って偏波状態が変
化する光信号108を出力する。その光信号108は、
偏光子103で片方の偏光の光信号109にされ、更に
光結合手段104で光ファイバ105へ結合される。こ
うして強度変調された光信号110を伝送し通信が行わ
れる。
Next, the transmission operation of the optical transmitter 111 of this embodiment will be described. When the electric signal 106 from the terminal is input to the control circuit 101, the drive signal 107 is sent to the semiconductor laser 102 of the present invention according to the modulation method as shown in FIG. 5 or 6. The semiconductor laser 102 to which the drive signal 107 is input outputs an optical signal 108 whose polarization state changes according to the drive signal 107. The optical signal 108 is
An optical signal 109 of one polarization is formed by the polarizer 103, and is further coupled to the optical fiber 105 by the optical coupling means 104. The intensity-modulated optical signal 110 is transmitted for communication.

【0028】この場合、光信号110は強度変調された
状態であるので、従来用いられている強度変調用の光受
信機で光を受信することができる。また、第2、第3実
施例に示したような構成の波長可変の半導体レーザを用
いることにより、波長多重通信の送信機として使うこと
ができる。本実施例では、光送信機として構成した場合
を示したが、もちろん光送受信機中の送信部分に用いる
こともできる。
In this case, since the optical signal 110 is in the intensity-modulated state, the light can be received by the conventionally used optical receiver for intensity modulation. Further, by using the wavelength tunable semiconductor laser having the configuration as shown in the second and third embodiments, it can be used as a transmitter for wavelength division multiplexing communication. In the present embodiment, the case where it is configured as an optical transmitter is shown, but of course it can also be used in the transmitting part in an optical transceiver.

【0029】更に、適用可能な光通信システムについて
も、強度変調信号を扱う系であれば、単純な2点間の光
通信に限らず、光CATV、光LANなどにも適用でき
る。
Furthermore, the applicable optical communication system is not limited to simple two-point optical communication as long as it is a system that handles intensity-modulated signals, and can also be applied to optical CATV, optical LAN, and the like.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
1つの共振器内に、異なる利得スペクトルを持つ2つ以
上の活性領域で形成される活性層があり、活性層の少な
くとも1つの活性領域は、TM偏波の光に対する利得が
TE偏波の光に対する利得よりも大きく(歪量子井戸な
どで構成される)、また活性層の少なくとも他の1つの
活性領域は、TE偏波の光に対する利得がTM偏波の光
に対する利得よりも大きくなっており、各活性領域に独
立に電流を注入できる構造となっている。これにより、
各々の偏波モードでの発振時に無効な注入電流を減少さ
せることができ、活性層に量子井戸などを用いる場合で
も、従来より広範な波長範囲で偏波変調できる半導体レ
ーザを形成できる効果がある。
As described above, according to the present invention,
An active layer formed of two or more active regions having different gain spectra is provided in one resonator, and at least one active region of the active layer has a gain of TE polarized light with respect to TM polarized light. (Composed of strained quantum wells, etc.), and the gain for TE polarized light is larger than the gain for TM polarized light in at least another active region of the active layer. The current can be independently injected into each active region. This allows
It is possible to reduce the ineffective injection current during oscillation in each polarization mode, and it is possible to form a semiconductor laser that can perform polarization modulation in a wider wavelength range than before even when a quantum well is used for the active layer. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】図1のA−A′での断面図。FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG.

【図3】図1の実施例の活性層の構成を説明する図。FIG. 3 is a diagram illustrating the configuration of an active layer of the embodiment of FIG.

【図4】図1の実施例の駆動方法を説明するための断面
図。
FIG. 4 is a sectional view for explaining a driving method of the embodiment of FIG.

【図5】図1の実施例の駆動方法を説明するためのグラ
フ図。
5A and 5B are graphs for explaining a driving method of the embodiment of FIG.

【図6】図1の実施例の他の駆動方法を説明するための
グラフ図。
FIG. 6 is a graph for explaining another driving method of the embodiment of FIG.

【図7】本発明の第2実施例の断面図。FIG. 7 is a sectional view of a second embodiment of the present invention.

【図8】本発明の第3実施例の断面図。FIG. 8 is a sectional view of a third embodiment of the present invention.

【図9】本発明の半導体レーザを光通信の光送信機に適
用した実施例を示すブロック図。
FIG. 9 is a block diagram showing an embodiment in which the semiconductor laser of the present invention is applied to an optical transmitter for optical communication.

【符号の説明】 1 基板 2,4 クラッド層 31 第1活性層 32 第2活性層 311,313 GRIN(graded inde
x)層 312 量子井戸活性領域 3121 井戸層 3122 障壁層 5 キャップ層 6 絶縁層 7,8,9,23,24 電極 9 分離溝 20,21 グレーティング領域 22 グレーティング(格子) 25 位相調整領域 101 制御回路 102 半導体レーザ 103 偏光子 104 光結合手段 105 光ファイバ 111 光送信機
DESCRIPTION OF SYMBOLS 1 substrate 2,4 clad layer 31 first active layer 32 second active layer 311,313 GRIN (graded indeed)
x) layer 312 quantum well active region 3121 well layer 3122 barrier layer 5 cap layer 6 insulating layer 7, 8, 9, 23, 24 electrode 9 isolation groove 20, 21 grating region 22 grating (grating) 25 phase adjustment region 101 control circuit 102 Semiconductor Laser 103 Polarizer 104 Optical Coupling Means 105 Optical Fiber 111 Optical Transmitter

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 1つの共振器内に、異なる利得スペクト
ルを持つ2つ以上の活性領域で形成される活性層があ
り、該活性層の少なくとも1つの活性領域は、TM偏波
の光に対する利得がTE偏波の光に対する利得よりも大
きく、また該活性層の少なくとも他の1つの活性領域
は、TE偏波の光に対する利得がTM偏波の光に対する
利得よりも大きいことを特徴とする半導体レーザ。
1. A resonator has an active layer formed of two or more active regions having different gain spectra, and at least one active region of the active layers has a gain for TM polarized light. Is larger than the gain for the TE polarized light, and at least one other active region of the active layer has a gain for the TE polarized light larger than the gain for the TM polarized light. laser.
【請求項2】 前記2つ以上の活性領域が1つの共振器
内の軸方向に沿って配列されていることを特徴とする請
求項1記載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the two or more active regions are arranged along the axial direction in one resonator.
【請求項3】 前記2つ以上の活性領域が1つの共振器
内の軸方向に垂直な方向に沿って配列されていることを
特徴とする請求項1記載の半導体レーザ。
3. The semiconductor laser according to claim 1, wherein the two or more active regions are arranged along a direction perpendicular to an axial direction within one resonator.
【請求項4】 前記活性層の複数の活性領域に対して独
立に電流を注入できる電極構成を持つことを特徴とする
請求項1記載の半導体レーザ。
4. The semiconductor laser according to claim 1, wherein the semiconductor laser has an electrode structure capable of independently injecting current into a plurality of active regions of the active layer.
【請求項5】 TM偏波の光に対する利得がTE偏波の
光に対する利得より大きい活性領域が、引っ張り歪が導
入された歪量子井戸で構成されていることを特徴とする
請求項1記載の半導体レーザ。
5. The active region in which the gain of TM polarized light is larger than that of TE polarized light is constituted by a strained quantum well in which tensile strain is introduced. Semiconductor laser.
【請求項6】 前記引っ張り歪量子井戸で構成される活
性領域以外の活性領域が、圧縮歪が導入された歪量子井
戸で構成されることを特徴とする請求項5記載の半導体
レーザ。
6. The semiconductor laser according to claim 5, wherein the active regions other than the active region composed of the tensile strained quantum well are composed of strained quantum wells into which compressive strain is introduced.
【請求項7】 分布反射鏡を有することを特徴とする請
求項1記載の半導体レーザ。
7. The semiconductor laser according to claim 1, further comprising a distributed reflector.
【請求項8】 分布帰還構造を有することを特徴とする
請求項1記載の半導体レーザ。
8. The semiconductor laser according to claim 1, which has a distributed feedback structure.
【請求項9】 ファブリペロー共振器を有することを特
徴とする請求項1記載の半導体レーザ。
9. The semiconductor laser according to claim 1, further comprising a Fabry-Perot resonator.
【請求項10】 請求項1記載の半導体レーザで、TM
偏波の光に対する利得がTE偏波の光に対する利得より
大きい活性領域とTE偏波の光に対する利得がTM偏波
の光に対する利得よりも大きい活性領域との一方へ注入
する電流を変調し、他方の活性領域へ注入する電流を直
流とすることを特徴とする請求項1記載の半導体レーザ
の駆動法。
10. The semiconductor laser according to claim 1, wherein the TM
Modulating a current injected into one of an active region in which a gain for polarized light is larger than a gain for TE polarized light and an active region in which a gain for TE polarized light is larger than a gain for TM polarized light, 2. The method for driving a semiconductor laser according to claim 1, wherein the current injected into the other active region is DC.
【請求項11】 請求項1記載の半導体レーザで、TM
偏波の光に対する利得がTE偏波の光に対する利得より
大きい活性領域へ注入する電流を変調し、他の活性領域
へ注入する電流を上記変調と逆位相で変調することを特
徴とする請求項1記載の半導体レーザの駆動法。
11. The semiconductor laser according to claim 1, wherein the TM
7. A current injected into an active region having a gain for polarized light larger than a gain for TE polarized light is modulated, and a current injected to another active region is modulated in a phase opposite to the above modulation. 2. A method for driving a semiconductor laser according to 1.
【請求項12】 請求項1記載の半導体レーザと、該半
導体レーザからの出力光のうち1つの偏波の光を透過さ
せる偏光選択手段と、該半導体レーザの出力光を入力信
号に従って偏波変調する制御手段から構成されることを
特徴とする光送信機。
12. The semiconductor laser according to claim 1, polarization selection means for transmitting light of one polarization of the output light from the semiconductor laser, and polarization modulation of the output light of the semiconductor laser according to an input signal. An optical transmitter comprising a control means for controlling the optical transmitter.
【請求項13】 請求項12記載の光送信機或は該光送
信機を含む光送受信機を少なくとも1つ含んでいること
を特徴とする光通信システム。
13. An optical communication system comprising at least one optical transmitter according to claim 12 or an optical transceiver including the optical transmitter.
JP04519694A 1994-02-18 1994-02-18 Semiconductor laser capable of polarization modulation and its use. Expired - Fee Related JP3226072B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04519694A JP3226072B2 (en) 1994-02-18 1994-02-18 Semiconductor laser capable of polarization modulation and its use.
EP95102173A EP0668641B1 (en) 1994-02-18 1995-02-16 Oscillation polarization mode selective semiconductor laser, light transmitter and optical communication system using the laser
DE69521157T DE69521157T2 (en) 1994-02-18 1995-02-16 Polarization selective semiconductor laser, light transmitter and optical communication system using this laser
US08/972,728 US5901166A (en) 1994-02-18 1997-11-18 Oscillation polarization mode selective semiconductor laser, light transmitter and optical communication system using the laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04519694A JP3226072B2 (en) 1994-02-18 1994-02-18 Semiconductor laser capable of polarization modulation and its use.

Publications (2)

Publication Number Publication Date
JPH07231133A true JPH07231133A (en) 1995-08-29
JP3226072B2 JP3226072B2 (en) 2001-11-05

Family

ID=12712525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04519694A Expired - Fee Related JP3226072B2 (en) 1994-02-18 1994-02-18 Semiconductor laser capable of polarization modulation and its use.

Country Status (1)

Country Link
JP (1) JP3226072B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969671A (en) * 1995-08-30 1997-03-11 Canon Inc Distributed feedback type semiconductor laser capable of polarized modulation
US8208185B2 (en) 2006-02-09 2012-06-26 Bayer Innovation Gmbh Method and apparatus for the production of polarization holograms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969671A (en) * 1995-08-30 1997-03-11 Canon Inc Distributed feedback type semiconductor laser capable of polarized modulation
US8208185B2 (en) 2006-02-09 2012-06-26 Bayer Innovation Gmbh Method and apparatus for the production of polarization holograms

Also Published As

Publication number Publication date
JP3226072B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
EP0721240B1 (en) Oscillation polarization mode selective semiconductor laser, modulation method therefor and optical communication system using the same
US6031860A (en) Optical device capable of switching output intensity of light of predetermined polarized wave, optical transmitter using the device, network using the transmitter, and method of driving optical device
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
US5699373A (en) Oscillation polarization selective semiconductor laser and optical communication system using the same
JP3323725B2 (en) Polarization modulation laser, driving method thereof, and optical communication system using the same
EP0692853B1 (en) Wavelength-tunable semiconductor laser
US5757832A (en) Optical semiconductor device, driving method therefor and light source and opitcal communication system using the same
EP0668642B1 (en) Oscillation polarization mode selective semiconductor laser, light transmitter and optical communication system using the laser
US5926497A (en) Diffraction grating with alternately-arranged different regions, optical semiconductor device with the diffraction grating, and apparatus and optical communication system using the same
US6337868B1 (en) Distributed feedback semiconductor laser and a driving method therefor
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
US5757840A (en) Semiconductor laser modulation method therefor and optical communication system using the same
JP3630977B2 (en) Laser having phase adjustment region and use thereof
JPH11312846A (en) Distribution feedback type semiconductor laser comprising phase shift region of polarization dependence and optical transmitter and optical communication system using the same
JP3226072B2 (en) Semiconductor laser capable of polarization modulation and its use.
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP3287443B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JP2687884B2 (en) Tunable semiconductor laser and manufacturing method thereof
JP3387722B2 (en) Semiconductor laser device and optical communication system using the same
JPH08172234A (en) Optical transmitter and modulation system thereof
JPH11238943A (en) Distribution feedback-type semiconductor laser and its drive method
JPH10117046A (en) Semiconductor laser and its drive method and optical transmitter using it and optical communication system using it
JPH1117274A (en) Mode-locked semiconductor laser device and optical communication system using the same
JPH09307194A (en) Polarized wave modulating semiconductor laser
JPH08172244A (en) Optical transmitter and its modulating system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070831

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080831

LAPS Cancellation because of no payment of annual fees